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Closed-form analytical solutions for colloid transport in single rock fractures with 
and without colloid penetration into the rock matrix are derived for constant 
concentration as well as constant flux boundary conditions. A single fracture is 
idealized as two semi-infinite parallel plates. It is assumed that colloidal particles 
undergo irreversible deposition onto fracture surfaces and may penetrate into the 
rock matrix, and deposit irreversibly onto rock matrix solid surfaces. The 
solutions are obtained by taking Laplace transforms to the governing transport 
equations and boundary conditions with respect to time and space. For the case 
of no colloid penetration into the rock matrix, the solutions are expressed in terms 
of exponentials and complimentary error functions; whereas, for the case of 
colloid penetration into the rock matrix, the solutions are expressed in terms of 
convolution integrals and modified Bessel functions. The impact of the model 
parameters on colloid transport is examined. The results from several simulations 
indicate that liquid-phase as well as deposited colloid concentrations in the 
fracture are sensitive to the fracture surface deposition coefficient, the fracture 
aperture, and the Brownian diffusion coefficient for colloidal particles penetrating 
the rock matrix. Furthermore, it is shown that the differences between the two 
boundary conditions investigated are minimized at dominant advective transport 
conditions. The constant concentration condition overestimates liquid-phase 
colloid concentrations, whereas the constant flux condition leads to conservation 
of mass. 

Key words." fractures, rock matrix, colloid transport, colloid deposition, analytical 
solutions. 
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Fracture aperture, L 
Colloidal particle diameter, L n* 
Dispersion coefficient for colloids, L2/T 
Brownian diffusion coefficient for colloids, LZ/T s 
Effective diffusion coefficient for colloids, L2/T t 
Error function, equal to 27r -1/2 f0~e ~-dz ~-- 
Complimentary error function, equal to U 
1 - eft[x] x 
Boltzmann constant (1.38 x 10 23j/K), ML2/ z 
KT 2 

Laplace inverse operator  3 
Liquid-phase colloid concentration in the 7 
fracture, M/L 3 
Liquid-phase colloid concentration in the rock 
matrix, M/L 3 r/ 
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Source colloid concentration, M/L 3 
Colloid concentration deposited on fracture 
surfaces, M/L 2 
Colloid concentration deposited on rock matrix 
solid-surfaces, M/M 
Laplace transform variable with respect to time 
Time, T 
Absolute temperature 
Average interstitial velocity in the fracture, L/T 
Coordinate along the fracture axis, L 
Coordinate perpendicular to the fracture axis, L 

Defined in eqn (25) 
Laplace transform variable with respect to 
distance 
Relative mass balance error, defined in eqn (22) 
D u m m y  integration variable 
Porosity of  the rock matrix (liquid volume/rock 
matrix volume), L3/L 3 
Fracture surface deposition coefficient, L 
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Nm Rock matrix deposition coefficiep.t, 1/T 
# Fluid dynamic viscosity, M/LT 
u Dummy integration variable 

Defined in eqn (10) 
Pb Bulk density of the rock matrix, M/L 3 
7- Dummy integration variable 
T* Rock matrix tortuosity 

Dummy integration variable 

Subscripts 
cc constant concentration boundary condition 

CCp 

cf 

cfp 

without colloid penetration into the rock matrix 
constant concentration boundary condition 
with colloid penetration into the rock matrix 
constant flux boundary condition without 
colloid penetration into the rock matrix 
constant flux boundary condition with colloid 
penetration into the rock matrix 

INTRODUCTION 

Transport of colloids in subsurface formations has 
increasingly captured the attention of many research- 
ers, because of the potential impact of colloids in 
facilitating the transport of pollutants and toxic 
elements (e.g. Refs 27, 28, 32, 35 and 39). Tradition- 
ally, contaminant transport in rock fractured media has 
been modeled under the assumption that dissolved 
species may flow along with fluid phases present in the 
system, may sorb onto the immobile solid phase 
associated with fracture surfaces, and may diffuse into 
rock-matrix micro-fissures (e.g. Refs 2, 16, 20, 22 and 
29). However, recent experimental and field studies 
indicate that contaminants can also migrate, adsorbed 
on the surface of colloid particles (e.g. Refs 8, 9, 10 and 
38). This may suggest that colloids not only enhance the 
mobility of contaminants in fractures, they also inhibit 
the retardation and dilution of contaminants by 
restricting their sorption onto fracture surfaces and 
diffusion into the rock matrix. 

Colloids are very fine particles that range in size 
between 10 3 #m and 1 #m. s These particles may be 
introduced or formed in groundwater, for instance, as a 
result of well drilling, leaching from the vadose zone, 
and dissolution of inorganic cementing agents that bind 
colloidal-sized materials to solid surfaces. 26 Once a 
colloidal suspension is formed, it could be transported 
over significant lateral distances and thus facilitate 
contaminant movement. Suspended colloids are also 
subject to aggregation, filtration and settling, all of 
which are relatively complex processes dependent on 
colloid density, colloid size, surface chemistry, water 
chemistry, and interstitial velocity. 26 

The transport of colloids is affected by hydrodynamic 
interactions between colloidal particles, interstitial fluid, 
and fracture surfaces. 14 The stability of colloids is an 

important consideration in determining their transport 
and is controlled by van der Waals attractive forces that 
promote aggregation, and electrostatic repulsive forces 
that keep particles apart. When electrostatic repulsions 
are dominant, colloidal particles are electrostatically 
stabilized and remain in a dispersed state. 26 Conditions 
of weak electrostatic repulsive forces may promote 
coagulation which does not necessarily lead to immedi- 
ate particle immobilization. Coagulation is a function of 
several variables, including particle concentration and 
particle size, which can influence the extent of particle 
particle collisions. Moreover, destabilized colloids can 
still be transported as aggregates if the aggregates are 
sufficiently small relative to the fracture aperture. 

As colloids are transported through fractures, a 
fracture is deposited onto fracture surfaces by physico- 
chemical collection. Deposition of colloidal particles 
involves two processes: transport of particles from the 
bulk solution to the solid-liquid interface; and attach- 
ment of particles to the solid surface. The first process is 
associated with the collector efficiency, and represents 
the ratio of the rate at which particles strike the solid 
surface to the rate at which particles move toward the 
solid surface. The collector efficiency for submicron 
particles is primarily controlled by Brownian motion. 
The attachment of particles to the solid surface, or 
attachment efficiency, is the ratio of the rate at which 
particles attach to the solid surface to the rate at which 
particles strike the solid surface. The attachment 
efficiency is mainly affected by the repulsive electric 
double layer, the attractive van der Waals, and viscous 
interaction forces. 6'28'43 Particle deposition is also 
affected by particle shape, the solid surface roughness 
and whether the solid surface is clean or deposition is on 
previously collected particles. 

