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Abstract  
The relationship between various indicator organisms and the presence of enteric viruses in treated 
drinking water, surface water and groundwater has been the focus of numerous investigations in the 
recent years. Faecal indicators have been found to be useful for pointing out the potential presence of 
enteric viruses in various water sources. Commonly used indicators include bacteria (e.g. E. coli, 
enterococci and Clostridium perfringens spores), and bacteriophages. The most appropriate indicator 
is one that can provide information about the presence of viruses in groundwater or surface water 
sources or the removal/inactivation of viruses by conventional water treatment processes. 
Bacteriophages can be recovered and detected by many different techniques, and numerous promising 
approaches are still in the developmental stage. It should be noted, however, that meaningful and 
universally accepted guidelines for the recovery and detection of bacteriophages in water 
environments are still underway. 
 
Keywords: somatic coliphages, F-specific RNA phages, Bacteroides fragilis phages, enteric viruses, 
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Introduction 
The microbial contamination of water often leads to large outbreaks of waterborne diseases. 
Almost half of the waterborne disease outbreaks reported every year are associated with 
groundwaters contaminated with microorganisms originating from animal feeding 
operations, decentralized wastewater treatment systems (e.g. septic tanks), leaking sewage 
pipes, treated sewage sludges (biosolids), and artificial aquifer recharge with treated 
wastewater effluents [1,2]. During the course of typical wastewater treatment operations, 
most of the microorganisms are removed. However, some pathogens are often resistant to 
chlorination [3] and may still be present in effluents, which can contaminate recreational 
waters and drinking water supplies [4].  

Among all classes of waterborne pathogens, viruses can cause a wide range of 
diseases and symptoms. A large number of epidemics caused by viruses have been reported 
in the literature [5]. Hepatitis A virus, caliciviruses, adenoviruses, rotavirus, and 
enteroviruses have the greatest effect on public health. Numerous studies have documented 
the presence of enteroviruses in raw and treated drinking water [6], wastewater [7], and 
sludge [8], as well as the presence of enteroviruses and adenoviruses in seawater [9]. 
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Rotaviruses have been detected in sewage [10], river water [11], groundwater [1], and 
drinking water [12].  

Viruses are of submicron size [13] and they can penetrate easier tight subsurface 
formations than larger size microorganisms such as protozoa [14]. Consequently, it is quite 
important to monitor the levels of viruses in groundwater and aquatic systems. Virus 
monitoring in environmental systems is often accomplished with the aid of indicator 
bacteria (faecal coliforms, Escherichia coli, and faecal streptococci), which are employed 
as sole indicators of faecal pollution.  

It has been reported in the literature that viruses present in various aquatic systems 
frequently survive longer than indicator faecal bacteria [9,4]. Moreover, there is evidence 
that some viruses may be more resistant to rough environmental conditions, and water 
treatment processes, than coliform organisms [15]. Consequently, the unreliability of 
bacterial model mcroorganisms [4] led to the search for alternatives. Several bacteriophage 
groups, such as somatic coliphages, F+ specific (male-specific), RNA bacteriophages [16], 
and Bacteroides fragilis bacteriophages [17] have been identified as promising indicator 
candidates for faecal contamination and viral presence.  

This work looks at the history and examines some of the faecal indicators used to 
assess the microbiological quality of water, highlighting the current limitations and also 
possible future developments.The potential of using bacteriophages as models for the fate 
of viruses in natural waters and water treatment systems is also examined. Special attention 
is given to the somatic coliphages, F-specific RNA phages and phages of Bacteroides 
fragilis.  

Bacteriophages as indicators 
Bacteriophages are increasingly employed in various environmental applications as 
indicator organisms of human pathogenic viruses because they possess all the elements of 
true viruses and permit easy, fast and inexpensive isolation [18,19]. Three types of 
bacteriophages, namely: somatic coliphages, F-specific RNA phages, and Bacteroides 
fragilis phages have been employed in environmental water samples as specific indicators 
of human enterovirus contamination. For all of these bacteriophage groups the International 
Standardization Office (ISO) has recommended appropriate procedures for their detection 
in water. Furthermore, numerous studies suggest that these bacteriophages are reliable 
indicators [16,20,21]. Table 1 presents a comprehensive compilation of studies where 
bacteriophages have successfully been employed as indicators. 
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Table 1: Compilation of studies where bacteriophages have been used as indicators 
Categories of 
bacteriophages 
(correlation with 
pathogens)  

Indicators of:  Bacteriophages 
frequently used as 
indicators  

Sources (counts)  

Somatic coliphages  
(Yes/No) 

   

