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Abstract
The objective of this study is to develop a model for cotransport of colloids and nanopar-
ticles (NPs) in porous media under two particle capture mechanisms. The particle capture 
rate is proportional to the capture probability, which is a function of retained concentration, 
called the filtration function. Laboratory bench-scale experiments of individual transport 
of NPs and colloidal-size kaolinite clay particles through packed columns produced break-
through curves (BTCs) that monotonically increased with time and stabilised at some value 
lower than the injected concentration. We discuss the filtration function that corresponds to 
BTCs stabilising at the concentration lower than the injected value. This so-called binary 
filtration function incorporates two particle capture mechanisms. The analytical transport 
model with a binary filtration function was capable to fit successfully BTCs obtained from 
individual transport experiments using kaolinite and NPs conducted by Chrysikopoulos 
et al. (Transp Porous Med 119(1):181–204, 2017). Assuming that the electrostatic parti-
cle–solid matrix interaction and the fraction of the solid matrix surface area occupied by 
a single attached particle (kaolinite or NP) are the same for individual transport of either 
kaolinite particles or NPs and for simultaneous cotransport of kaolinite particles and NPs, 
the proposed binary filtration function was extended for the cotransport case. Although the 
breakthrough data from cotransport experiments with kaolinite particles and NPs have six 
degrees of freedom, the developed cotransport model successfully matches the BTCs by 
tuning two constants only. This validates the developed model for cotransport of two col-
loidal populations with different attachments and straining rates.

Keywords Colloidal transport · Nanoparticles · Cotransport · Analytical model · 
Attachment and straining
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sm  Maximum attached concentration  [ML−3]
S  Normalised retained concentration [–]
t  Time [T]
T  Dimensionless time [PVI]
U  Flow velocity  [LT−1]
x  Axial coordinate [L]
X  Dimensionless axial coordinate [–]

Greek Letters
ϕ  Porosity [–]
λ0  Initial attachment filtration coefficient  [L−1]
Λ0  Dimensionless initial filtration coefficient [–]
λ1  Size exclusion (straining) filtration coefficient  [L−1]
Λ1  Dimensionless size exclusion filtration coefficient [–]
λ  Filtration coefficient  [L2M−1]
μ  Viscosity  [ML−1T−1]

Subscripts
K  Kaolinite
m  Maximum value
N  Nanoparticle

1 Introduction

Migration of suspended colloids predominately occurs in subsurface formations. However, 
flow of suspended colloids in porous media has also been observed in various processes 
of environmental, chemical, civil, and petroleum engineering (Civan 2015). Kaolinite 
clay particles are often present in numerous occasions of subterranean water contamina-
tion, plant irrigation, cold water injection into geothermal reservoirs, artificial recharge of 
aquifers, well drilling with filtrate invasion into formations, seawater intrusion into coastal 
aquifers, and low-salinity water injection into oilfields (You et al. 2015; Farajzadeh et al. 
2017; Mirabolghasemi et  al. 2015; Mikhailov et  al. 2018). Kaolinite fines are detached 
from surfaces of sandstone rocks, yielding water contamination and permeability decline 
(Russell et al. 2017; Chequer et al. 2017).

Engineered nanoparticles have received considerable attention in a very large number of 
applications including the treatment of contaminated aquifers, fixing movable fines in oil 
and gas reservoirs for formation damage prevention (Arab et al. 2014; Yuan et al. 2016a; 
Yuan and Moghanloo 2017; Mansouri et  al. 2019), and enhanced oil recovery by water 
flooding (Arab and Pourafshary 2013). The transport of NPs in porous media is relatively 
complicated, because it is affected by several factors including: interstitial velocity, solu-
tion chemistry, temperature, and the presence of other suspended particles (Rottman et al. 
2013; Syngouna et al. 2017; Yuan et al. 2016b).

Numerous stochastic and deterministic mathematical models are developed to 
describe particle transport, capture, and the consequent rock alteration (Arab et  al. 
2014; Mirabolghasemi et  al. 2015; Hammadi et  al. 2017; Bashtani et  al. 2018). The 
reviews by Shapiro and Yuan (2012) and Yuan et  al. (2012) give a reasonably com-
plete account of the available stochastic models. The stochastic models are described 
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by population balance equations (Sharma and Yortsos 1987; Santos and Bedrikovetsky 
2006; Bedrikovetsky et  al. 2017; Hayek et  al. 2012), random walk models (Shapiro 
and Bedrikovetsky 2008, 2010; Yuan et  al. 2012), deep bed filtration equation with 
stochastically distributed filtration coefficient (Yuan and Shapiro 2010; Elimelech et al. 
2013), and Boltzmann’s equation (Shapiro and Wesselingh 2008). Shapiro et al. 2007 
derived deep bed filtration equations with incomplete pore plugging and derived exact 
solutions for 1D flows.

Averaging (aggregation and upscaling) of stochastic models with size-distrib-
uted particles and pores and multiple capture mechanisms is necessary to reduce the 
numerical burden. Guedes et al. (2009) proposed the mathematical procedure allowing 
aggregating multiple kinetic rate equations for particle retention into a single equa-
tion for the capture rate for dispersion-free transport. This method has been recently 
extended for advective-capture flow with dispersion (Zhang et  al. 2018). Population 
balance equations with probabilistic distribution of pore and particle sizes allow for 
exact upscaling for suspensions of uniform size, and the resulting system coincides 
with the classical filtration equations for the averaged values (Bedrikovetsky 2008).