Colloid transport and attachment onto solid surfaces 
are not independent processes. Therefore, it is custom- 
ary to represent mathematically particle deposition by 
an empirical coefficient (filter or deposition coefficient), 
which is considered as an irreversible adsorption term 
accounting for the mechanisms governing the colloid 
deposition process. The DLVO (Deryaguin, Landau, 
Verwey, and Overbeek) theory is not in agreement with 
observed particle deposition rates particularly for 
negatively charged particles and solid surfaces. 6 More- 
over, because the deposition coefficient depends on the 
absolute temperature, the density and viscosity of the 
aqueous-phase, the average particle size, and other 
parameters accounting for the electric double layer and 
van der Waals forces, it is usually determined from 
laboratory columns or field experimental measurements 
(e.g. Refs 9 and 38). 

Deposited colloids are not expected to desorb from 
fracture surfaces. The rate of release of deposited 
colloids from smooth parallel-plate channels was 
experimentally found to be negligible. 6 Also, under the 
range of velocities encountered in crystalline rocks, 
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detachment of  colloids is not likely to occur. Some 
studies of colloid transport in fractures suggest that 
colloids do not penetrate into certain types of rock 
matrices (e.g. Refs 6 and 7). For  instance, Bradbury and 
Green 7 reported that particles in the size range of 
0.091-0-312#m can not penetrate a crystalline rock 
matrix with 0-14#m micro-fissures. Since the size of 
colloids ranges between 10 3 and 1 #m, and the size of 
rock-matrix micro-fissures ranges between 0.01 and 
10#m 5, the possibility of  colloids diffusing into the 
rock matrix cannot be eliminated. 

Several modeling efforts have been conducted in the 
recent years on colloid and colloid-facilitated contami- 
nant transport in subsurface environments. For  
instance, Harvey and Garabedian 17 developed a model 
based on the colloid-filtration theory for the transport of  
bacteria in a contaminated sandy aquifer. Mills et al. 28 
presented a model to evaluate the significance of colloids 
on the mobility of metals in porous media. Hwang et 
al. J9 presented a model for colloid migration in a single 
planar fracture for the case where colloids do not 
deposit onto fracture surfaces. Grindrod 15 modeled the 
dispersal of  a radioactive material in the presence of 
colloids in a single fracture. Abdel-Salam and Chrysi- 
kopoulos I developed a numerical model for the cotran- 
sport of  contaminants and colloids in a fracture with 
nonlinear contaminant sorption onto colloids. 

In any modeling process, boundary conditions are 
important because they account for effects of  the system 
outside the region of interest. Usually, contaminant 
transport models assume that mass is introduced to the 
system through either a constant concentration (first- 
type or Dirichlet) or a constant flux (third-type or 
Cauchy) inlet boundary c o n d i t i o n f  The constant 
concentration boundary condition represents the case 
where colloids exist at the inlet boundary at a prescribed 
constant concentration, while the constant flux bound- 
ary condition represents the case where colloids are 
added at a constant rate to the fluid that enters the 
fracture. The constant concentration boundary con- 
dition indicates that the advective flux across the 
boundary is constant, while the constant flux indicates 
that the sum of advective flux and the dispersive flux is 
constant. Solutions resulting from both boundary 
conditions can be used in the analysis of experimental 
breakthrough curves obtained by injecting colloids into 
a rock fracture. 

The focus of this work is to derive analytical solutions 
for one-dimensional macroscopic colloid transport in a 
semi-infinite fracture accounting for irreversible deposi- 
tion onto fracture surfaces, penetration into the rock 
matrix, and irreversible deposition onto rock-matrix 
solid surfaces. The fracture is conceptualized as two 
parallel plates. The solutions are developed for constant 
concentration as well as constant flux inlet boundary 
conditions. In the first part of  this paper, solutions for 
the simpler case of  colloid transport without colloid 

penetration into the rock matrix are derived. In the 
second part, solutions for the transport of colloids with 
penetration into the rock matrix are developed. 

D E V E L O P M E N T  OF M O D E L S  

The partial differential equation governing colloid 
transport in a one-dimensional fracture idealized as 
two parallel plates (as shown in Fig. 1) under steady- 
state flow conditions, assuming that colloids may 
deposit irreversibly onto fracture surfaces, and may 
penetrate the rock matrix has been derived from mass 
balance considerations and can be written as 

On(t,x) 20n*(t,x) D O2n(t,x) uOn(t,x) 
Ot b Ot Ox 2 Ox 

+ 20~eb Onm(t'o~X) z=b/2 (1) 

where n is the liquid-phase colloid concentration in the 
fracture; x is a coordinate along the fracture axis; t is 
time; z is a coordinate perpendicular to the fracture axis 
measured from the center of the fracture (see Fig. 1); D 
is the dispersion coefficient for colloids; U is the average 
interstitial velocity in the fracture; b is the fracture 
aperture bounded by the two fracture surfaces; n* is the 
concentration of colloids retained by deposition onto 
fracture surfaces expressed as mass of colloids per unit 
area of fracture surface; 0 is the porosity of the rock 
matrix; ~e = ~b/~-* is the effective diffusion coefficient 
for colloids, ~b is the Brownian diffusion coefficient and 
~-* is the rock matrix tortuosity (C > 1); 4 and nm is the 
colloid concentration in the rock matrix. 

At certain conditions the dispersion coefficient of 
colloids is probably different than that of  a dissolved 
contaminant. At the microscale, dispersion of colloids 
or a dissolved contaminant is caused mainly by 
Brownian diffusion and Taylor dispersion resulting 
from the parabolic velocity variations between the 
fracture surfaces. 2j In real rock fractures, macroscopic 

Fig. 1. Idealization of a natural fracture as two parallel plates 
surrounded by the rock matrix. The fracture has a mean 

aperture b. 
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dispersion is affected by fracture surface heterogeneities 
caused, for instance, by roughness perturbations and 
filling material. Macroscopically, in porous and frac- 
tured media, particularly at high Peclet number, 
dispersion of colloids and dissolved contaminants is 
expected to be independent of Brownian diffusion and 
consequently a single value of dispersivity should be 
valid for both colloids and dissolved contaminants. 21'3° 
Grindrod 15 used a macroscopic dispersion coefficient for 
dissolved contaminants which is 3.8 times larger than 
that of colloids. However, Smith and Degueldre 34 used a 
1.5 times larger macroscopic dispersion coefficient for 
colloids. In this paper, the dispersion coefficient 
employed represents a macroscopic scale. 

