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Abstract

Analytical solutions for colloid transport in one-dimensional rock fractures with
and without colloid penetration into the rock matrix are presented. These mod-
els idealize a single fracture as two semi-infinite parallel plates. Furthermore, the
models assume that colloid particles undergo irreversible deposition onto frac-
ture surfaces, may penetrate into the rock matrix, and deposit irreversibly onto
rock-matrix solid surfaces. The impact of the model parameters on colloid trans-
port is examined. Subsequently, a stochastic model for two-dimensional transient
transport of colloids in a fracture-rock matrix system with spatially variable frac-
ture aperture is presented. The aperture in the fracture plane is considered as a
lognormally distributed random variable with spatial fluctuations described by
an exponential autocovariance function. The fracture plane is partitioned into
unit elements with different apertures generated stochastically from a lognormal
distribution. Both equilibrium and kinetic colloid deposition onto fracture sur-
faces are investigated. Colloid surface exclusion is incorporated in the dynamics
of kinetic deposition. The impact of deposited colloids on further colloid de-
position is described by either a linear or a nonlinear blocking function. The
governing transport equations are solved numerically for each realization of the
aperture fluctuations. Simulated breakthrough curves of ensemble averages of
several realizations show enhanced colloid transport and more pronounced fin-
gering when colloids are subject to size exclusion from regions of small aperture
size. Moreover, it is demonstrated that surface exclusion enhances colloid trans-
port, and the assumption of clean bed media may underestimate liquid phase
colloid concentrations.



1 Introduction

The possible leakage of canisters containing hazardous wastes and radioactive
materials, which are often buried in deep fractured, low-permeability bedrocks,
has motivated numerous studies of contaminant migration in fractured media
(e.g., Neretnieks et al., 1982; Abelin, 1986; Raven et al., 1988; Krishnamoorthy
et al., 1992). Recent laboratory and field studies indicate that contaminants can
migrate not only as dissolved species in the liquid phase, but also adsorbed on the
surface of suspended colloid particles (e.g., Torok et al., 1990; Buddemeier and
Hunt, 1988; Chiou et al., 1986). Puls and Powell (1992) concluded from labora-
tory experiments that iron oxide colloids may be mobile to a significant extent,
and under some conditions these colloids may be transported faster than conser-
vative tracers. Similar results were observed at the Nevada test site (Buddemeier
and Hunt, 1988) and at a field experiment in crystalline fractured rocks (Champ
and Schroeter, 1988). Because colloids have high surface area per unit mass,
contaminants exhibit higher affinity for attachment onto colloids than onto solid
surfaces (McDowell-Boyer et al., 1986; Toran and Palumbo, 1992). Therefore,
colloid particles serve as carriers for contaminants and may significantly influ-
ence the net rate of contaminant migration (Abdel-Salam and Chrysikopoulos,
1995a).

For reliable modeling of colloid transport in fracture networks, it is most
important to thoroughly understand the main transport mechanisms within a
single fracture. Various investigations have focused on the modeling of flow and
contaminant transport in a single fracture (Neuzil and Tracy, 1981; Neretnieks,
1983; Novakowski et al., 1985; Tsang and Tsang, 1987; Moreno et al., 1988;
Shapiro and Nicholas, 1989; Johns and Roberts, 1991; and Kessler and Hunt,
1994, to mention a few representative studies). A commonly used idealization of a
natural single fracture is a pair of parallel plates separated by a constant aperture.
The parallel plate model ignores the roughness, waviness, and tortuosity of the
fracture surfaces (Schrauf and Evans, 1986). At high normal stresses caused by
the overburden pressure, fracture surfaces tend to close, the contact area between
these surfaces increases and consequently the fracture aperture becomes spatially
dependent (Moreno et al., 1988).

Colloids represent a class of very fine particles that generally range in size
from 1 nm to 10 µm (see Figure 1); and they are named after the Greek word
“κóλλα,” meaning “glue” (Russel et al., 1989). Colloids present in subsurface
formations are mainly mineral particles in the form of metal oxides, humic macro-
molecules, bacteria and viruses (Stumm and Morgan, 1981). In fractured media,
colloids are formed by microerosion of minerals present in the subsurface matrix
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Figure 1: Size ranges of contaminants present in groundwater and effective pore
diameters of various porous media, adopted from Chrysikopoulos and Sim
(1996). Contaminant sizes are obtained from Stumm (1977), Matthess and
Pekdeger (1981), and Buddemeier and Hunt (1988); microfissure sizes are
obtained from Birgersson and Neretnieks (1982); effective pore diameters
are calculated from average soil particle diameters reported by Mitchell
(1976), by assuming a cubic packing: effective pore diameter = particle

diameter × (
√

2 − 1).



as a result of formation crushing due to tectonic activity (Drever, 1985). Col-
loid particles are also produced by the mechanical action of infiltrating water
and chemical dissolution of rock matrix minerals. In addition, colloids form by
changes in groundwater geochemical conditions such as pH, major element com-
position, redox potential, or partial pressures of CO2 (McCarthy and Degueldre,
1993). Once a colloidal suspension is formed, it could be transported over sig-
nificant distances. Suspended colloids are also subject to aggregation, filtration
and settling, all of which are relatively complex processes dependent on colloid
density, colloid size, surface chemistry, water chemistry, and interstitial velocity
(McCarthy and Zachara, 1989). Colloids are found in subsurface waters under
various geochemical conditions with concentrations ranging from a few milligrams
per liter to a few hundred milligrams per liter (Moulin and Ouzounian, 1992).
For instance, high particle concentration has been found in granitic rock frac-
tures at the Nevada test site and in Switzerland (Buddemeier and Hunt, 1988;
Mills et al., 1991).

The transport of colloids is affected by hydrodynamic interactions between
colloid particles, interstitial fluid, and fracture surfaces (Goldman et al., 1967).
The stability of colloids is an important consideration in determining their trans-
port and is controlled by van der Waals attractive forces that promote aggrega-
tion, and electrostatic repulsive forces that keep particles apart. When electro-
static repulsions are dominant, colloid particles are electrostatically stabilized
and remain in a dispersed state (McCarthy and Zachara, 1989). Conditions of
weak electrostatic repulsive forces may promote coagulation which does not nec-
essarily lead to immediate particle immobilization. Coagulation is a function of
several variables, including particle concentration and particle size, which can
influence the extent of particle–particle collisions. Moreover, destabilized col-
loids can still be transported as aggregates if the aggregates are sufficiently small
relative to the fracture aperture.