Several mathematical models for deep bed filtration of individual (transport) as 
well as binary mixtures (cotransport) are available in the literature (Abdel-Salam 
and Chrysikopoulos 1995; Bekhit et al. 2009; Katzourakis and Chrysikopoulos 2014, 
2015). The common assumption is proportionality between the particle capture rate 
and the advective particle flux; their ratio is called the filtration function. The nonlin-
ear deterministic deep bed filtration model allows for an exact solution (Polyanin and 
Manzhirov 2006; Polyanin and Zaitsev 2012). Furthermore, exact solutions for direct 
problem yield regularisation of the corresponding inverse problems, which allow for 
determination of the associated model functions from the laboratory tests (Alvarez 
et al. 2005, 2007; Hayek 2015; Hayek et al. 2012). An analytical model for deep bed 
filtration of a binary mixture, where each species is captured by a separate capture 
mechanism, using constant and Langmuir’s filtration functions, is proposed in Araújo 
and Santos (2013). However, recent studies have shown that for kaolinite and graphene 
oxide (GO) NP cotransport, the attachment processes can be simultaneous for both 
suspended particles (Chrysikopoulos et al. 2017; Sotirelis and Chrysikopoulos 2017). 
Because suspended particles near rough pore walls migrate with significantly smaller 
velocity than the mean interstitial velocity (Sefrioui et  al. 2013), several investiga-
tors proposed mathematical models for two populations of particles with two different 
velocities (Yuan and Shapiro 2010; Bradford et al. 2009b; Kuzmina et al. 2017). Yuan 
and Moghanloo (2017) and Yuan et al. (2016a) proposed mathematical models for kao-
linite and NPs cotransport with adsorption as a major capture mechanism. However, a 
mathematical model for cotransport of colloids and NPs with simultaneous attachment 
and straining (size exclusion) of both species is not available.

The objective of the present work is to develop a mathematical model for cotrans-
port of colloids and NPs in porous media using a novel filtration function capable of 
matching closely the experimental data collected by Chrysikopoulos et al. (2017) for 
kaolinite and NPs transport. The proposed novel filtration function incorporates two 
simultaneous capture mechanisms: Langmuir (blocking) and constant (low-retention) 
filtration. The cotransport model successfully matches six-dimensional set of the lab-
oratory data on commingled injection of kaolinite and nanoparticles by tuning two 
model coefficients only, which validates the model.



156 G. V. C. Malgaresi et al.

1 3

2  Theoretical Developments

This section proposes the so-called binary filtration function that yields the BTCs with sta-
bilised concentration lower than the injected concentration (Sect.  2.1), derives the exact 
solution for 1D transport of single colloidal population (Sect. 2.2, Table 1) and performs 
its qualitative analysis (Sect. 2.3). Then, we extend the binary filtration function for two-
population transport, and develop the cotransport equations (Sect. 2.4), which are solved 
numerically (Sect. 2.5).

2.1  Transport Models for a Single‑Particle Population

Assuming that the interstitial fluid is incompressible (water), the suspended particles are 
uniformly sized, particle concentration is low so that the carrier fluid density is not altered, 
particle dispersion (diffusion) is negligible compared to the interstitial velocity, particle 
capture by the solid matrix follows linear kinetics with capture rate proportional to the 
particle advective flux and occurs by size exclusion, straining, attachment, segregation, dif-
fusion into dead-end pores, etc. (see Fig. 1a), permeability decline due to particle retention 
is adequately described Darcy’s law, and the governing equations for transport in porous 
media are as follows (Herzig et al. 1970; Alvarez et al. 2005, 2007):

where x is the linear coordinate in the flow direction, t is time, c and s are the suspended 
and attached concentrations, ϕ is the porosity, U is the fluid velocity, λ is the filtration coef-
ficient, k is the permeability, µ is the viscosity, and P is the pressure. The suspended parti-
cle concentration c is determined as the number of suspended particles in a unit volume of 
carrier fluid, while the retained particle concentration s is equal to the number of attached 
particles in a unit volume of the solid matrix. It should be noted that the effects of parti-
cle retention are in decreasing the suspended particle concentration and permeability. The 
suspended particle concentration decline due to retention is important for industrial waste 
disposal and aquifer contamination, while the permeability decline yields the impairment 
of production and injection wells.

For constant particle concentration injection in a typical bench-scale core or packed 
column, initially free of particles, the appropriate initial and boundary conditions are 
(Fig. 2):

where c0 is the injected suspended particle concentration. The assumptions of a monolayer 
particle attachment (Langmuir type), where one attached particle occupies one vacancy, 

(1)
�

�t
(�c + s) + U

�c

�x
= 0,

(2)
�s

�t
= �(s)cU,

(3)U = −
k(s)

�(c)

�P

�x
,

(4)c(x, 0) = s(x, 0) = 0,

(5)c(0, t) = c0,
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and of the small suspended and attached particle concentrations, yield the following 
“active-mass” law for the particle–vacancy “reaction” (Elimelech et al. 2013).

where λ0 is the initial filtration coefficient as determined by the solid matrix–particle attrac-
tion and sm is the maximum concentration of attached particles (Bedrikovetsky 2008). 
Langmuir’s filtration function is given by curve 2 in Fig. 3b. The maximum value sm cor-
responds to complete occupation of the solid matrix surfaces by the attached particles, and 
1/sm relates to the solid matrix fraction occupied by a single particle. After the retained 

(6)𝜆(s) =

{

𝜆0

(

1 −
s

sm

)

, s < sm

0, s > sm

,

Fig. 1  Multiple particle capture 
mechanisms: a various capture 
mechanisms at the pore scale; b 
attachment and straining of nano-
particles and clay particles

Fig. 2  Schematic illustration of a bench-scale porous medium. Kaolinite clay particles (CK) and nanoparti-
cles (CN) are injected simultaneously. The dimensionless inlet concentrations are equal to one (CK = CN = 1)
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particle concentration reached its maximum value sm, the particle attachment on the solid 
matrix surfaces stops. Note that the above-mentioned scenario corresponds to the case of 
solid matrix–particle attraction and particle–particle repulsion (Kuhnen et al. 2000; Ben-
nacer et al. 2017). The Langmuir blocking filtration function (6) is usually used for mon-
olayer electrostatic attachment of particles on solid matrix surfaces, but is also applicable 
for straining and size exclusion (Herzig et al. 1970; Kuhnen et al. 2000).