The second term on the left hand side of eqn (1) 
represents the mass flux of colloids onto fracture 
surfaces. At the microscale, interaction of colloids with 
fracture surfaces is affected by a variety of physico- 
chemical mechanisms that control the deposition and 
transport of colloids; however, at the macroscale, 
colloid transport is modeled with a lumped deposition 
coefficient, which for the case of irreversible colloid 
deposition can be expressed as 

0n*(t,x) ~ 
- .~ n( t ,x)  (2) 

where n, is the fracture surface deposition coefficient, 
which is an experimentally determined 'lumped' para- 
meter that takes into account the different deposition 
mechanisms induced by Brownian motion, van der 
Waals and electric double layer forces. This relationship 
assumes that n* is not affected by previously deposited 
particles on fracture surfaces. A more realistic treatment 
for colloid deposition could be to include the effects of 
previously deposited particles; however, this approach 
will make the mathematical model nonlinear precluding 
an analytical solution. Similar relationships to eqn (2) 
for the filtration of colloids in porous media have been 
presented by Herzig et al., Is and Harvey and Gara- 
bedian; ~7 and in fractured media by Bowen and 
Epstein. 6 

The last term in eqn (1) represents the diffusive mass 
flux of colloids into the rock matrix. The colloid 
concentration in the rock matrix, nm, can be obtained 
from the following one-dimensional partial differential 
equation governing colloid diffusion in a direction 
perpendicular to the fracture axis, assuming that the 
interstitial liquid in the rock matrix is stationary, and 
that colloids deposit irreversibly onto rock-matrix solid 
surfaces 

Onm(t,x,z) Pb Onm(t,x,z) O2nm(t,x,z) 
Ot ~- 0 Ot ~e Oz 2 (3) 

where n* is the colloid concentration deposited on the 
rock matrix. Similar to colloid deposition onto fracture 
surfaces (eqn (2)), the irreversible deposition of colloids 
onto rock-matrix solid surfaces can be expressed by the 

following linear kinetic relationship 

Onto(t, x, z) ~mO 
- - -  nm(t, x, z) (4) 

Ot Ph 

where N; m is the rock matrix deposition coefficient. For a 
semi-infinite fracture and the presence of a continuous 
source of colloids, the initial and boundary conditions 
examined in this work are 

n(0,x) =0 (5) 
n(t,O) =no (6a) 

- D  On(t, O) 
Ox 

+ Un(t, O) = Uno (6b) 

On(t, o~ ) 
Ox = 0 (7) 

~(o,~,=)  =o  (Sa) 

nm(t, x, b/2) = n(t, x) (8b) 

On.,(t,x, oc) 
Oz - 0 (8c) 

where no is the source colloid concentration. The 
condition (5) corresponds to the situation where 
colloids are initially absent from the one-dimensional 
fracture. The boundary condition (6a) represents the 
case of constant concentration at the inlet; while, the 
constant flux boundary condition (6b) implies colloidal 
concentration discontinuity at the inlet. The down- 
stream boundary condition (7) preserves concentration 
continuity for a semi-infinite fracture. The boundary 
condition (8b) implies equal concentration in the 
fracture and the rock matrix at the interface between 
them. 

Without colloid penetration into the rock matrix 

For the case of constant concentration boundary 
condition, and without colloid penetration into the 
rock matrix (i.e. Onm/OZ = 0 ) ,  the analytical solution to 
eqns (1), (2), (5), (6a) and (7) is derived using Laplace 
transform techniques and is given as 

no{ [Ux 1 a)] [ x -  Ut~l 

L2(Dt),/zj (9) 

where 

8~D~ 1/2 
= 1 + Ub2fl (10) 

and the subscript cc indicates the use of the constant 
concentration upstream boundary condition. It should 
be noted that for the case of non-depositing colloidal 
transport, ~c is set to zero in the preceding equation. For 
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the case of constant flux inlet boundary condition, and 
without colloid penetration into the rock matrix, the 
analytical solution for eqns (1), (2), (5), (6b) and (7) 
is also derived using Laplace transform techniques to 
yield 

L2(Dt)I/2] 
1 ¢)] ~ Ix + vt~] 

+ ~  exp [2~(1 + errc [ ~ ]  

eb 2 [.~'V 2U#~t 1 ~. Fx-t- ut l }  
(~ > 0) 

(11) 

where the subscript cf indicates the use of the constant 
flux upstream boundary condition. Analytical solutions 
for a mathematically similar but physically different 
model to the colloid transport model without colloid 
penetration into the rock matrix can be found in van 
Genuchten. 4° It should be noted that the preceding 
expression is valid only for ~ > 0 which corresponds to 

> 1. For the case of non-depositing colloidal trans- 
port, the solution can be obtained directly from the 
work of Lindstrom et al., 25 and Gershon and Nir 13 

no f F x -  v t  
n c f ( t , x ) = ~ e r f c [ ~  

[ (x- v,)[] 
x exp 4Dt ] - 

x +  Ut 
x exp [-~]  erfc [ ~  

+ t , -D )  

+ ~ - +  

= 0) (12) 

Colloid penetration into the rock matrix 

For the case of constant concentration inlet boundary 
condition, and with colloid penetration into the rock 
matrix (i.e. Onm/Oz > 0), the analytical solution to eqns 
(1)-(6a), (7) and (8) can be derived following the 
methods of Lindstrom and Boersma, 24 and Chrysiko- 
poulos et al. ~l Taking Laplace transforms with respect 
to time variable t and space variable x, using the 
transformed boundary conditions and applying inverse 
transformations yields 

I:[ nccp(t, x) = ~ / 2  exp[B] exp -72 - 4D72] 