As colloids are transported through fractures, they are subjected to sorp-
tion reactions with surrounding fracture surfaces. The adsorption of colloids
onto solid surfaces is conventionally termed as filtration or deposition, while the
desorption of colloids is known as detachment. A field experiment in crystalline
rock fractures has demonstrated that the primary removal mechanism of bac-
terial and nonreactive colloids from the bulk solution is by deposition (Champ
and Schroeter, 1988). Colloid deposition onto fracture surfaces can be character-
ized by either equilibrium or kinetic relationships. For mathematical simplicity
many models for colloid transport in porous and fractured media incorporate
a reversible, equilibrium deposition expression (Matthess et al., 1988; Tim and



Mostaghimi, 1991; Grindrod, 1993; Smith and Degueldre, 1993; Chrysikopoulos
and Sim, 1996). Kinetic colloid deposition models are based on the assump-
tion that deposited colloids form either a monolayer coverage on the sorbent’s
surface when interparticle electrostatic forces prohibit contact of colloids (Adam-
czyk et al., 1992) or a multilayer coverage when attractive electrostatic surface
forces enhance particle–particle interactions (Ryde et al., 1991). It should be
noted, however, that charged colloid particles may cover less surface area of a
sorbent than uncharged particles because the presence of intercolloidal forces hin-
der physical contact or overlapping between particles (Adamczyk et al., 1994).
The attachment of particles to the solid surface, or attachment efficiency, is the
ratio of the rate at which particles attach to the solid surface to the rate at
which particles strike the solid surface. Comprehensive compilations of particle
deposition mechanisms have been presented by McDowell-Boyer et al. (1986),
and McCarthy and Zachara (1989). Detachment of colloids is not expected in
crystalline rocks where flow velocities are low. Bowen and Epstein (1979) have
shown experimentally that the rate of release of deposited colloids from a smooth
parallel-plate channel is negligible.

This chapter provides a set of analytical models for one-dimensional colloid
transport in a single water saturated fracture. The effects of irreversible colloid
deposition onto fracture surfaces, colloid penetration into the rock matrix, and
irreversible colloid deposition onto rock-matrix solid surfaces on colloid transport
are thoroughly described. Subsequently, the effect of colloid exclusion from areas
of small aperture size on colloid transport is examined with a two-dimensional
numerical model describing colloid transport within a saturated fracture with
spatially variable aperture. Finally, the impact of some important equilibrium
and kinetic colloid deposition mechanisms on colloid transport within a single
fracture is investigated.

2 Analytical models for colloid transport

For a water saturated, one-dimensional fracture, as illustrated in Figure 2, the
partial differential equation describing the transport of colloids under steady-
state flow conditions, assuming that colloids may deposit irreversibly onto frac-
ture surfaces, and may penetrate the rock matrix is given by

∂n(t, x)
∂t

+
2
b

∂n∗(t, x)
∂t

= Dxx
∂2n(t, x)
∂x2

− Ux
∂n(t, x)
∂x

+
2θDe

b

∂nm(t, x)
∂z

∣∣∣∣
z=b/2

, (1)
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Figure 2: Illustration of a natural fracture represented by two parallel plates
surrounded by the rock matrix. The mean aperture of the fracture is b.
The suspended colloids can deposit onto the fracture surfaces and may
diffuse into the rock matrix where the colloids can also deposit onto the
rock matrix surfaces.

where n is the liquid-phase colloid concentration in the fracture; n∗ is the con-
centration of colloids retained by deposition onto fracture surfaces expressed as
mass of colloids per unit area of fracture surface; nm is the colloid concentration
in the rock matrix; Dxx is the dispersion coefficient for colloids; Ux is the average
interstitial velocity in the fracture; De = D/τ∗ is the effective diffusion coefficient
for colloids (where D is the Brownian diffusion coefficient and τ∗ >1 is the rock
matrix tortuosity); b is the fracture aperture; θ is the porosity of the rock matrix;
x is the coordinate along the fracture axis; z is the coordinate perpendicular to
the fracture axis with origin at the center of the fracture; and t is time.

The mass flux of colloids onto fracture surfaces, represented by the second
term on the left hand side of eqn (1), can be expressed as

∂n∗(t, x)
∂t

=
κUx

b
n(t, x), (2)

where κ is the fracture surface deposition coefficient, which is an experimentally
determined “lumped” parameter that takes into account the different deposition
mechanisms induced by Brownian motion, van der Waals and electric double layer
forces. This relationship assumes that n∗ is not affected by previously deposited
particles on fracture surfaces. Similar relationships to eqn (2) for the filtration of
colloids in porous media have been presented by Herzig et al. (1970) and Harvey



and Garabedian (1991); and in fractured media by Bowen and Epstein (1979),
as well as Ibaraki and Sudicky (1995). However, in order to discriminate some
inaccurate relationships previously presented in the literature, it should be noted
that the mass flux of colloids onto fracture surfaces is inversely proportional to
the fracture aperture, b.

The diffusive mass flux of colloids into the rock matrix is represented by the
last term in eqn (1). The colloid concentration in the rock matrix, nm, can be ob-
tained from the following one-dimensional partial differential equation governing
colloid diffusion in a direction perpendicular to the fracture axis, assuming that
the interstitial liquid in the rock matrix is stationary, and that colloids deposit
irreversibly onto rock-matrix solid surfaces

∂nm(t, x, z)
∂t

+
ρb

θ

∂n∗
m(t, x, z)
∂t

= De
∂2nm(t, x, z)

∂z2
, (3)

where n∗
m is the colloid concentration deposited on the rock matrix. Similar to

colloid deposition onto fracture surfaces (eqn 2), the irreversible deposition of
colloids onto rock-matrix solid surfaces can be expressed by the following linear
kinetic relationship