[55,59] Faecal contamination 
[21,37,44, 46] T2, T4, T6 (T even 

phages), T-odd, λ, Τ5, 
Τ7, Τ3, ΦΧ174, S13, 
PRD4 

[23,25,28,40] 

domestic sewage (103-104pfu/ml) 
[29,31,35,38] 

storm-water-runnoff (100-103pfu/100ml) 
[27] 
greywater sediment samples (104-106 
pfu/g) [54] 
primary sludge (105-108 pfu/100g) 
[45,47,48,52] 

activated sludge (105-107 pfu/100g) [45,47] 

thickened sludge (primary+activated sludge) 
(104-107 pfu/100g) [41] 
raw municipal sewage (103 to 106pfu/ml) 
[50] 

faeces of man, cattle, pigs, chickens and 
other animals (100-106 pfu/g) [30,51,53]  

Male spesific F+ phages 
(Yes) 
[44,55] 

   

 Sewage 
contamination 

  

 [21,34,53]  storm-water-runnoff (100-102pfu/100ml) 
[27] 

Serogroup I Animal Faecal 
contamination 

MS2, f2, R17,JP501 greywater sediment samples (108-109 
pfu/g) [54] 

Serogroup II Human Faecal 
contamination 

GA,DS,TH1,BZ13, 
KU1,JP34 

primary sludge (103-108 pfu/100g) 
[45,47,48,52] 

Serogroup III Human Faecal 
contamination 

Qβ, VK, ST, TW17 activated sludge (102-105 pfu/100g) [45, 
47] 

Serogroup IV Animal Faecal 
contamination 
[26,32,36,53] 

SP, FI, TW19, TW26, 
MX1, ID2 
[2,22,23,25,40-42,58,61] 

thickened sludge (primary+activated 
sludge) (102-103 pfu/100g) [41] 
raw sewage (102 to 105pfu/ml) [45,50,57] 

   faeces of man, cattle, pigs, chickens and 
other animals-(100-105 pfu/g) [51] 

B. fragilis phages (Yes)    
[17,55] 
 

Human Faecal 
contamination 
[15,17,24,33, 
39,43,56,60] 
 

phages using Bacteroides 
fragilis strain HSP38      
phages using Bacteroides 
fragilis strain RYC20 
[49] 
 

primary sludge (102-105 pfu/100g) [45,47] 

activated sludge (103 pfu/100g) [45,47] 

thickened sludge (primary+activated 
sludge) (103 pfu/100g) [41] 
faeces of man, cattle, pigs, chickens and 
other animals (100-102 pfu/g) [51] 
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Somatic coliphages 
Somatic coliphages are bacteriophages that attach directly to the lipopolysaccharide of E. 
coli and certain closely related members of the bacterial family Enterobacteriacea [62,63]. 
Somatic coliphages are proven to be accurate faecal indicators. Sewage usually harbours 
high numbers of somatic coliphages. They have also been detected in storm-water-runnoff 
[27], greywater (e.g. wastewater from bath shower, kitchen, and laundry but without input 
from toilets) samples [54], and animal-rearing operations [64], as well as in slaughterhouses 
[51], hospital wastewater [53] and bioaerosols around wastewater treatment plants [65]. 
Somatic coliphages have been found to generally outnumber F-RNA phages in wastewater 
and raw water sources [66].  

Somatic coliphages present some shortcomings, one of them being their 
heterogeneity (high adaptability to environmental conditions), whereas both F-specific 
RNA [67] and B. fragilis [15] bacteriophages are much more homogeneous. Somatic 
coliphages are classified into four groups with significant genetic differences, namely: 
Myoviridae [DNA], Siphoviridae [DNA], Podoviridae [DNA], and Microviridae [DNA]. 
Also, F-specific RNA phages are subdivided into two main groups: Leviviridae [RNA], and 
Inoviridae [DNA]. Not all groups of bacteriophages exhibit the same behavior in aquatic 
and environmental systems. For water quality applications, homogeneous phages are 
recommended. Important drawbacks of somatic coliphages are their replication potential in 
estuarine water [68] and the presence of autochtonous (native inhabitants or indigenous) 
bacteriophages in unpolluted water [69]. However, Muniesa and Jofre [70] indicated that 
the unique combination of the presence of somatic coliphages, host bacterium densities, and 
bacterial physiological conditions needed for phage replication are rarely expected to be 
found in natural water environments. Moreover, in water samples collected far from a 
pollution source or in water samples taken subsequently to the process of chemical 
disinfection, predominant bacteriophages may be different from phages detected in sewage 
and in freshly polluted waters [71].  

Somatic coliphages are detectable by relatively simple, inexpensive, and rapid 
plaque assays [39]. Somatic coliphages attach to the bacterial cell wall and under optimal 
conditions may lyse the host cell within a 20-30 minutes period. They produce plaques of 
widely different size and morphology. The methodology to detect somatic coliphages is 
very simple and results may be obtained within 4-6 hours.  