~mX2 ~/2Ax2- 
× exp 4D72 472 

× erfc [872T1/2 (t~mT) 1/2 

~m x2 ~l/2 Ax2 
+ exp - ~ 4 472 

x erfc [872T1/2 + (nmT) 1/2 d7 (13) 

where the subscript CCp indicates the use of the constant 
concentration upstream boundary condition with pene- 
tration into the rock matrix, 

20~/2 
A -  b ~  (14a) 

Ux 
B = 2--D (14b) 

2K U U 2 
E -  b2 ~ - ~ - - / ~ m  (14c) 

x 
E - 2(Dt)l/~ (14d) 

x 2 
T = t - 4D7~ (14e) 

and 7 is a dummy integration variable. For the case of 
constant flux inlet boundary condition and with colloid 
penetration into the rock matrix, eqns (1)-(5), and (6b)- 
(8) are solved analytically in a similar fashion to the 
constant concentration boundary condition, and the 
solution is given as (see Appendix) 

_ noU exp[B_~mt][f(t).g(t)] (15) 7cfo (t, x) 27rDI/2 

where the subscript Cfp indicates the use of the constant 
flux upstream boundary condition with penetration into 
the rock matrix; and f ,  g is the convolution integral 
defined as 

f ( t )*g( t )  = f (m)g( t -  r)dT (16) 

where 

f ( t )  = I) exp - 7  4D72 ] exp e;mT 472 ] 

x erfc|872Tl/2 (e;mT) 1/2 +exp ~mT-~ 472 

xerfc[ Ax2 + (~mT) U2] [ ~  }d7 (17) 

g(t) - ~ exp - -4~-aJ(F + H) aJdw 

] J0 J0 [ ~ H w -  F(w 2 - /./2)1/2 

× Jl[upU2] wdudw ~ (18) 
J 
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F _ 

H m 

2 

U 

2D~/2 

AD 

(19a) 

(19b) 

(19c) 
A2 D 2 

P = E - - -  
4 

T, u, and co are dummy integration variables; and J1 is 
the modified Bessel function of the first kind of order 
one. 

MODELS SIMULATIONS AND DISCUSSION 

Transport without penetration into the rock matrix 

To illustrate the effect of  the colloid transport model 
parameters, temporal and spatial distributions of  
colloids in the fracture have been calculated for a 
variety of situations for both the boundary conditions 
examined in case where Onm/OZ =- O. For  simplicity, only 
the results for the constant flux boundary condition are 
presented, and the differences between the two boundary 
conditions are discussed briefly. For  presentation 
purposes, the calculated colloid concentrations are 
normalized by the source colloid concentration. Unless 
otherwise specified, breakthrough curves are predicted 
at a distance x -- 5 m downstream of the source, whereas 
snapshots are given at t = 5y; and the interstitial 
velocity is set at U = 1 m/year. The parameter values 
used are obtained from the work of Bowen and 
Epstein, 6 Abelin, 2 and Toran and Palumbo. 38 

The effect of the ratio of  the fracture surface 
deposition coefficient, ~, to the fracture aperture 
squared, b 2, on the variation of  the liquid-phase colloid 
concentration in the fracture with time and distance is 
shown in Fig. 2. The breakthrough curves (Fig. 2(a)) as 
well as the snapshots (Fig. 2(b)) presented, show that 
increasing the deposition coefficient, while holding the 
fracture aperture constant, results in a reduction in the 
liquid-phase colloid concentration. This result is 
expected since the deposition coefficient determines the 
amount of colloids to be deposited onto fracture 
surfaces. Figure 2 also shows that, by holding the 
deposition coefficient constant, the liquid-phase colloid 
concentration decreases with decreasing fracture aper- 
ture. This result is attributable to the fact that the 
smaller the fracture aperture the easier the access of 
colloidal particles to fracture surfaces due to the shorter 
distance to be traveled. It should be noted that the effect 
of  an increase in the fracture aperture is exactly opposite 
to the effect of an increase in the deposition coefficient. 
Furthermore, in Fig. 2(a) the normalized concentrations 
of  colloids in solution do not reach the maximum value 
of  one, because irreversible and indefinite deposition 
onto fracture surfaces (i.e. a perfect sink) is assumed. 

1.0 . . . . . . . . .  'K/b 2 = 6.4E-3 m 

0.8 
. . . . . . . . . . . . . . . . .  2 :~ . .E . :~  . . . . . . . .  

0.6 "*'~'~°'°~*°°"° j . &  5.44E-2 

0.4 
0.2 ~ 1  

0'00 5 
Time (y) 

1.0 
'% b 2 = 6.4E-3 m 

0.8 ~3.2E-2 
0.6 ~'~ . ~ ~  5.44E-2 

'~0 ~ ' ~ ' ~ . , , % ~  9'6E'2 

0.4 ~ ~ , , , ~  1.6E- 1 

0.2 

o ( b )  
0 5 10 15 

Distance (m) 

Fig. 2. Effect of the ratio of the fracture surface deposition 
coefficient to the fracture aperture squared on (a) temporal, 
and (b) spatial normalized liquid-phase colloid distribution in 

the fracture (D = 0.25 m2/year, and U = 1.0 m/year). 

Maximum breakthrough concentrations are obtained 
for nondepositing colloids (i.e. ~; = 0). 

To illustrate the differences between the two boundary 
conditions considered in this study, simulated break- 
through curves as well as snapshots using eqns (9) 
and (I1) for two different dispersion coefficients are 
shown in Fig. 3, and for several interstitial velocities 
are presented in Fig. 4. The discrepancies in the 
calculated colloid concentrations are more significant 
at high dispersion coefficients and low velocities. Since 
the boundary conditions (6a) and (6b) are approxi- 
mately equivalent when D is negligible, the behavior 
of the analytical solutions (9) and (11) is similar at 
low dispersion coefficients. Furthermore, as the inter- 
stitial velocity increases the advective flux in (6b) 
dominates over the dispersive flux and thus there is no 
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Fig. 3. Effect of inlet boundary condition on (a) temporal, and 
(b) spatial normalized liquid-phase colloid distribution in 
the fracture for different dispersion coefficients (b = 
1.25 x 10 4m, U = 1.0m/year, and t~ = 1.0 x 10-1°m). Solid 
lines represent constant concentration and broken lines 

represent constant flux inlet boundary condition. 