∂n∗
m(t, x, z)
∂t

=
κmθ

ρb
nm(t, x, z), (4)

where κm is the rock matrix deposition coefficient. For a semi-infinite fracture
and the presence of a continuous source of colloids, the appropriate initial and
boundary conditions are:

n(0, x) = 0, (5)

n(t, 0) = no, (6a)

−Dxx
∂n(t, 0)
∂x

+ Uxn(t, 0) = Uxno, (6b)

∂n(t,∞)
∂x

= 0, (7)

nm(0, x, z) = 0, (8a)

nm(t, x, b/2) = n(t, x), (8b)

∂nm(t, x,∞)
∂z

= 0, (8c)

where no is the source colloid concentration. The condition (5) corresponds to
the situation where colloids are initially absent from the one-dimensional frac-
ture. The boundary condition (6a) represents the case of constant concentration



at the inlet; while the constant flux boundary condition (6b) implies colloid con-
centration discontinuity at the inlet. The downstream boundary condition (7)
preserves concentration continuity for a semi-infinite fracture. The boundary
condition (8b) implies equal concentration in the fracture and the rock matrix
at the interface between them.

2.1 Without colloid penetration into the rock matrix

2.1.1 Constant concentration boundary condition

For the case of no colloid penetration into the rock matrix (i.e., ∂nm/∂z=0), and
a constant concentration boundary condition, the analytical solution to eqns (1),
(2), (5), (6a), and (7) is given by (Abdel-Salam and Chrysikopoulos, 1994)

ncc(t, x) =
no

2

{
exp

[
Uxx

2Dxx
(1 − ξ)

]
erfc

[
x− Uxtξ

2(Dxxt)1/2

]

+ exp
[
Uxx

2Dxx
(1 + ξ)

]
erfc

[
x+ Uxtξ

2(Dxxt)1/2

]}
, (9)

where

ξ =
(

1 +
8κDxx

Uxb2

)1/2

, (10)

and the subscript cc indicates the use of the constant concentration upstream
boundary condition. It should be noted that for the case of non-depositing
colloid transport, κ is set to zero in the preceding equation.

2.1.2 Constant flux boundary condition

For the case of no colloid penetration into the rock matrix (i.e., ∂nm/∂z=0), and
a constant flux inlet boundary condition, the analytical solution for eqns (1), (2),
(5), (6b), and (7) is given by (Abdel-Salam and Chrysikopoulos, 1994)

ncf (t, x) = no

{
1

1 + ξ
exp

[
Uxx

2Dxx
(1 − ξ)

]
erfc

[
x− Uxtξ

2(Dxxt)1/2

]

+
1

1 − ξ
exp

[
Uxx

2Dxx
(1 + ξ)

]
erfc

[
x+ Uxtξ

2(Dxxt)1/2

]

+
Uxb

2

4Dxxκ
exp

[
Uxx

Dxx
− 2Uxκt

b2

]
erfc

[
x+ Uxt

2(Dxxt)1/2

]}
, (11)



where the subscript cf indicates the use of the constant flux upstream boundary
condition. The preceding expression is valid only for κ > 0 which corresponds to
ξ > 1. For the case of non-depositing colloid transport (κ = 0), the appropriate
solution is (Lindstrom et al., 1967; Gershon and Nir, 1969)

ncf (t, x) =
no

2

{
erfc

[
x− Uxt

2(Dxxt)1/2

]
+

(
4U2

xt

πDxx

)
exp

[
− (x− Uxxt)2

4Dxxt

]

−
(

1 +
Uxx

Dxx
+
U2

xt

Dxx

)
exp

[
Uxx

Dxx

]
erfc

[
x+ Uxt

2(Dxxt)1/2

]}
. (12)

2.2 Colloid penetration into the rock matrix

2.2.1 Constant concentration boundary condition

For the case of colloid penetration into the rock matrix (i.e., ∂nm/∂z >0), and
a constant concentration boundary condition, the analytical solution to eqns
(1)–(6a), (7), and (8) was derived by Abdel-Salam and Chrysikopoulos (1994)

nccp(t, x) =
no

π1/2
exp[B]

∞∫



exp
[
−η2 − Ex2

4Dxxη2

]

×
{

exp
[
− κmx

2

4Dxxη2
− κ

1/2
m Ax2

4η2

]
erfc

[
Ax2

8η2T 1/2
− (κmT )1/2

]

+ exp
[
− κmx

2

4Dxxη2
+
κ

1/2
m Ax2

4η2

]
erfc

[
Ax2

8η2T 1/2
+ (κmT )1/2

]}
dη, (13)

where the subscript ccp indicates the use of the constant concentration upstream
boundary condition with penetration into the rock matrix,

A =
2θD1/2

e

bDxx
, (14)

B =
Uxx

2Dxx
, (15)

E =
2κUx

b2
+

U2
x

4Dxx
− κm, (16)

� =
x

2(Dxxt)1/2
, (17)

T = t− x2

4Dxxη2
, (18)



and η is a dummy integration variable.

2.2.2 Constant flux boundary condition

For the case of colloid penetration into the rock matrix (i.e., ∂nm/∂z >0), and
a constant concentration boundary condition, the solution to eqns (1)–(5), and
(6b)–(8) is given by (Abdel-Salam and Chrysikopoulos, 1994)

ncfp(t, x) =
noUx

2πD1/2
xx

exp
[
B − κmt

][
f(t) ∗ g(t)

]
, (19)

where the subscript cfp indicates the use of the constant flux upstream boundary
condition with penetration into the rock matrix; and f ∗ g is the convolution
integral defined as

f(t) ∗ g(t) =

t∫
0

f(τ)g(t− τ) dτ (20)

where

f(t) =

∞∫



exp
[
−η2 − Ex2

4Dxxη2

]

×
{

exp
[
κmT − κ

1/2
m Ax2

4η2

]
erfc

[
Ax2

8η2T 1/2
− (κmT )1/2

]

+ exp
[
κmT +

κ
1/2
m Ax2

4η2

]
erfc

[
Ax2

8η2T 1/2
+ (κmT )1/2

]}
dη (21)

g(t) =
1
t3/2

{ ∞∫
0

exp
[
−ω

2

4t
− ω

(
F +H

)]
ω dω

− P 1/2

∞∫
0

ω∫
0

exp
[
−ω

2

4t
−Hω − F (ω2 − ν2)1/2

]
J1

[
νP 1/2

]
ω dν dω

}
, (22)

F =
Ux

2D1/2
xx

, (23)

H =
ADxx

2
, (24)

P = E − A2D2
xx

4
, (25)
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Figure 3: Variation of the normalized liquid-phase colloid concentration with
time for various values of the ratio of the fracture surface deposition co-
efficient to the fracture aperture squared as simulated by eqn (11) (here,
Dxx =0.25 m2/y, Ux =1.0 m/y, and x = 5 m).