For a small retained particle concentration (s ≪ sm), the filtration coefficient is 
assumed to be constant, λ(s) = λ1 (curve 1 in Fig. 3b). The probability of particle capture 
remains constant for low-retention concentrations, because the particles do not compete 
for the same vacancy. For this case, the breakthrough concentration is expected to be 
initially equal to zero and subsequently to jump up to some value that remains constant 
(curve 1 in Fig. 3a). In the present work, to be specific but without loss of generality, 
this low-retention mechanism is referred to as size exclusion, whereas attachment cor-
responds to the Langmuir’s blocking capture.

Regarding deep bed filtration with multiple particle capture mechanisms, Appendix 
A proves that the total retention rate for a multiple capture system can be represented 
by a single-capture mechanism given by Eq.  (2). The overall filtration function λ(s) is 
a total of individual filtration functions (λ1, λ2… λn), i.e. λ is also a function of all indi-
vidual retention concentrations si, i = 1,2…n. However, solution of system of retention 
rate Eq. (A1), where time T is parametrised by the total retention concentration s(x0, t), 
allows expressing all individual retention concentrations via the overall s, yielding the 
aggregated filtration function λ = λ(s).

In particular, the filtration function that aggregates two capture mechanisms with Lang-
muir’s and constant filtration functions can be approximated by the following piecewise 
function with high accuracy (Zhang et al. 2018):

where the filtration coefficient λ0 corresponds to monolayer attachment where no particles 
were attached yet, and λ1 corresponds to low-retention size exclusion. So, the filtration 
function given by Eq.  (7) consists of two simultaneous particle capture mechanisms and 
is called the binary filtration function further in the text. Curve 3 in Fig. 3b corresponds to 

(7)�(s) =

{

�0

(

1 −
s

sm

)

+ �1, s ≤ sm

�1, s ≤ sm

,

Fig. 3  Illustration of three different shapes of filtration function: a breakthrough curves (BTCs) and 
b shapes of filtration function. Curves 1, 2, and 3 correspond to constant filtration coefficient, Langmuir 
blocking, and combined (binary) filtration function for two simultaneous mechanisms, respectively
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a binary filtration function. It should be noted that the filtration model (7) contains three 
parameters (λ0, λ1, and sm). Model (7) can describe other couples of particle retention 
mechanisms.

Note that BTCs, which are initially equal to zero, jump up to some value and then 
monotonically increase to a limit that is lower than the injected concentration as time tends 
to infinity, have been observed in laboratory breakthrough experiments with kaolinite col-
loid particles and graphene oxide nanoparticles conducted by Chrysikopoulos et al. (2017).

In this study, we show that such BTCs can be represented by a binary filtration function.
Further in this paper, the filtration coefficients are determined by tuning the experimen-

tal data (Sect. 3). Theoretical calculations of straining filtration coefficient accounting for 
effects of attached particles can be performed from reconstruction of CT or NMR images 
using digital core techniques (Wang et al. 2018a, b; Shikhov and Arns 2015). The approach 
is similar to calculation of permeability or electrical conductivity from rock geometry at 
pore scale (Yanici et al. 2013; Arns and Adler 2018).

Introducing the following dimensionless definitions for time, x-coordinate, filtration 
coefficients, suspended and attached concentrations:

the governing model (1, 2) becomes:

Here, the filtration function (7) is given by:

and the initial and boundary conditions (4, 5) become:

2.2  Analytical Model for 1D Flow of Single‑Population Colloids

In this section, we present the final formulae for the analytical model for 1D flow of single-
population colloids, derived in Appendix A. The formulation of the problem (9–13) corre-
sponds to injection of particles with given suspended concentration into a porous specimen 
(Fig. 2).

Briefly, introducing the following integral potential from Eq. (10)

(8)T =
Ut

�L
, X =

x

L
, �i = �iL, C =

c

c0
, S =

s

�c0
,

(9)
�(C + S)

�T
+

�C

�X
= 0,

(10)
�S

�T
= �(S)C,

(11)�(S) =

{

�0

(

1 −
S

Sm

)

+ �1, S ≤ Sm

�1, S ≤ Sm

,

(12)C(X, 0) = S(X, 0) = 0,

(13)C(0, T) = 1.

(14)� (S) =

S

∫

0

dy

�(y)
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yields the following solution:

Equation (15) is the solution for retained particle concentration S(X, T) at T > X. The solu-
tion for suspension concentration C(X, T) follows from Eq. (B8) and boundary condition 
(13):

The concentration front X = T moves along the porous medium with a velocity equal 
to unity. Ahead of this front, initial conditions (12) hold: C(X, T) = S(X, T) = 0. Along the 
front, the concentration of deposited particles equals zero, S(T, T) = 0. Therefore, as it fol-
lows from Eqs. (9, 10), the concentration of suspended particles along the front, C(T, T), is 
expressed as:

Equations (15, 16) determine the retained particle concentration S(X, T) for T > X. For 
T < X, integration along the characteristics of Eq. (A4) gives: S(X, T) = 0. Substitution of 
Eq. (10) into Eq. (9) and integration along its characteristics for T < X gives: C(X, T) = 0.

Equation  (15) provides an exact solution in the implicit form of two transcenden-
tal equations for unknowns S(X, T) and S(0, T). Using S(0, T) as an independent variable 
allows for explicit calculation of T. The explicit formulae for suspended and retained parti-
cle concentrations are given in Table 1 for a binary filtration function.

2.3  Qualitative Analysis of the Flux Structure and Type Curves

Figure 3a presents three breakthrough curves simulated by the analytical solutions given 
in Table 1, for the three different filtration functions presented in Fig. 3b. The analytical 
solutions for the case of constant filtration coefficient are obtained by fixing Λ0 = 0 and 
Sm → ∞, and for Langmuir blocking function by setting Λ1 = 0. The BTC corresponding 
to the constant filtration function is shown in Fig. 3a (curve 1), to the Langmuir filtration 
function is shown in Fig. 3a (curve 2), and to the case of combined constant and Langmuir 
filtration is shown in Fig. 3a (curve 3). The Langmuir mechanism exhibits blocking under 
conditions of substantial particle attachment. The Langmuir mechanism is usually applied 
for monolayer particle attachment onto the solid matrix, where the attachment rate is pro-
portional to number of vacant sites for retention on the surfaces of solid matrix.