0 5 10 15 

Distance (m) 

Fig. 4. Effect of inlet boundary condition on (a) temporal, and 
(b) spatial normalized liquid-phase colloid distribution in the 
fracture, for different velocities (b= 1.25 x 10 4m, D -  
0.25m2/year, and ~=-1.0x 10-1°m). Solid lines represent 
constant concentration and broken lines represent constant 

flux inlet boundary condition. 

essential difference between the two boundary con- 
ditions, and consequently the two analytical solutions 
presented are equivalent. The colloidal concentration 
discontinuity at the inlet, imposed by the constant 
flux boundary condition, is illustrated in Figs 3(b) 
and 4(b), for the case of  high dispersion and small 
velocity. 

In addition to the simulations presented for the 
liquid-phase colloid concentration in the fracture, the 
effect of the transport parameters on the deposited 
colloid concentration on fracture surfaces is also 
examined. In view of eqn (2) it is evident that the 
deposited colloid concentrations on fracture surfaces for 
constant concentration and constant flux inlet boundary 

conditions are given by 

. t~U [' (T, x)d~- (20) ncc(t'x) = b J0 ncc 

, ~U It nCf(r~,x)dT (21) ncf(t,x) = b J0 

respectively, where ncc(t,x ) and ncf(t,x ) are given by 
eqns (9) and (11), respectively. Since analytical evalua- 
tion of the integrals in eqns (20) and (21) is not 
straightforward, numerical integration by the extended 
Simpson's rule is applied. 3j Figure 5 shows predicted nlt- 
concentrations normalized by no, as a function of time 
and space for three different dispersion coefficients. 
Similar to the case of the liquid-phase colloid concen- 
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Fig. 5. Effect of dispersion coefficient on (a) temporal, and 
(b) spatial normalized deposited colloid distribution on 
fracture surfaces (b = 1.25 x 10-4m, U = 1.0m/year, and 

= l ' 0x  10 10m). 

tration (Fig. 3), the deposited colloid concentration and 
the required time to steady state increases with 
increasing dispersion coefficient. The gradient of the 
deposited colloid concentration with respect to time is 
proportional to the liquid-phase colloid concentration 
(see eqn (2)); therefore, On* (t, x) /Ot becomes constant at 
steady state. Furthermore, Fig. 5(b) illustrates that 
deposited colloids spread over a greater portion of  
fracture surfaces at higher dispersion coefficients. 

colloids entering the system corresponds to a constant 
flux, the relative mass balance error for colloids can be 
defined as 

= ~  + ~,. - 1 = n(t ,x)  dx 
0 

+ n*(t,x) dx - 1 (22) 
0 

where e is the relative mass balance error, the term Unot 
is the mass of colloids entering the fracture at the inlet 
boundary over the time period t, and the integrals on the 
right hand side of the preceding equation represent the 
mass of colloids in the liquid-phase and deposited onto 
fracture surfaces, respectively, present in the fracture at 
time t. In view of eqn (22), the integral expressions of  the 
liquid-phase colloid concentration n(t ,x)  for constant 
concentration (9) and constant flux (11) boundary 
conditions can be written as 

exp[/3(l - ~ 2 ) ]  erfc[_/3V2] + ~ erfc[/31/2] 
encc - 2/3(1 - ~2) 

1 
2/3(1 - ~) (23) 

exp[/3(1 - ~2)1 erfc[_/31/2] _ 1 

%f = /3(1 --  ~2) 

b2 [ -2I~IU] erf[fl '/2] (24) + ~ exp L bT-- ] 
where 

/3= 
U2t 
4D (25) 

In view of  eqns (20), (21) and (22), the double integral 
expressions of  the deposited colloid concentration for 
both boundary conditions (en~,en.cr) are obtained 
numerically by the extended Simpson's rule. 3~ The 
total relative mass balance error for the two boundary 
conditions is plotted as a function of the dispersion 
coefficient (Fig. 6(a)) and interstitial velocity (Fig. 6(b)). 
These figures indicate that the relative error for the 
constant concentration boundary condition is mini- 
mized at small dispersions and high velocities. Similar 
mass balance error trends have been obtained by van 
Genuchten and Parker, 42 and Leij et al. 23 for certain 
cases of solute transport in porous media. It should be 
noted that the constant concentration inlet boundary 
condition overestimates the liquid-phase colloid con- 
centration, whereas the constant flux leads to con- 
servation of mass. 

Mass balance errors Transport with penetration into the rock matrix 

3 23 42 Previous investigations'  ' suggest that improper use 
of boundary conditions may lead to conservation of  
mass errors. Following the work of  van Genuchten and 
Parker 42 and assuming that the total mass flux of 

In this section, we investigate the impact of  the model 
parameters controlling the mass flux of  colloids into the 
rock matrix on the liquid-phase colloid concentration in 
the fracture. The analytical solutions to the colloid 
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Fig. 6. The variation of the relative mass error for constant 
concentration (solid lines) and constant flux (broken lines) 
boundary conditions with (a) dispersion coefficient, and (b) 
interstitial velocity (b = 1.25 × 10 4 m, and ~ = 1.0 x 10 9 m). 

t ransport  model with penetration into the rock matrix 
for constant concentration and constant flux inlet 
boundary conditions are given by eqns (13) and (15), 
respectively. The integrals in these two solutions are not 
easily obtained analytically, and consequently they are 
evaluated using the Romberg numerical integration 
subroutine Q R O M O  from Press et al. 31 The simula- 
tions using solutions (13) and (15) for Onm/OZ = 0 are 
compared with the simpler solutions (9) and (11) for the 
case where colloids do not penetrate into the rock 
matrix, and excellent agreement is found. For  presenta- 
tion purposes, only results from the constant flux 
boundary condition solution (eqn (15)) are presented. 
Breakthrough curves are predicted at x = 5 m, whereas 
snapshots are given at t = 5y; and the interstitial 
velocity is U = 1 m/year. 

I"01 .X X X I ' . . ~  dn m /dz = 0.0 

0 t\ \ \  
[ ~  ~ ~ . J  "e= I"02E'5 m /y 

cot\ \ 1o;11 
0.2 \ \ 

oo[ (b) 
0 5 10 15 

Distance (m) 
Fig. 7. Effect of the effective diffusion coefficient on (a) 
temporal, and (b) spatial normalized liquid-phase colloid 
distribution in the fracture (b = 1.25 x 10 -4 m, D = 0.25 m2/ 
year, U = 1.0m/year, n = 1"0 x 10 l°m, and nm= 0/year). 