Figure 4: Variation of the normalized liquid-phase colloid concentration with
time for various effective diffusion coefficient values as simulated by eqn
(19) (here, b =1.25×10−4 m, Dxx =0.25 m2/y, Ux =1.0 m/y, x = 5 m, κ
=1.0×10−10 m, and κm =0 y−1).



τ , ν, and ω are dummy integration variables; and J1 is the modified Bessel
function of the first kind of order one.

2.3 Model simulations

The parameter sensitivity and behavior of the one-dimensional colloid transport
models presented here are investigated by several model simulations. The ef-
fect of the ratio of the fracture surface deposition coefficient, κ, to the fracture
aperture squared, b2, on the liquid-phase colloid concentration in the fracture
as a function of time is presented in Figure 3. Clearly, the breakthrough curves
indicate that increasing the deposition coefficient, while holding the fracture
aperture constant, results in a reduction in the liquid-phase colloid concentra-
tion, because the deposition coefficient determines the amount of colloids to be
deposited onto fracture surfaces. For a constant deposition coefficient the liquid-
phase colloid concentration decreases with decreasing fracture aperture. This
result is attributable to the fact that the smaller the fracture aperture the easier
the access of colloid particles to fracture surfaces because of the shorter travel
distance. It should be noted that the effect on liquid-phase colloid concentration
due to an increase in the fracture aperture is exactly opposite to the resulting
effect due to an increase in the deposition coefficient. Furthermore, the normal-
ized concentrations of liquid-phase colloids as shown in Figure 3 do not reach the
maximum value of one, because the models discussed here assume irreversible
colloid deposition onto fracture surfaces.

Simulated breakthrough curves as well as snapshots for various parameter
values indicate that the solutions presented by eqns (9) and (11) as well as eqns
(13) and (19) exhibit similar behavior at low dispersion coefficients and high in-
terstitial velocities. It should be noted that the boundary conditions (6a) and
(6b) are approximately equivalent when D is negligible. At high interstitial ve-
locity the advective flux in (6b) dominates over the dispersive flux, and thus there
is no essential difference between the two boundary conditions. Consequently,
the analytical solutions corresponding to the two boundary conditions examined
become equivalent. Furthermore, Abdel-Salam and Chrysikopoulos (1994) have
shown that the constant concentration inlet boundary condition overestimates
the liquid-phase colloid concentrations, whereas the constant flux leads to con-
servation of mass. Similar results have been reported by van Genuchten and
Parker (1984), and Leij et al. (1991) for certain cases of contaminant transport
in saturated porous formations.



Model simulations based on eqn (19) with three different effective diffusion
coefficients representing colloid particle diameters of 1, 0.1, and 0.01 µm, and
rock matrix tortuosity τ∗ of 1.33, are presented in Figure 4. The model simula-
tions are also compared to the corresponding case of colloid transport without
colloid penetration into the rock matrix. The predicted breakthrough curves
demonstrate that an increase in the effective diffusion coefficient, or alterna-
tively a decrease in particle size, leads to an increase in the colloid mass flux
into the rock matrix and consequently to a decrease in the liquid-phase colloid
concentration in the fracture. Also, the required time for colloid breakthrough
increases with increasing effective diffusion coefficient. Furthermore, additional
model simulations verify the intuitive result that an increase in the rock matrix
deposition coefficient (κm), leads to a decrease in the colloid concentration in the
rock matrix (nm).

3 Transport of colloids in a saturated fracture with
spatially variable aperture

Consider a two–dimensional, fully water-saturated fracture plane partitioned into
80×40 equal-size unit elements in the x and y directions, respectively, as shown
in Figure 5. Each element exhibits a constant aperture. The aperture field in the
fracture is generated stochastically by the geostatistical code COVAR (Williams
and El-Kadi, 1986), assuming that the fracture aperture is a stationary stochas-
tic variable with a known probability density function and spatial correlation
length. It is assumed that the aperture distribution in the fracture plane follows
a lognormal distribution with a mean of 1.65 µm and a standard deviation of
0.45 µm, and varies spatially according to an isotropic exponential autocovari-
ance function with correlation length of 0.3 m. The aperture size ranges from 3
µm to 200 µm. These parameter values are approximately equal to those used by
Moreno et al. (1988). The assumption of lognormally distributed aperture fluc-
tuations is in agreement with measured apparent apertures from selective cores
and well logs (Bianchi and Snow, 1968), apertures derived from permeability
tests in granite (Bourke et al., 1985), and aperture measurements of laboratory
core samples (Gale, 1982; Hakami and Barton, 1990).
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Figure 6: Velocity vector field in the fracture plane corresponding to a single
realization of the aperture field. Arrow lengths are proportional to velocity
magnitudes.



3.1 Mathematical model for a two-dimensional fracture

An appropriate partial differential equation describing the transport of colloids
in a two-dimensional fracture with spatially variable aperture, assuming that
colloids are stable of equal size and may deposit onto fracture surfaces but do
not penetrate the rock matrix surrounding the fracture, is expressed as follows
(Abdel-Salam and Chrysikopoulos, 1995b)

b(x, y)
∂n(t, x, y)

∂t
+ 2

∂n∗(t, x, y)
∂t

= ∇ ·
[
b(x, y)D · ∇n(t, x, y) − b(x, y)Un(t, x, y)

]
, (26)

where b is the fracture aperture; n is the concentration of colloids suspended
in the liquid phase; n∗ is the concentration of colloids deposited onto fracture
surfaces, expressed as mass of colloids per unit area of the fracture surface; x is
the coordinate along the fracture length; y is the coordinate along the fracture
width; t is time; ∇ is the two-dimensional vector operator (del); ∇· denotes
divergence (∇ · F=∂Fx/∂x + ∂Fy/∂y, where F is an arbitrary two-dimensional
vector); U is the interstitial fluid velocity vector defined as