Figure 4a shows the plane (X, T), three concentration fronts, and the corresponding flow 
zones: 0, I, II, and III, as obtained by the exact analytical solutions listed in Table 1. The 
four different zones are separated by the trajectories of three concentration fronts: TI(X), 
TII(X), and TIII(X). The corresponding domains separated by those fronts are presented in 
Table 1. The cotangents of the trajectory slopes (dTk(X)/dX)−1, k = I, II, III, are equal to 
the front speeds. Note that the method of characteristics was used for the derivation of the 
exact solutions presented in Table  1, and the characteristics are the particle trajectories. 
The initial conditions hold in zone 0 ahead of the concentration front TI(X) that moves 

(15)

S(X,T)

∫

S(0,T−X)

dS

S𝛬(S)
= −X, 𝛹 (S(0, T − X)) = T − X, T > X.

(16)C(X, T) =
S(X, T)

S(0, T − X)
, T > X.

(17)C(T , T) = exp (−�(0)T).
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with unitary speed. Zone I behind this front corresponds to flow with retained concentra-
tion S(X, T) < Sm, where the particles migrate subject to binary filtration function (7). Two 
capture mechanisms act in zone I. The filtration function is constant in zone III, where 
the suspended particles move from the inlet X = 0 to the boundary between zones III and 
II, TIII(X), where the retained particle concentration increases up to the maximum value 
Sm. Migration of suspended particles continues in zone II subject to linear filtration. Only 
straining occurs in zone III, while both retaining mechanisms act in zone II. The suspended 
particle concentration is at a steady state in zone III, so the capture rate is constant, and 
the retained particle concentration accumulates linearly with time. The structure of the 
flow pattern is as follows: (Zone 0)—initial conditions of no suspended and retained par-
ticles are held ahead of the first concentration front; (Zone I)—two simultaneous capture 
mechanisms act, front and rear boundaries of this zone move with unitary speed; (Zone 
II)—starts at the inlet at the moment Tm, when the maximum attached value Sm is reached 
by the retained particle concentration; subsequently, only straining occurs in zone III; and 
(Zone III)—steady-state suspended particle concentration decreases exponentially due to 
constant filtration. Figure 4b, c present profiles of suspended and retained particles at three 
different points in time. At Ti, the particle front did not breakthrough yet. Both dimension-
less particle concentrations C and S are zero ahead of this front. The suspended particle 

Fig. 4  Exact solution for particle transport in porous media with piecewise-linear filtration function: a 
structure of the flow pattern, b suspended particle concentration profiles at three instances, and c retained 
particle concentration profiles at three instances
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concentration jumps from zero at the front and increases behind the front, while the sus-
pended particle concentration is continuous. At Tii, after the front has breakthrough, the 
profiles of particle concentration decrease exponentially from the inlet in zone III, and con-
tinue to decrease in zones II and I. Suspended particle concentrations coincide at Tii and Tiii 
in zone III.

2.4  Cotransport Model

For the case of cotransport of two different populations of suspended particles, it was 
assumed that the concentration of each population of suspended particles was low, so 
that the suspended particles from one population do not compete for the same vacancies 
with suspended particles from the other population (Fig. 1b). The particle capture by the 
solid matrix for each population follows linear kinetics with capture rate proportional to 
the particle advective flux and occurs by either two mechanisms of size exclusion, strain-
ing, attachment, segregation, diffusion into dead-end pores, etc. (see Fig. 1a). Therefore, 
the maximum attached particle concentration Sm and attachment filtration coefficient Λ0 of 
each population during cotransport are assumed to be identical to those during transport of 
each individual population. The suspended particles of each population are uniformly sized 
and, being attached, occupy the same surface area. The interstitial carrier fluid is incom-
pressible. Particle concentration in each population is low, so that the carrier fluid density 
is not altered. Consequently, for the case of kaolinite colloids and NPs cotransport the gov-
erning partial differential equations are (Bedrikovetsky 2013):

where index i = K, N corresponds to kaolinite colloids and NPs, respectively. It should be 
noted that SmN, Λ0N, SmK, and Λ0K are equal to those for the case of transport of each popu-
lation of suspended particles, but Λ1N and Λ1K are different because particle onto the sur-
faces of the solid matrix can affect pore throat radii (Fig.  1b), which in turn can affect 
straining (Fig. 1b) (Alem et al. 2015). Therefore, the filtration coefficients for straining dur-
ing cotransport are assumed to be different from those corresponding to transport of each 
individual population. The cotransport model contains six independent parameters: SmN, 
Λ0N, SmK, Λ0K, Λ1N and Λ1K. Four parameters (SmN, Λ0N, SmK, and Λ0K) are determined from 
experimental breakthrough data of individual population transport, whereas two param-
eters (Λ1N and Λ1K) are obtained by fitting the cotransport experimental breakthrough 
curves.