One of the parameters that appears in the diffusive 
mass flux term in the governing transport  equation (1) is 
the effective diffusion coefficient for colloids. The 
Brownian diffusion coefficient is estimated by 12 

k g  
~b - (26) 

37v#dp 

where k is the Boltzmann constant (1.38 × 10 -23 J/K); 
5-  is the absolute temperature; # is the fluid dynamic 
viscosity; and dp is the colloidal particle diameter. For  
colloids with particle diameter of  1.0#m at 20°C, the 
coefficient @b is estimated by eqn (26) to be 
1.36 × 10 -5 mZ/year. The impact of  the effective diffu- 
sion coefficient for colloids on the liquid-phase colloid 
concentration in the fracture is shown in Fig. 7. Three 
different effective diffusion coefficients are used in the 
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simulations corresponding to colloidal particle dia- 
meters of 1, 0.1, and 0.01#m, and tortuosity T* of 
1.33. The upper most curve in Fig. 7 corresponds to 
colloid transport without colloid penetration into the 
rock matrix. Predicted breakthrough curves as well as 
snapshots in Fig. 7 clearly demonstrate that an increase 
in the effective diffusion coefficient, or alternatively a 
decrease in particle size, leads to an increase in the 
colloidal mass flux into the rock matrix and con- 
sequently a decrease in the liquid-phase colloid con- 
centration in the fracture. Figure 7(a) also shows that 
colloidal breakthrough time increases with increasing 
effective diffusion coefficient. 

The impact of the rock matrix deposition coefficient 
on the liquid-phase colloid concentration in the fracture 

is demonstrated in Fig. 8. An increase in the rock matrix 
deposition coefficient (~m), leads to a decrease in the 
colloid concentration in the rock matrix (nm). Conse- 
quently, the concentration gradient between the liquid- 
phase colloids in the fracture (n) and n m increases 
leading to higher colloidal mass flux into the rock 
matrix. Figure 8 clearly shows this effect, although the 
liquid-phase colloid concentration in the fracture is not 
as sensitive to/~m as it is to De. 

SUMMARY AND CONCLUSIONS 

One-dimensional colloid transport in a single semi- 
infinite fracture idealized as two parallel plates was 
modeled assuming irreversible deposition onto fracture 
surfaces, penetration into the rock matrix, and irrever- 
sible deposition onto rock-matrix solid surfaces. Several 
analytical solutions corresponding to colloid transport 
with and without penetration into the rock matrix were 
derived using Laplace transform techniques, for con- 
stant concentration as well as constant flux inlet 
boundary conditions. Also, expressions for the concen- 
tration of deposited colloids onto fracture surfaces were 
provided. 

The effect of the different parameters on the behavior 
of the model was investigated. The liquid-phase colloid 
concentration in the fracture was found to be mostly 
sensitive to the fracture aperture and to the fracture 
surface deposition coefficient. An increase in the 
deposition coefficient produces an increase in the 
deposited colloid concentration on fracture surfaces 
and consequently a decrease in the liquid-phase colloid 
concentration. As the fracture aperture decreases the 
liquid-phase colloid concentration declines sharply, 
while the deposited colloid concentration on fracture 
surfaces increases. The normalized steady state liquid- 
phase colloid concentration in the fracture does not 
reach the maximum value of one, because of  the 
irreversible colloid deposition onto fracture surfaces. 

It was shown that mass balance errors arise for the 
constant concentration inlet boundary condition, 
because this condition assumes that the colloid mass 
entering the system is solely by advection, in comparison 
to the constant flux inlet boundary condition which 
accounts for mass entering by advection as well as by 
dispersion. When the total mass flux is dominated by the 
advective mass flux (i.e. at low dispersion and/or high 
velocity), both boundary conditions yield similar 
concentration profiles. However, the constant concen- 
tration inlet boundary condition consistently overesti- 
mates the liquid-phase colloid concentrations. 

Simulations of the analytical solutions for the case 
where colloids penetrate the rock matrix indicate an 
increase in the colloidal mass flux penetrating the rock 
matrix with decreasing particle size, which in turn leads 
to a reduction in the liquid-phase colloid concentration 
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in the fracture. The model  was found to be relatively 
insensitive to the rock matrix deposi t ion coefficient. 

A l though  the models presented here have advantages  
due to their analytical nature, some o f  the limitations 
inherent to the models are their inability: (a) to allow for 
colloid deposit ion rates as a slowly varying function o f  
colloid surface coverage; and (b) to account  for 
variability in the aperture which is always present in 
real rock fractures. Nonetheless,  these models can 
provide means for verifying the accuracy of  numerical 
solutions to more  comprehensive models for colloid 
t ranspor t  in fractured subsurface formations.  

R E F E R E N C E S  

I. Abdel-Salam, A. & Chrysikopoulos, C. V. Analysis of a 
model for contaminant transport in fractured media in the 
presence of colloids. J. Hydrol. (in press). 

2. Abelin, H. Migration in a single fracture: An in-situ 
experiment in a natural fracture. Ph.D. dissertation, Dep. 
of Chem. Eng., R. Inst. of Tech., Stockholm, Sweden, 
1986, 170 pp. 

3. Batu, V. & van Genuchten, M. Th. First- and third-type 
boundary conditions in two dimensional solute transport 
modeling. Water Resour. Res., 26(2) (1990) 339 50. 

4. Bear, J. Dynamics of  Fluids in Porous Media. Elsevier, 
1972, 764 pp. 

5. Birgersson, L. & Neretnieks, I. Diffusion in the Matrix of 
Granitic Rock Field Test in the Stripa Mine. Part 1. 
SKBF/KBS Teknish Rapport, 82-08, Royal Inst. of 
Technol., Stockholm, Sweden, 1982. 

6. Bowen, B. D. & Epstein, N. Fine particle deposition in 
smooth parallel-plate channels. J. Colloid Interface Sci., 
72(1) (1979) 81-97. 

7. Bradbury, M. H. & Green, A. Investigations into the 
factors influencing long range matrix diffusion rates and 
pore space accessibility at depth in granite. J. Hydrol., 89 
(1986) 123 39. 

8. Buddemeier, R, W. & Hunt, J. R. Transport of colloidal 
contaminants in groundwater radionuclide migration at 
the Nevada test site. Appl. Geochem., 3 (1988) 535 48. 