U =
(
Ux(x, y)
Uy(x, y)

)
, (27)

where Ux and Uy are the components of the interstitial velocity in the x and
y directions, respectively; and D is a 2×2 symmetric matrix of hydrodynamic
dispersion coefficients

D =
(
Dxx(x, y) Dxy(x, y)
Dyx(x, y) Dyy(x, y)

)
, (28)

which can be determined from the velocity field by employing the following ex-
pression (Bear and Verruijt, 1987)

Dij(x, y) = αT δij |U| +
(
αL − αT

)Ui(x, y) Uj(x, y)
|U| + D, (29)

where αL and αT are the longitudinal and transverse dispersivities in the x and
y directions, respectively; δij is the Kronecker delta (δij = 0 for i 
= j and δij = 1

for i = j) with subscripts ij = xx, xy, yx, or yy; and |U| = (U2
x + U2

y )1/2



is the magnitude of the interstitial velocity vector. The velocity vector is two-
dimensional because fracture aperture variability leads to a nonuniform velocity
field. The governing transport eqn (26) assumes that no colloid mass is lost due
to particle straining (entrapment between the fracture surfaces), and does not
account for colloid diffusion into the rock matrix surrounding the fracture. As
discussed in Section 2.3 of this chapter, colloid penetration into the rock matrix
simply leads to a decrease in the liquid phase colloid concentration in the fracture.

The necessary initial and boundary conditions imposed on the two-dimen-
sional fracture for the colloid transport model are as follows

n(0, x, y) = 0, (30)

n(t, 0, y) = no, (31)

∂n(t, �x, y)
∂x

= 0, (32)

−Dyy(x, 0)
∂n(t, x, 0)

∂y
+ Uy(x, 0)n(t, x, 0) = 0, (33)

−Dyy(x, �y)
∂n(t, x, �y)

∂y
+ Uy(x, �y)n(t, x, �y) = 0, (34)

where �x and �y are the fracture dimensions in the x and y directions, respec-
tively; and no is the constant colloid concentration at the source. The condition
(30) establishes that there is no initial concentration of colloids suspended in the
liquid phase. The constant concentration boundary condition (31) implies colloid
concentration continuity at the upstream boundary. Equation (32) imposes the
condition that the dispersive flux of colloids is zero and that concentration con-
tinuity is preserved at the downstream boundary. Furthermore, the conditions
(33) and (34) imply that the lower and upper boundaries of the two-dimensional
fracture are impervious to advective as well as dispersive transport of colloids.

The velocity components in the x and y directions at any location within
the fracture are obtained by the following expression (de Marsily, 1986)

Ux(x, y) = −Kf (x, y)
∂h(x, y)
∂x

= −γb
2(x, y)
12µ

∂h(x, y)
∂x

, (35)



Uy(x, y) = −Kf (x, y)
∂h(x, y)
∂y

= −γb
2(x, y)
12µ

∂h(x, y)
∂y

, (36)

where h is the total head potential; Kf = γb2/12µ is the hydraulic conductivity
of the fracture; γ is the specific weight of the interstitial fluid; and µ is the
dynamic viscosity of the interstitial fluid.

The distribution of the total head potential within the fracture is obtained
by the following steady state partial differential equation describing fluid flow
in a fracture with spatially variable aperture (Abdel-Salam and Chrysikopoulos,
1995b)

∂

∂x

[
b3(x, y)

∂h(x, y)
∂x

]
+

∂

∂y

[
b3(x, y)

∂h(x, y)
∂y

]
= 0. (37)

The preceding equation is valid when the curvature of the fracture is small
(Reimus et al., 1995), and is derived under the assumption that the cubic law
for incompressible laminar flow between two parallel plates (Schrauf and Evans,
1986) can simulate efficiently the flow through each unit element of the fracture.
Flow in the rock matrix is neglected, because the saturated hydraulic conductiv-
ity in the rock matrix is several orders of magnitude smaller than the saturated
hydraulic conductivity in the fracture (Streltsova, 1988). It should be noted that
both the governing colloid transport equation (26) and the interstitial fluid flow
equation (37) are stochastic partial differential equations because b is a stochastic
variable.

The boundary conditions imposed on the two-dimensional fracture for the
interstitial fluid flow model are:

∂h(t, x, 0)
∂y

= 0, (38)

∂h(t, x, �y)
∂y

= 0, (39)

h(t, 0, y) = h0, (40)

h(t, �x, y) = 0, (41)

where h0 is a constant total head potential. Conditions (38) and (39) represent
the no flow top and bottom boundaries, respectively; whereas conditions (40)
and (41) represent the constant head left (upstream) and right (downstream)



boundaries, respectively (for physical orientation of the fracture see Figure 5).
The direction of the flow is from left to right. Figure 6 shows a plot of the
velocity vector field in the fracture plane for a single realization of the aperture
field obtained by solving eqn (37) subject to conditions (38)–(41) using the central
finite difference approximation as outlined by Huyakorn and Pinder (1983) and
Strikwerda (1989). The constant head gradient imposed on the flow model is

3.0×10−5. This value represents a 1.72 m/y velocity in a fracture with constant
aperture of 45 µm (this is the mean of the assumed lognormal distribution). The
length of each arrow is proportional to the magnitude of the resultant velocity,
with values ranging between 0.4–4.0 m/y. Velocities below 0.4 m/y and above 4.0
m/y are not shown. Since the velocity is proportional to the aperture squared and
the head gradient, high velocities are found within elements with large aperture
size and/or large head gradient.

Although microscopically the deposition of colloids is affected by many
physicochemical processes, in order to model macroscopic colloid transport the
following phenomenological equation describing the mass flux of colloids onto the
fracture surfaces is used

∂n∗(t, x, y)
∂t

= κ
(
U2

x + U2
y

)1/2 n(t, x, y)
b(x, y)

. (42)

The above equation is a modified version of eqn (2) which is applicable to frac-
tures with uniform unidirectional interstitial velocity. One of the limitations of
(42) is that it does not account for the reduction in fracture permeability as a
result of colloid deposition onto fracture surfaces. This issue is explored in the
next section of this chapter.