Male-specific bacteriophages 
Male-specific (F+) bacteriophages are coliphages that infect E. coli via the bacterial 

sex-pilus, the genes for which are located on the F-plasmid, which is produced only at 
temperatures near 37°C or higher [35]. The F+ coliphages can be RNA-containing (FRNA 
phages) or DNA-containing (FDNA phages) coliphages. [72] reported that site specific 
factors, which are not yet understood influence the reliability of coliphages as indicator 
organisms. Hence, until these factors have been thoroughly investigated, the use of a F-
specific phage as an indicator should be carefully examined for the specific conditions of 
each particular site or bench scale experiment. 
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FRNA coliphages are classified into four serological types: serogroups I, II, III, 
IV. Faeces and in particular human faeces do not appear to be an important source of F-
specific bacteriophages [21,30,53,67]. However, animal and human faeces contain different 
serotypes of RNA coliphages, suggesting that these phages can be used to predict the 
source of faecal pollution [73,74]. Members of F-specific RNA coliphages are highly 
associated with faecal contamination from different sources and/or domestic sewage [73]. 
Therefore, the presence of F-specific phage in water often designates the existence of 
sewage pollution. 

The physical structure, composition, and morphology of F-RNA coliphages and 
also their failure to multiply in water environments, closely resemble those of many human 
enteric viruses [75]. Many experiments confirmed that the resistance of F-RNA 
coliphages to unfavourable conditions (presence of various chemicals, heat treatment, 
chlorination) and disinfection processes resembles or exceeds that of most human 
enteric viruses [21]. Furthermore, it has been reported in the literature that F-RNA 
phages are resistant to various chemicals [44], heat treatment [76], sunlight [77], 
ultraviolet light [78], chlorination [79], and typical water treatment processes [63].  

Detection of F-RNA coliphages by plaque assays is not as simple as for the case of 
somatic coliphages. The reason is that the F fimbriae with receptor sites for the phages are 
produced only by host bacteria in the logarithmic growth phase (the logarithm of the 
population density rises linearly with time). This implies that the preparation of host 
cultures for plaque assays has to be timed carefully in order to have the host bacteria in the 
logarithmic growth phase. Even then, the plaques are relatively small and mottled because 
many bacteria in the plaque area may not be lysed. Successful plaque assay procedures for 
F-RNA coliphages have been formulated. However, it is most important that the 
instructions of these procedures are followed closely [80]. 

B. fragilis phages  
Bacteroides fragilis is an obligate anaerobic bacterium (it can only survive in the absence 
of molecular oxygen) found in high concentrations in human faeces. Hence, the presence of 
phages that infect these bacteria is considered to be indicative of human faecal 
contamination. The genus Bacteroides is found in the human gastrointestinal tract in large 
numbers (more than 109-1010/g faeces), compared to coliform bacteria, which range from 
106 to 108/g faeces [81]. It should be noted that the difficulty to recover B. fragilis phages 
from waters with low levels of faecal pollution limits their use as faecal indicators. 

Sun et al. [82] suggested that B. fragilis phages may be a better indicator for water 
bacteriology than classical bacteriological indicators used in water treatment. Also B. 
fragilis phages are more resistant to inactivation by chlorine than other micro-organism 
models such as poliovirus type 1 and E. coli [83]. Compared to coliphages and enteric 
viruses, B. fragilis phages proved to be relatively resistant to unfavourable conditions, at 
least in certain water environments [84].  

Plaque assays for B. fragilis phages are more complicated, expensive, labour-
intensive and time-consuming than those for somatic and F-RNA coliphages. Rather 

http://en.wikipedia.org/wiki/Logarithm
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complex growth media supplemented with antibiotics are required, and plates have to 
be incubated under strictly anaerobic conditions. Details on plaque assays for B. 
fragilis phages have been reported by Tartera et al. [60] and ISO [85]. A molecular 
procedure based on the polymerase chain reaction (PCR) technique may be more 
sensitive for the detection of B. fragilis HSP40 phages than plaque assays [56]. 

Conclusions 
Water faecal contamination is an undesired reality encountered in many countries. To 
prevent major outbreaks of infectious disease caused by pathogenic microorganisms the 
scientific community has searched for various indicators that could be used to alert their 
presence. Among the possible indicators, bacteriophages are receiving increasing attention 
because of the concern with waterborne viral diseases. Bacteriophages have been studied 
worldwide as faecal indicators because of the ease of their detection and their 
morphological similarity to human viruses. In addition, detection of human viruses is still a 
highly skilled and costly process. However, low concentrations of all types of 
bacteriophages in groundwater limit their power to predict the presence of enteric viruses. 
There is little concordance in the literature regarding phage detection methods, thus making 
comparisons extremely difficult. Different authors have used different hosts, phage 
concentration methods, and end-point determinations. Also, markedly different volumes of 
sample have been employed. In addition, bacteriophage concentration methods are not 
reproducible. Moreover, there is no consensus on the best bacterial host strain, and there is 
a lack of consistent recovery of bacteriophages from individual faecal specimens. 
Nonetheles, bacteriophages have shown good potential application as indicators in certain 
situations, but their use is premature at this time, and a number of critical issues must be 
addressed in order for them to meet minimum regulatory requirements. 
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