9. Champ, D. R. & Schroeter, J. Bacterial transport in 
fractured rock: A field-scale tracer test at the Chalk River 
Nuclear Laboratories. Water Sci. Technol., 20(11/12) 
(1988) 81 7. 

10. Chiou, C. T., Malcolm, R. L., Brinton, T. I. & Kile, D. E. 
Water solubility enhancement of some organic pollutants 
and pesticides by dissolved humic and fulvic acids. 
Environ. Sci. Technol., 20(5) (1986) 502-8. 

11. Chrysikopoulos, C. V., Roberts, P. V. & Kitanidis, P. K. 
One-dimensional solute transport in porous media with 
partial well-to-well recirculation: Application to field 
experiments. Water Resour. Res., 26(6) (1990) 1189 95. 

12. Einstein, A. Investigations on the Theory of  the Brownian 
Movement, ed. R. Furth, Dover, Mineola, NY, 1956. 

13. Gershon, N. D. & Nir, A. Effects of boundary conditions 
of models on tracer distribution in flow through porous 
mediums. Water Resour. Res., 5(4) (1969) 830-9. 

14. Goldman, A. J., Cox, R. G. & Brenner, H. Slow viscous 
motion of  a sphere parallel to a plane wall - -  I: Motion 
through quiescent fluid. Chem. Engng Sci., 22 (1967) 637 51. 

15. Grindrod, P. The impact of colloids on the migration and 
dispersal of radionuclides within fractured rock. J. 
Contam. Hvdrol., 13 (1993) 167-81. 

16. Haldeman, W. R., Chuang, Y., Rasmussen, T. C. & Evans, 
D. D. Laboratory analysis of fluid flow and solute 
transport through a fracture embedded in porous tuff. 
Water Resour. Res., 27(1) (1991) 53 65. 

17. Harvey, R. W. & Garabedian, S. P. Use of colloid 
filtration theory in modeling movement of bacteria 
through a contaminated sandy aquifer. Environ. Sci. 
Technol., 25 (1991) 178 85. 

18. Herzig, J. P., Leclerc, D. M. & Le Goff, P. Flow of 
suspension through porous media: Application to deep 
filtration. Ind. Engng Chem., 62(5) (1970) 9-35. 

19. Hwang, Y., Pigford, T. H., Lee, W. W. L. & Chambre, 
P. L. Analytic solution of pseudocolloid migration in 
fractured rock. Mat. Res. Soc. Symp. Proc., 176 (1990) 
599 605. 

20. Johns, R. A. & Roberts, P. V. A solute transport model for 
channelized flow in a fracture. Water Resour. Res., 27(8) 
(1991) 1797-1808. 

21. Kessler, J. H. & Hunt, J. R. Dissolved and colloidal 
contaminant transport in a partially clogged fracture. 
Water Resour. Res., 30(4) (1994) 1195 -206. 

22. Krishnamoorthy, T. M., Nair, R. N. & Sarma, T. P. 
Migration of radionuclides from a granite repository. 
Water Resour. Res., 28(7) (1992) 1927 34. 

23. Leij, F. J., Skaggs, T. H. & van Genuchten, M. Th. 
Analytical solutions for solute transport in three- 
dimensional semi-infinite porous media. Water Resour. 
Res., 27(10) (1991) 2719-33. 

24. Lindstrom, F. T. & Boersma, L. A theory on the mass 
transport of previously distributed chemicals in a water 
saturated sorbing porous medium. Soil Sci., 111(3) (1971) 
192 9. 

25. Lindstrom, F. T., Haque, R., Freed, V. H. & Boersma, L. 
Theory on the movement of some herbicides in soils: 
Linear diffusion and convection of chemicals in soils. 
Environ. Sci. Technol,, 1(7) (1967) 561 -5. 

26. McCarthy, J. F. & Zachara, J. M. Subsurface transport of 
contaminants. Environ. Sci. Technol., 23(5) (1989) 496 
502. 

27. McDowell-Boyer, L. M., Hunt, J. R. & Sitar, N. Particle 
transport through porous media. Water Resour. Res., 
22(13) (1986) 1901 21. 

28. Mills, W. B., Liu, S. & Fong, F. K. Literature review and 
model (COMET) for colloid/metals transport in porous 
media. Ground Water, 29(2) (1991) 199 208. 

29. Moreno, L., Tsang, Y. W., Tsang, C. F., Hale, F. V. & 
Neretnieks, 1. Flow and tracer transport in a single 
fracture: A stochastic model and its relation to some 
field observations. Water Resour. Res., 24 (1988) 
2033 48. 

30. NAGRA, Project Gewahr. In Nuclear Waste Manage- 
ment in Switzerland: Feasibility Studies and Safety 
Analyses, Wettingen, Rep. NGB 85-05. Nat. Coop. 
Storage Radioactive Waste, Baden, Switzerland, 1985, 
209 pp. 

31. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & 
Flannery, B. P. Numerical Recipes. The Art of  Scientific 
Computing, Cambridge University Press, New York, 1992, 
963 pp. 

32. Puls, R. W. & Powell, R. M. Transport of inorganic 
colloids through natural aquifer material: Implications for 
contaminant transport. Environ. Sei. Technol., 26 (1992) 
614 21. 

33. Roberts, G. E. & Kaufman, H. Table oJ Laplace Trans- 
.forms, W. B. Saunders, Philadelphia, 1966, 367 pp. 

34. Smith, P. A. & Degueldre, C. Colloid-facilitated transport 
of radionuclides through fractured media. J. Contam. 
Hydrol., 13 (1993) 143 66. 



294 A. Abdel-Salam, C. V. Chrysikopoulos 

35. Song, L. & Elimelech, M. Dynamics of colloid deposition 
in porous media: Modeling the role of retained particles. 
Colloids and Surfaces A, 73 (1993) 49-63. 

36. Spiegel, M. R. Laplace Transforms, McGraw-Hill, 1990, 
261 pp. 

37. Tang, D. H., Frind, E. O. & Sudicky, E. A. Contaminant 
transport in fractured porous media: Analytical solution 
for a single fracture. Water Resour. Res., 17(3) (1981) 555 64. 

38. Toran, L. & Palumbo, A. V. Colloid transport through 
fractured and unfractured laboratory sand columns. J. 
Contain. H.vdrol., 9 (1992) 289-303. 