3.2 Colloid size exclusion

For each realization of the aperture field, the distribution of the total head poten-
tial (h) within the fracture is determined. Subsequently, the velocity components
at each unit element of the fracture plane are obtained from (35) and (36) with

γ = 9.778 × 106 g · m−2sec−2 and µ = 0.8904 g · m−1sec−1. The corresponding
hydrodynamic dispersion coefficients at each unit element are estimated by em-
ploying (29). Furthermore, the governing transport partial differential equation
(26) coupled with the kinetic colloid deposition model (42) is solved numerically
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Figure 7: Spatial distribution of normalized suspended colloid concentration in
the fracture plane, for transport: (a) without size exclusion and (b) with
size exclusion. The colloid source is 0.4 m wide at the center of the inlet
boundary (here Kf = 1.0 × 10−4 m, t = 6 y, αL = 0.2 m, and αT = 0.02

m).

subject to initial/boundary conditions (30)–(34) by employing the fully implicit
finite difference method, as outlined by Huyakorn and Pinder (1983) and Strikw-
erda (1989). The time derivative is approximated by a two-point backward finite
difference scheme and the spatial derivatives are approximated by a central finite
difference scheme. The overall approximation is second-order accurate.



For fractures with spatially variable aperture, it is expected that colloids
will bypass small size elements by following the least resistive pathways. This
phenomenon is known as size exclusion. Figure 7 shows a comparison between
colloid concentration in the fracture plane with and without size exclusion for a
single realization after six years of simulation time. The colloid source is 0.4 m
wide located at the center of the inlet boundary. The scale in Figure 7 ranges
from black representing high concentration (n/no=1) to white representing low
concentration (n/no=0). The two-dimensional snapshot in Figure 7a portrays the
colloid concentration where colloids are allowed to travel throughout the whole
fracture plane. Because of the variable aperture nature of the fracture, formation
of some fingering occurs. In Figure 7b, colloids are restricted from entering
elements with apertures smaller than 15 µm, assuming that colloid particles are
spherical and of equal diameter (1 µm) so that the possibility of particle straining
is eliminated (Sakthivadivel, 1969; Herzig et al., 1970). No-flow elements are
simulated by setting both the advective and dispersive fluxes into these elements
to zero. It is clear from Figure 7b that size exclusion leads to faster breakthrough
and more pronounced fingering. The small white spots in Figure 7b represent
the no-flow elements.

4 Colloid deposition

For time dependent colloid deposition in a saturated fracture, under the assump-
tion that the colloid filtration theory (Herzig et al., 1970) is applicable, the fol-
lowing kinetic deposition model can be used (Chrysikopoulos and Abdel-Salam,
1997)

∂n∗(t, x, y)
∂t

= rf
n(t, x, y)
b(x, y)

− rr n
∗(t, x, y), (43)

where rf and rr are the forward and reverse colloid deposition rate coefficients,
respectively. This relationship for the kinetic colloid deposition onto fracture
surfaces is more general than the expressions (2) and (42), because neither surface
exclusion nor colloid deposition effects are neglected. The forward rate coefficient
is defined as

rf = κ
(
U2

x + U2
y

)1/2

F (n∗), (44)

where F (n∗) is the dynamic blocking function (DBF), which takes into account
the effect of previously deposited particles on subsequent colloid deposition by



specifying the portion of the fracture surface area available for deposition (surface
exclusion effect). The DBF depends on the shape and size of colloids, geometry
of sorbent, flow characteristics, and physicochemical properties of the interstitial
fluid. The value of the DBF ranges between one for a fracture surface free of
colloids (n∗ = 0) and zero for a fracture surface completely covered (monolayer)
by deposited colloids (n∗ = n∗

max, where n∗
max is the maximum deposited colloid

concentration). A linear (Langmuirian) DBF as well as several nonlinear DBFs
have been proposed in the literature for a variety of physical systems.

The colloid deposition coefficient κ presented in the expression describing
the forward rate coefficient (44) can be approximated for cases of ideal flow con-
ditions and collectors of regular geometrical shape (i.e., rotating disk, spherical
and cylindrical collectors, a plate in a uniform flow, parallel-plate channel, and
continuous moving surfaces) (van de Ven, 1989; Elimelech et al., 1995). For nat-
ural subsurface formations or for the fracture with spatially variable aperture,
the mechanisms controlling the colloid deposition coefficient are, in general, very
complex and depend on the nature of the collector surface. Any kind of surface
roughness or spatial variability of the surface charge can substantially affect col-
loid deposition. Because of inadequate information to predict in advance colloid
deposition onto the fracture walls, the deposition coefficient is often considered
a lumped parameter.

4.1 Linear DBF

The Langmuirian dynamic blocking function, which is linearly dependent on
colloid surface coverage, has been used by many investigators (Privman et al.,
1991; Ryde et al., 1991; Saiers et al., 1994; Song and Elimelech, 1994, to mention
a few representative studies) and is expressed as follows

F (n∗) =
εmax − ε

εmax
, (45)

where ε and εmax are the fraction and maximum fraction of a sorbent surface cov-
ered (blocked) by deposited colloids, respectively. It should be noted that εmax

corresponds to the maximum deposited colloid concentration (n∗
max), which is a

function of colloidal particle size and available sites for colloid deposition. The
preceding relationship incorporates blocking effects due to physical coverage of
the sorbent’s surface area by previously deposited colloids, as well as for possible
additional inhibition of subsequent colloid deposition (blocking greater than the
projected or cross-sectional area of the deposited colloid) due to energy barri-
ers created by electrostatic repulsive forces originating from charged deposited
colloids.



4.2 Nonlinear DBF

Schaaf and Talbot (1989) developed a DBF based on the random sequential
adsorption (RSA) process which is governed by irreversible deposition without
surface diffusion and colloidal particle overlapping (i.e., monolayer coverage).
The RSA DBF was derived by considering the probability of a spherical particle
to deposit on a flat surface with previously deposited particles present, and is
valid only for uncharged colloidal particles at the maximum surface coverage
possible of εmax =0.546. An improved, more flexible version of this DBF was
presented by Adamczyk et al. (1992), and is given as

F (n∗) = 1 − 2.184
[

ε

εmax

]
+ 0.986

[
ε

εmax

]2

+ 0.229
[

ε

εmax

]3

. (46)

The preceding equation is a nonlinear function of the colloid surface coverage, and
is valid for charged colloidal particles and any surface coverage up to 0.8 εmax.
For higher surface coverage, the following relationship can be used (Pomeau,
1980)

F (n∗) =

(
εmax − ε

)3

2k2
, (47)

where k is an empirical parameter dependent on the area blocked by a single
deposited particle.