The initial and boundary conditions for system (18, 19) corresponding to commin-
gled injection of kaolinite and NPs are

(18)
�Ci

�T
+

�Ci

�X
= −

[

�0i

(

1 −
SN

SmN
−

SK

SmK

)

+ �1i

]

Ci,

(19)
�Si

�T
=

[

�0i

(

1 −
SK

SmK
−

SN

SmN

)

+ �1i

]

Ci

(20)CK(X, 0) = CN(X, 0) = SK(X, 0) = SN(X, 0) = 0,

(21)CK(0, T) = CN(0, T) = 1.
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2.5  Numerical Modelling of Single and Binary Suspension‑Colloidal Populations

The governing equations subject to initial and boundary conditions for individual trans-
port (9–13) and for cotransport (18–21) were solved numerically using the computer 
code developed by Shampine (2005a). The inbuilt algorithm implements a two-step 
Lax–Friedrichs finite-difference method (Shampine 2005b). The method allows for 
vectorisation of the problem, taking advantage of MATLAB’s matrices and vectors 
optimisation. The MATLAB computer program and pertinent supporting information 
are available from http://facul ty.smu.edu/shamp ine/curre nt.html. We divide the spatial 
domain [0,1] into 1000 evenly spaced intervals, so ΔX = 0.001. The time steps employed 
in the finite-difference method is selected to satisfy the Courant–Friedrichs–Lewy sta-
bility condition, ΔT = 0.0009. Both species during the individual and binary flows move 
with the carrier water velocity (see Eqs. 9 and 18), so time step ΔT is taken the same for 
individual flow and for cotransport.

Figure 5 presents a comparison of the analytical solution with the numerical solution 
for individual transport of NPs and kaolinite colloids at pH = 7 and IS = 27 mM. The val-
ues of the parameters Λ0, Λ1, and Sm used are listed in Table 2. The exact analytical and 
numerical solutions are almost identical. Smoothing of the concentration jump in the 
numerical solution is almost invisible, suggesting that the numerical scheme exhibited 
very low numerical dispersion.

Figures 8 and 9b present BTCs, calculated numerically for NPs and kaolinite fines 
during the cotransport.

3  Results

The new transport and cotransport mathematical models were used to match the experi-
mental data reported by Chrysikopoulos et al. (2017) for transport and cotransport of gra-
phene oxide (GO) NPs and kaolinite (KGa-1b) colloids in columns packed with glass beads 
and quartz sand under various water chemistry conditions (pH = 4, 7, 10 and IS = 7, 12, 
27 mM). The unknown parameters were determined with a nonlinear least squares method, 
which minimises the normalised deviation between the model and the experimental data 
(Coleman and Li 1996). Specifically, the Trust-Region-Reflective optimisation algorithm 

Fig. 5  Comparison between the 
analytical and numerical model-
ling for individual suspended 
particle transport

http://faculty.smu.edu/shampine/current.html
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of MATLAB was used for the solution of the resulting quadratic-deviation minimisation 
problem. Note that the steep continuous growth of a BTC around its breakthrough time 
(T = 1) is treated in this work as a concentration jump from zero, before the breakthrough to 
continuously growing BTC after the breakthrough. The areas between the continuous and 
discontinuous BTCs before and after the breakthrough time are equal. This procedure used 
here for matching BTCs is analogous to matching of inner and outer asymptotic expansions 
when dispersion is small (Polyanin and Dilʹman 1994; Polyanin 2004).

3.1  Matching of the Transport Experimental Data

The experimental data for NPs and for kaolinite colloids individual transport in a column 
packed with glass beads at five different sets of water chemistry conditions reported by 
Chrysikopoulos et al. (2017) are presented in Fig. 6, together with the corresponding fitted 
analytical model simulations. Furthermore, the experimental data for NPs and for kaolinite 
colloids individual transport in a column packed with quartz sand for just one set of water 
chemistry conditions are presented in Fig. 9a, together with the corresponding fitted ana-
lytical model simulations. All fitted parameters for the individual transport experiments 
are listed in Table 2. Based on the R2 values listed in Table 2, the analytical model fitted 
adequately the experimental data for both NPs and kaolinite colloids. This validates the 
proposed binary model given by Eq. (7).

For all cases presented in Fig.  6 (except the NP case in Fig.  6c), the experimental 
data were fitted with the analytical model utilising the filtration piecewise function (7). 
The unfavourable attachment conditions (high pH and low IS) in Fig.  6c lead to large 

Table 2  Fitted parameters for GO NPs and kaolinite colloids individual transport experimental data

Glass beads

GO NPs Kaolinite colloids

Figure �0 �1 SM Tm R2 �0 �1 SM Tm R2

(a) pH = 4
IS = 7 mM

0.4888 0.0910 0.5953 2.2555 0.9536 0.3506 0.5110 0.7629 1.1368 0.8815

(b) pH = 7
IS = 7 mM

0.3045 0.0451 0.1216 0.8180 0.9598 0.2536 0.4395 0.3113 0.5592 0.9754

(c) pH = 10
IS = 7 mM

0.1684 – 0.0731 – 0.9863 0.2211 0.4233 0.3898 0.7409 0.9751

(e) pH = 7
IS = 12 mM

0.1956 0.0465 0.1233 1.0402 0.9851 0.6283 0.3526 0.3032 0.4938 0.9841

(f) pH = 7
IS = 27 mM

0.2395 0.0821 0.2433 1.3870 0.9807 0.4130 0.5813 0.2847 0.3700 0.9276

Sand

Nanoparticles Kaolinite

�0 �1 SM Tm R2 �0 �1 SM Tm R2

pH = 7
IS = 7 mM

0.9279 0.0529 0.2542 0.7998 0.9396 0.7186 0.1371 0.2542 0.6478 0.9597
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solid matrix–particle repulsion, as suggested by (Derjaguin–Landau–Verwey–Overbeek) 
DLVO theory (Chrysikopoulos et al. 2017). Consequently, suspended particles are mobile 
and unstable (Bennacer et al. 2017). Furthermore, attachment onto the solid matrix under 

(a) (d)

(b) (e)

(c) (f)

pH = 4
Is = 7 mM

pH = 7
Is = 7 mM

pH = 10
Is = 7 mM

pH = 7
Is = 7 mM

pH = 7
Is = 12 mM

pH = 7
Is = 27 mM

Fig. 6  Fitted breakthrough data reported by Chrysikopoulos et  al. (2017) for individual transport experi-
ments of GO NPs (open black circles) and kaolinite colloids (red diamonds) in columns packed with glass 
beads at different conditions: a pH = 4, Is = 7  mM, b and d pH = 7, IS = 7  mM, c pH = 10, IS = 7  mM, e 
pH = 7, IS = 12  mM, and f pH = 7, IS = 27  mM. BTC tending to unity is fitted with a Langmuir function 
(solid curves in c), while those tending to the limit below unity are fitted with a piecewise filtration function
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unfavourable attachment conditions can be better represented by the Langmuir filtration 
function.

The fitted parameters listed in Table  2 are also presented graphically in Fig.  7 as a 
function of pH and IS. Parameter values, corresponding to transport experiments in col-
umns packed with glass beads and quartz sand, are represented by circles and squares, 
respectively. Figures 7a and 4d show the initial filtration coefficient variability with pH, 
at IS = 7 mM for NPs and kaolinite colloids, respectively. The higher is the pH, the lower 
is the electrostatic solid matrix–particle attraction, and the lower is the Λ0 as well as the 
straining Λ1 (Bradford et  al. 2009a). Figures  7b and 7e show the initial filtration coeffi-
cient variability with IS, at pH = 7 for NPs and kaolinite colloids, respectively. The higher 
is the IS, the larger is the expected electrostatic attraction between the suspended particles 
and the solid matrix, and in turn the higher the expected value for both filtration coeffi-
cients (Λ0 and Λ1). The Λ0 fitted values for both NPs and kaolinite colloids do not exhibit a 
clear increasing trend with increasing IS. However, the fitted values for Λ1 for both NPs and 
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Fig. 7  Behaviour of fitted parameters for individual transport experiments of: a–c GO NPs and d–e kaolin-
ite colloids as a function of pH and IS. Circles and squares correspond to columns packed with glass beads 
and quartz sand, respectively. Solid and open symbols in a, b, d, e correspond to parameters Λ0 and Λ1, 
respectively. Solid and open symbols in c, f correspond to parameter variation with pH and IS, respectively
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kaolinite colloids generally fulfil this tendency. Figure 7c and f shows the maximum reten-
tion concentration variability with IS and pH for both NPs and kaolinite colloids, respec-
tively. For increasing pH and decreasing IS, both the electrostatic attraction between the 
suspended particles and the solid matrix and Sm are expected to decrease. This is clearly 
the case for NPs, but it is somewhat less pronounced for kaolinite colloids.

(a) (d)

(b) (e) 

(c) (f) 

pH = 4
Is = 7 mM

pH = 7
Is = 7 mM

pH = 10
Is = 7 mM

pH = 7
Is = 7 mM

pH = 7
Is = 12 mM

pH = 7
Is = 27 mM

Fig. 8  Fitted breakthrough data reported by Chrysikopoulos et al. (2017) for cotransport experiments of GO 
NPs (open black circles) and kaolinite colloids (red diamonds) in columns packed with glass beads at differ-
ent conditions: a pH = 4, Is = 7 mM, b and d pH = 7, IS = 7 mM, c pH = 10, IS = 7 mM, e pH = 7, IS = 12 mM, 
and f pH = 7, IS = 27 mM. The matched modelling data are given by continuous curves
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The mean radius of the glass beads employed in this study was 1 mm, while the mean 
radius of quartz sand grain was 0.3 mm. So, the sand grains were smaller than the glass 
beads; thus, the solid matrix surface area was larger in the columns packed with quartz 
sand. Furthermore, sand grain shapes are irregular, so the surface area was larger than that 

pH = 7
Is = 7 mM

pH = 7
Is = 7 mM

(a) (b)

Fig. 9  Fitted breakthrough data reported by Chrysikopoulos et al. (2017) for a individual transport experi-
ments of NPs (open black circles) and kaolinite colloids (red diamonds), and b cotransport experiments of 
GO NPs (open black circles) and kaolinite colloids (red diamonds) in columns packed with sand at pH = 7 
and Is = 7 mM. The matched modelling data are given by continuous curves

Table 3  Fitted parameters for GO NPs and kaolinite colloids cotransport experimental data

Glass beads

GO NPs Kaolinite colloids

Figures 6, 7 �1,N R2 �1,K R2

(a) pH = 4
IS = 7 mM

0.59 0.9142 2.32 0.9263

(b) pH = 7
IS = 7 mM

0.22 0.9426 2.00 0.9296

(c) pH = 10
Is = 7 mM

0.14 0.8925 1.95 0.8805

(e) pH = 7
IS = 12 mM

0.21 0.9144 2.25 0.8968

(f) pH = 7
IS = 27 mM

0.23 0.8770 2.20 0.8992

Quartz sand

GO NPs Kaolinite colloids

Figure 8 �N,coinj R2 �
k,coinj R2

pH = 7
IS = 7 mM

1.00 0.9710 2.60 0.9381
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for the glass beads. Consequently, Λ0 must be greater for quartz sand. This is clearly the 
case for both NPs and kaolinite colloids (see Fig. 7a, b, d, e) (Bradford et al. 2003, 2009a). 
The pore throats in columns packed with quartz sand are smaller than those packed with 
glass beads. Also, sand has rougher surface than glass beads, which facilitates size exclu-
sion. The average radii for nanoparticles and kaolinite colloids were 0.4 μm and 0.6 μm, 
respectively, i.e. they are almost the same. Therefore, size exclusion filtration coefficient 
Λ1 must be higher for sand than for glass beads. This is the case for NPs (see Fig. 7a, b), 
but not for kaolinite colloids (see Fig.  7d, e). The maximum retention concentration for 
columns packed with quartz sand is higher due to the larger solid matrix surface area of 
the smaller irregular grains. Therefore, Sm must be higher for columns packed with quartz. 
This is the case for NPs (see Fig. 7c), but not for kaolinite colloids (see Fig. 7f). The devia-
tion of kaolinite colloids from expected behaviour is attributed to kaolinite particle aggre-
gation. It should be noted that based on DLVO theory, kaolinite aggregation is significant 
(Chrysikopoulos et al. 2017).