4.3 Deposition model parameter estimation

In order to estimate the portion of a fracture surface area covered by colloids (ε),
the number of deposited particles per unit surface area of the fracture (N∗) is
obtained from the deposited colloid concentration (n∗) by the following expres-
sion

N∗(t, x, y) =
n∗(t, x, y)
ρpVp

=
6n∗(t, x, y)
ρpπd3

p

, (48)

where ρp is the colloidal particle density; Vp = πd3
p/6 is the volume of a spherical

colloidal particle; and dp is the diameter of a colloidal particle. The preceding



equation transforms the deposited mass concentration to particle number con-
centration. The maximum number of particles which can possibly deposit on a
fracture surface area is defined by

N∗
max =

1
α
, (49)

where α is the area of the fracture surface blocked by a deposited colloidal par-
ticle. The parameter α is proportional to the projected (cross-sectional) area of

a colloidal particle (Ap = πd2
p/4) and is given by

α = βAp

= β

(
πd2

p

4

)
, (50)

where β is the excluded area factor, which is a dimensionless parameter repre-
senting the ratio of the fracture surface area blocked by a deposited colloidal
particle to the projected area of the particle (β ≥ 1 and α ≥ Ap). In view of eqns

(48)–(50), the portion of a fracture surface area blocked by colloids is evaluated
as

ε(t, x, y) =
ApN

∗(t, x, y)
αN∗

max

=
3
2
n∗(t, x, y)
ρpdp

. (51)

The maximum fraction of a fracture surface area blocked by deposited colloids
is obtained by replacing N∗ with N∗

max in (51) to yield

εmax =
Ap

α

=
1
β
, (52)

where the latter formulation in the preceding equation is the consequence of
employing the definition of α.



0.0

0.1

0.2

0.3

0.4

0.5
n

/n
o

0.0 2.0 4.0 6.0 8.0 10.0

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.0 2.0 4.0 6.0 8.0 10.0

Time (yr)

(b)

Time (yr)

Figure 8: Comparison between normalized ensemble averaged temporal distribu-
tion of liquid phase colloid concentration for irreversible colloid deposition
conditions with linear DBF (dashed curves) and clean bed media assump-
tion (solid curves) for deposition coefficient of: (a) κ=1.0×10−9 m and (b)
κ=5.0×10−10 m (here dp =1.0 µm, x = 2.0 m).

4.4 Effects of irreversible and reversible colloid deposition

When interstitial fluid and sorbent surface chemical conditions favor the presence
of stable colloidal particles of opposite charge to sorbent surfaces, colloid depo-
sition is essentially irreversible (i.e., rr=0) and restricted to monolayer coverage
of sorbent surfaces (Johnson and Elimelech, 1995). For this case, the expression
(43) is employed with zero reverse rate coefficient. Furthermore, the forward
colloid deposition rate coefficient is defined by (44) and F (n∗) is described either
by the linear relationship (45) or the nonlinear model (46)–(47).

The effect of irreversible colloid deposition described by the linear DBF (45)
on colloid transport for particles of 1.0 µm in diameter is illustrated in Figure 8.
The solid curves represent the clean bed media assumption (i.e., F (n∗)=1) for
which colloid deposition is unaffected by previously deposited particles (Herzig
et al., 1970); whereas the dashed curves represent the linear DBF. An ensemble
average of 60 different realizations for a deposition coefficient of κ = 1.0×10−9 m
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Figure 9: Comparison between normalized ensemble averaged temporal distribu-
tion of liquid phase colloid concentration for reversible colloid deposition
conditions with linear DBF (dashed curves) and clean bed media assump-

tion (solid curves) for reverse rate coefficient of: (a) rr=1.0 yr−1 and (b)

rr=0.1 yr−1 (here dp=1.0 µm, κ=1.0×10−9 m, x = 2.0 m).

and a source colloid concentration distributed across the entire width of the inlet
boundary is presented in Figure 8a. The rising portion of the two breakthrough
curves in Figure 8a coincide, because at early times the deposited colloid concen-
tration is small (ε → 0) and the linear DBF is essentially one. With increasing
time, progressive deviation between the two curves is observed. As the por-
tion of the fracture surface covered by deposited colloids increases (ε > 0), the
DBF decreases, and the rate of colloid deposition declines; consequently, the
liquid-phase colloid concentration increases. In Figure 8b, a smaller deposition
coefficient (κ = 5.0 × 10−10 m) is employed. Comparing Figures 8a and 8b, it is
evident that the rising portion of the breakthrough curve for the linear DBF coin-
cides with the curve corresponding to the case of F (n∗) = 1 for longer periods of
time. At late times the deviation of the breakthrough curves is less pronounced
for the case of a smaller colloid deposition coefficient.

Comparing model simulations based on the nonlinear DBF (46)–(47) and
linear DBF (45) it was concluded that at early times, the linear and nonlinear
DBFs are essentially equivalent because the deposited colloid concentration is
small. As the deposited colloid concentration increases, the RSA DBF yields



higher liquid phase colloid concentrations. Therefore, the colloid deposition rate
is declining faster for the RSA DBF than the linear DBF.

Simulated breakthrough curves for an ensemble average of 60 realizations of
the fracture aperture distribution, and for a source of colloids located across the
entire width of the inlet boundary, is shown in Figure 9a for rr=1 yr−1. The solid
curve is for the case where the clean bed media assumption is invoked; whereas
the dashed curve is for the case where the linear DBF (45) is used. The nonlin-
ear RSA DBF is not employed because it accounts for only irreversible colloid
deposition. The two breakthrough curves presented in Figure 9a exhibit very
similar behavior, because the effect of the linear DBF in decreasing the colloid
deposition rate is insignificant due to the high reverse rate coefficient used, or
equivalently, to the low deposited colloid concentration. In Figure 9b, a reverse
rate coefficient of rr =0.1 yr−1 is used. Clearly, for this case the two break-
through curves progressively deviate from each other with increasing time. The
lower reverse rate coefficient yields higher deposited colloid concentrations. Con-
sequently, the effect of the linear DBF in decreasing the colloid deposition rate
is more pronounced due to increased coverage of fracture surfaces by previously
deposited colloids.