3.2  Matching of the Cotransport Experimental Data

The experimental data for NPs and for kaolinite colloids cotransport in a column packed 
with glass beads at five different sets of water chemistry conditions reported by Chrysiko-
poulos et al. (2017) are presented in Fig. 8, together with the corresponding fitted numeri-
cal model simulations. Furthermore, the experimental data for NPs and for kaolinite col-
loids cotransport in a column packed with quartz sand for just one set of water chemistry 
conditions are presented in Fig. 9b, together with the corresponding fitted numerical model 
simulations. All fitted parameters for the cotransport experiments are listed in Table  3. 
Based on the R2 values listed in Table  3, the numerical model (Eqs.  18 and 19) fitted 
adequately the experimental data for both NPs and kaolinite colloids. It should be noted 
that for individual suspended particle transport, the BTCs have an exponential form, so 
the number of degrees of freedom for each BTC is three. Therefore, three coefficients (Λ0, 
Λ1 and Sm) are determined from experimental BTC. However, for the case of cotransport 
(Eqs. 18 and 19), there are two breakthrough curves with six degrees of freedom, and the 
number of fitted parameters is only two (Λ1N and Λ1K).
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Fig. 10  Behaviour of fitted parameters associated with the cotransport experiments of GO NPs and kaolin-
ite colloids as a function of: a pH and b IS. Circles and squares correspond to columns packed with glass 
beads and quartz sand, respectively. Solid and open symbols in a, b correspond to parameters Λ1N (for GO 
NPs) and Λ1K (for kaolinite), respectively
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The fitted parameters listed in Table 3 are also presented graphically in Fig. 10 as a 
function of pH and IS. Both Λ1N and Λ1K corresponding to NPs and kaolinite colloids, 
respectively, decrease with increasing pH, at IS = 7 mM (see Fig. 10a), whereas both Λ1N 
and Λ1K, at pH = 7, are not strongly affected by IS (see Fig. 10b). The unexpected behav-
iour of kaolinite colloids (Fig. 10b) is attributed to kaolinite–kaolinite particle aggrega-
tion, which is far more significant than that of kaolinite–NP and NP–NP (Chrysikopou-
los et  al. 2017). It should be noted that based on DLVO theory, kaolinite aggregation 
is significant (Chrysikopoulos et  al. 2017). However, particle aggregation was beyond 
the scope of this study and has not been accounted for by the proposed transport and 
cotransport models.

4  Discussion

The fate and transport of nanoparticles and clays in subterranean waters are highly affected 
by the nanoparticle–clay interactions, cotransport and their capture by the porous matrix. 
In this study, a novel 1D transport model with binary filtration functions was developed to 
simulate the transport of suspended colloidal particles as well as the cotransport of colloids 
and NPs. The proposed cotransport model assumes that the different types of suspended 
particles have electrostatic interactions with the solid matrix, which are similar under both 
transport and cotransport conditions. Also, the initial attachment filtration coefficient for 
each particle type in the mixture is equal to that for transport of each individual particle 
type, which implies that the maximum retention concentration for attachment for each par-
ticle type is the same under both transport and cotransport conditions.

4.1  Validity of the Single‑Population and Cotransport Models

The Langmuir’s mechanism is usually applied for monolayer particle attachment to the 
rock, where the rate is proportional to number of vacant sites for retention on rock surface. 
However, for size exclusion in two-sized rock with mono-sized suspension transport, the 
filtration function also has the blocking form (Bedrikovetsky 2008).

The individual binary filtration function, given by Eq.  (7), contains three constants, 
namely λ0, sm, and λ1. The breakthrough curve, typical for individual corefloods by nano-
particles and kaolinite particles, has three degrees of freedom (Figs. 6, 7, 8). For 11 tests, 
the mathematical model for single-population deep bed filtration with binary function 
(7) closely matches the laboratory data. However, the degree of freedom of the matched 
numerical array does not exceed the number of the model constants, so the model validity 
cannot be claimed.

The cotransport model (18, 19) contains six constants, from which four constants are 
determined from the individual transport experimental data. This leaves just two tuning 
parameters λ1N and λ1K. Two BTCs for each component are closely matched, so the degree 
of freedom of the matched information array is six. High match between the laboratory 
and modelling data for six cotransport experiments performed allows validating the binary 
deep bed filtration model given by Eq. (18, 19). In particular, the assumption that the Lang-
muir coefficients for transport and cotransport of NPs and kaolinite colloids are the same 
is valid.
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4.2  Effects of Rock Properties, Salinity, and pH

Comparison between columns packed by sand and by glass beads allows qualitative pre-
diction for straining and attachment filtration coefficients, and also for maximum attached 
concentration Sm. The same relates to pH and salinity for water. Those dependencies are 
very clearly confirmed during corefloods by nanoparticles. However, the results for kaolin-
ite injection do not follow the trend.

DLVO energy potentials show that the particle–particle attraction is significantly weaker 
than that for particle–rock (Sotirelis and Chrysikopoulos 2017; Chrysikopoulos et al. 2017). 
Besides, the attraction force kaolinite–kaolinite is significantly stronger than those for kaolin-
ite–NP and NP–NP. Thus, aggregation of kaolinite–NP and NP–NP can be neglected, while 
the kaolinite–kaolinite aggregation must be accounted for in the basic model. The luck of 
aggregation for kaolinite in the model can be blamed for non-monotonic behaviour of the 
curves shown in Figs. 7 and 10. Therefore, the model for kaolinite should include aggrega-
tion, which is outside the scope of the present study and is the next stage of the work.

4.3  Front for Discontinuity of First Derivatives

First derivatives of the solution for piecewise-linear filtration function suffer discontinuity 
on the boundary between zones II and III, where S(X, T) = Sm, and the derivative of the fil-
tration function is also discontinuous. This phenomenon has been observed from the exact 
solution for flow with deposit dissolution, where the dissolution rate becomes zero when 
the deposit vanishes (Sorbie and Stamatiou 2018). Apart from the derivative discontinu-
ity front, the system with deposit dissolution is linear, and the complete dissolution front 
propagates with constant speed. The problem (9, 10) is nonlinear, so the front trajectory in 
Fig. 4a is curvilinear.