5 Summary

One-dimensional colloid transport in a single semi-infinite fracture idealized as
two parallel plates was modeled assuming irreversible deposition onto fracture
surfaces, penetration into the rock matrix, and irreversible deposition onto rock-
matrix solid surfaces. Several analytical solutions corresponding to colloid trans-
port with and without penetration into the rock matrix were presented, for con-
stant concentration as well as constant flux inlet boundary conditions. The liquid
phase colloid concentration in the fracture was found to be mostly sensitive to the
fracture aperture and to the fracture surface deposition coefficient. An increase
in the deposition coefficient produces an increase in the deposited colloid con-
centration on fracture surfaces and consequently a decrease in the liquid phase
colloid concentration. As the fracture aperture decreases the liquid phase col-
loid concentration declines sharply, while the deposited colloid concentration on
fracture surfaces increases. Simulations based on the analytical solutions for the
case where colloids penetrate the rock matrix indicate an increase in the colloidal
mass flux penetrating the rock matrix with decreasing particle size, which in turn
leads to a reduction in the liquid phase colloid concentration in the fracture.



For the case of colloid transport in a two-dimensional fracture-rock matrix
system with a spatially variable aperture and homogeneous, isotropic rock ma-
trix, the model simulations suggest that colloid spreading increases when fracture
aperture variability and size exclusion are considered, with the latter being im-
portant for large particles. Several model simulations indicate that a fracture
with spatially variable aperture causes the colloids to follow preferential paths
within the fracture plane. Faster transport and more pronounced fingering of
colloids are observed when colloids are excluded from elements in the fracture
plane with small aperture size. Size exclusion also increases the dispersion of
colloids.

Incorporating a DBF in the deposition model leads to higher liquid phase
colloid concentrations than what is predicted by the clean bed media assumption
(F (n∗) = 1). The reason for this is that DBFs account for blocking effects from
previously deposited colloidal particles. The nonlinear DBF yields substantially
higher liquid phase colloid concentrations than the linear DBF, because the non-
linear model declines faster with increasing deposited colloid concentration. The
impact of the DBF in increasing the liquid phase colloid concentration becomes
insignificant at high reverse rate coefficients. Although the equilibrium colloid
deposition mechanism is mathematically simple, it should be used with caution
because it may not always accurately represent the colloid deposition process in
subsurface systems.
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Notation

Ap Projected (cross-sectional) area of a colloidal particle: πd2
p/4, L2

b Fracture aperture, L
dp Diameter of a colloidal particle, L

D Dispersion coefficient for colloids, L2/T
Dij Hydrodynamic dispersion coefficient in the ij (ij = xx, xy, yx, yy)

direction, L2/T



D Hydrodynamic dispersion coefficient tensor, L2/T

D Brownian diffusion coefficient for colloids, L2/T

De Effective diffusion coefficient for colloids, L2/T

erf[x] Error function, equal to 2π−1/2
∫ x

0
e−z2

dz

erfc[x] Complementary error function, equal to 1 − erf[x]
F Dynamic blocking function
F Arbitrary two-dimensional vector
h Total head potential in the fracture, L
h0 Constant total head potential at the upstream boundary, L
k Empirical parameter that varies with α

J1 Bessel function of the first kind of order one
Kf Hydraulic conductivity of the fracture: γb2/12µ, L/T
�x Fracture length in the x direction, L
�y Fracture length in the y direction, L

n Liquid-phase colloid concentration in the fracture, M/L3

nm Liquid-phase colloid concentration in the rock matrix, M/L3

no Source colloid concentration, M/L3

n∗ Colloid concentration deposited on fracture surfaces, M/L2

n∗
m Colloid concentration deposited onto rock matrix solid surfaces, M/M

n∗
max Maximum deposited colloid concentration on the fracture surfaces, M/L2

N∗ Number of colloidal particles per unit surface area of the fracture, 1/L2

N∗
max Maximum number of deposited colloids per unit surface area of the

fracture, 1/L2

rf Forward colloid deposition rate coefficient, 1/T
rr Reverse colloid deposition rate coefficient, 1/T
t Time, T
Ux Interstitial velocity in the x direction, L/T
Uy Interstitial velocity in the y direction, L/T
U Interstitial velocity vector, L/T

Vp Volume of a spherical colloidal particle: πd3
p/6, L3

x Coordinate along the fracture axis, L
y Coordinate along the fracture width, L
z Coordinate perpendicular to the fracture axis, L

Greek Letters

α Fracture surface area blocked by a deposited colloidal particle, L2

αL Longitudinal dispersivity, L



αT Transverse dispersivity, L
β Excluded area factor
γ Specific weight of the interstitial fluid, M/L2T2

δij Kronecker delta
ε Fraction of a fracture surface area blocked by deposited colloids
εmax Fraction of a fracture surface area blocked by deposited colloids when

n∗ reaches n∗
max

η Dummy integration variable
θ Porosity of the rock (liquid volume/rock matrix volume), L3/L3

κ Fracture surface deposition coefficient, L
κm Rock matrix deposition coefficient, 1/T
µ Dynamic viscosity of the interstitial fluid, M/LT
ν Dummy integration variable
ξ Defined in (10)
ρb Bulk density of the rock matrix, M/L3

ρp Colloidal particle density, M/L3

τ Dummy integration variable
τ∗ Rock matrix tortuosity
ω Dummy integration variable

Subscripts

cc Constant concentration boundary condition without colloid penetration
into the rock matrix

ccp Constant concentration boundary condition with colloid penetration
into the rock matrix

cf Constant flux boundary condition without colloid penetration into the
rock matrix

cfp Constant flux boundary condition with colloid penetration into the rock
matrix

Abbreviations

DBF Dynamic blocking function
RSA Random sequential adsorption
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