4.4  Application of the Model

The proposed cotransport model with two capture mechanisms can be also used for predic-
tion of simultaneous flows of bacteria, viruses, clays, NPs, etc. Section 2.1 shows that the 
filtration coefficient is constant for small retained concentration under any capture mecha-
nism (Fig. 3b). For intermediate retained concentrations, for any capture mechanism, keep-
ing zero and first terms in the Tailor’s series yields linear filtration function (6). Zhang 
et al. (2018) show that binary filtration function (7) is an approximation of any two simul-
taneous mechanisms with constant and linear filtration functions.

The exact solution for homogeneous colloid transport has been used to fit the laboratory 
data and obtain model coefficients. The matching process requires computing the direct (for-
ward) model many times; and consequently, any incremental computation time introduced by 
numerical techniques can be prohibitive to convergence of the fitting procedure. Therefore, 
derived analytical model for binary particle capture mechanisms is preferred over computa-
tionally expensive numerical solutions of inverse problem for history matching. In addition, 
the exact solution presented here can be used as a benchmark for numerical models. The 
explicit analytical solution provided in Table  1 allows for direct numerical implementation 
without going through complicated mathematical derivations. The analytical model developed 
can also be used in three-dimensional reservoir simulation using stream-line techniques (Ola-
dyshkin and Panfilov 2007).
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5  Conclusions

Analytical modelling of separate and commingled transport of clay particles and nanoparticles 
and matching the laboratory data allow drawing the following conclusions:

1. The breakthrough curves for individual deep bed filtration of kaolinite and nanoparticles 
exhibit the behaviour typical for two simultaneous particle capture mechanisms with 
binary filtration function. Tuning of six corefloods by kaolinite and six corefloods by 
nanoparticles and high agreement between the modelling and experimental data validate 
the two capture models for individual flows of both populations.

2. The proposed model for commingled injection of kaolinite and nanoparticles assumes 
the same electrostatic interaction between the species and the rock, as for the individual 
flows. Therefore, the initial attachment filtration coefficient for each species in the mix-
ture is equal to that for the individual flow.

3. Another assumption of cotransport model is independent occupation of the attachment 
vacancies by both species, so the individual maximum retention concentration for attach-
ment for each species is equal to that in the mixture.

4. The tuning parameters during matching the breakthrough curves with commingled injec-
tion are size exclusion filtration coefficients for straining, �1,K , and �1,N . High precision 
of the matching of eight-parametric experimental data array by two tuning parameters 
only for six commingled corefloods validates the cotransport model developed.

Appendix A: Aggregation of Multiple Particle Capture Mechanisms 
in One Mechanism

Following works by Guedes et al. (2009) and Zhang et al. (2018), in this Appendix we present 
the aggregation procedure for multiple particle capture mechanisms.

Consider single-population colloidal-suspension flow with n particle retention mechanisms 
that correspond to different filtration functions:

where the total retention concentration is a sum of individual retention concentrations

As it follows from Eq. (A2), mass balance for suspended particles and the particles retained 
by all capture mechanisms is given by Eq. (9).

The sum of n retention rates (A1) leads to the total retention rate of the overall colloidal 
suspension

Here, Λ(S1, S2…Sn) is the overall filtration function.

(A1)
�Si

�T
= �i

(

S1, S2 … Sn
)

C,

(A2)S =

n
∑

i=1

Si.

(A3)
�S

�T
= �

(

S1, S2 … Sn
)

C, �
(

S1, S2 … Sn
)

=

n
∑

i=1

�i

(

S1, S2 … Sn
)

.



174 G. V. C. Malgaresi et al.

1 3

Fixing x = x0, assuming that C(X, T) is already known, and changing independent variable 
in system of ordinary differential equations (A3) from T to S yield

Zero initial conditions for all retention concentrations yield initial condition (12) for the 
total retention concentration

Substitution of solution of the problem (A4) Si = Si(S) into Eq. (A5) yields

and reduces system of n + 1 Eqs. (9, A1) to two Eqs. (9, 10).

Appendix B. Exact Solution for 1D Transport of Single‑Population 
Colloids

Following works by Polyanin and Manzhirov 2006; Polyanin and Zaitsev (2012); Alvarez 
et al. (2005, 2007); Bedrikovetsky et al. (2017), in this Appendix we derive an analytical solu-
tion to the model Eqs. (9–13).

Introduction of function Ψ(S) by formula (14) yields the following form for Eq. (10):

Substituting expression (B1) for C(X, T) into Eq. (9) and changing the order of differentia-
tion by X and T in second derivative yield

Integrating Eq. (B2) in T from 0 to T leads to the following expression:

The constant of integration is situated in the right-hand side of Eq. (B3) and is calcu-
lated from initial conditions (12). So, the right-hand side of the previous equation is equal 
to zero. Consequently, Eq. (B3) reduces to:

where Ψ (X, T) is unknown, and S(Ψ) is the inverse function to Ψ = Ψ(S).
The initial and boundary conditions (12), (13) for Eq. (B4) become:
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respectively.
Along the characteristic lines X = T–T0, T0 > 0, Eq. (B4) can be transformed as follows:

Note that the characteristic lines X = T − T0, T0 > 0 cover the overall domain T > X. Inte-
grating Eq. (B6) over X and imposing boundary condition (B5) yield solution S(X, T) in the 
form (15).

Taking derivative with respect to T on both sides of Eq. (15) yields

Substitution of Eq. (10) into Eq. (B7) yields

As it follows from Eq. (B8), the value C/S is constant along the characteristic lines 
X = T–T0, T0 > 0, i.e. C/S is Riemann invariant. Accounting for boundary condition (13) in 
Eq. (B8) yields formula (16) for suspension concentration in the domain T > X.
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