39. Torok, J., Buckley, L. P. & Woods, B. L. The separation of 
radionuclide migration by solution and particle transport 
in soil. J. Contam. Hydrol., 6 (1990) 185-203. 

40. van Genuchten, M. Th. Analytical solutions for chemical 
transport with simultaneous adsorption, zero-order pro- 
duction and first-order decay. J. Hydrol., 49 (1981) 213 33. 

41. van Genuchten, M. Th. & Alves, W. J. Analytical solutions 
of the one-dimensional convective-dispersive solute trans- 
port equation. US Department of Agriculture, Technical 
Bulletin No. 1661, 1982, 151 pp. 

42. van Genuchten, M. Th. & Parker, J. C. Boundary con- 
ditions for displacement experiments through short labora- 
tory soil columns. Soil Sci. Soc. Am. J., 48 (1984) 703-8. 

43. Yao, K. M., Habibian, M. T. & O'Melia, C. R. Water and 
waste water filtration: Concepts and applications. Environ. 
Sci. Technol., 11 (1971) 1105-12. 

APPENDIX: DERIVATION OF nap (t, x) 

The desired function ncfp(t,x ) is the solution to the 
problem described by the following partial differential 
equations and initial/boundary conditions 

On(t,X)ot - D 02n(t'X)ox 2 U On(t,X)ox uZ~sUn(t'x) 

20~ e Onm(t , x) z=b/2 (A1) 
+ T Oz 

OZnm(t, X, Z) 
- ) e  Oz 2 nmnm(t, x, z) (A2) 

o. . , ( t ,  x, ~) 
Ot 

n(O,x) = 0  (A3) 

- D  On(t, O) 
+ Un(t, O) = Un o (A4) 

Ox 

On(t, ~ )  
Ox = 0 (A5) 

nm(0, x, z ) = 0  (A6a) 

nm(t, x, b/2) = n(t, x) (A6b) 

O,,,,(s, x, ~)  
Oz = 0 (A6c) 

The solution is obtained with the methods of Lindstrom 
and Boersma, 24 and Chrysikopoulos et al. II Taking 
Laplace transforms with respect to the variable t of  eqns 
(A1), (A2), and (A4)-(A6b, c) yields 

Ddzn(s,x) u dn(s,x) 
[sh(s, x) - n(O, x)] = dx 2 dx 

2_~U 20~ e dnm(S , x) z=b/2 (A7) 
h(s,x) -~ b dz 

d2t~m(S, x, z) 
[Snm(S,X,Z) -- nm(O,x,z)] = ~e dz 2 

--I~rnnm(S,X,Z ) (A8) 

- D  dh(s, O) Uno 
dx + Uh(s,O) - (A9) s 

dt?(s, oc) 
dx - 0 (A10) 

nm(S, x, b/2) = h(s, x) (A11) 

dnm(S , x, 00) 
dz - 0 (A12) 

where the tilde signifies Laplace transform of t, and s is 
the transformed time variable. Substituting (A6a) into 
(A8) and solving the resulting second-order ordinary 
differential equation using the boundary conditions 
(Al l )  and (A12) and taking the derivative Onm/dz 
evaluated at z = b/2 yields 

dnm(S,x,b/2) ~(s ,x)[S+nml 1/2 
dz - [ @e J (A13) 

Employing (A3), and (A13) in (A7) and then taking 
Laplace transforms of the resulting equation with 
respect to space variable x leads to 

[ s;~(s, 7) = D 72n(s, 7) - 7h(s, 0) dx J 

- U[Tn(s, 7 ) - h ( s , 0 ) ]  2~U - T - ~ , ( s , 7 )  

20[~e( s + rim)] 1/2 
- b n ( s , @  (A14) 

where the hat signifies Laplace transform of x, and 7 is 
the transformed space variable. Employing boundary 
condition (A9) into (A14) and solving for n(s, 7) 
following the procedure outlined in Chrysikopoulos et 
al.l i results in 

7h(s, O) Un° 
n(s, 7) = sD 

(7 + M -  N)(7 + M + N) (h15) 

where 

U 
m - 2D'  (A16a) 

Is 2nU U2 1 1/2 
N =  [ ~ + ~ - ~ +  A(s+t~m)l/2 + ~ ' ~ ]  (A16b) 

A - 2 0 ~ /2  
bD (A17) 

Using Laplace transforms from the tabulation of 
Roberts and Kaufman 33 (p. 189 eqns (77) and (78), yields 
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x [  - - ( M -  N)e-(M N)X+(M+N)e-(M+N)X]2N " 

Un ° [e-(M N)x e (M+N)x- 
sD [ -2N-' (A18) 

Applying boundary condition (A10) in (A18) and taking 
the limit x -+ oc, fi(s, 0) is evaluated to be 

Uno h(s,O) - (A19) 
sD(M - N) 

and upon substitution into (A18) yields 

Uno exp[ - (M + U)x] 
fi(s, x) -- sD M - N 

Un0e x [Ux] 1/2 X 
S--D P [ ~ j  exp[-(Sl  + ADsll/2 + E) D-F]2] 

U 1 _ ~  1/2 J ~ ÷ O--~ (Sl +A/)S 1 ÷E)  1/2 

(A20) 

where 

2nU U 2 
S l=S+t~m,  E - -  b2 ~-~--Nm (A21a, b) 

The latter formulation in (A20) is a consequence of 
employing eqn (A16). Inversion from the Laplace time 
variable s back to the real time variable t is obtained by 
introducing the following two functions 

Uno r ux  l 
f ( s l )  (s~ - mm)D 1/2 exp [~j" " 

[ 1/2 X 
k /)-~j  

and 

1 

g(sl) = [ 2 ~ ÷ ( s  I U  ÷ ADs{~2 ÷ E) l/2J 

1 11/2 ) = = gO(s 
g + [(sl/2 + H) 2 + p]1/2 (A23) 

where the latter equality in the preceding equation is 
obtained by adding and subtracting AZD2/4 in the 
denominator, and making use of the following defini- 
tions 

U AD A2D 2 
F -  H -  P = E -  

2Dl/2 ' 2 ' 4 

In view of the following identity 37 

~0 exp -r/2 - d r /=  ~ - - exp [ -2L]  

(A24a, b, c) 

(A25) 

(A22) is expressed as 

2Uno exp ~ Ex 2 ] 

f ( s l )  = (~ ~ ~ / 2  I0 exp _ r / 2 -  4Dr/ZJ 

s,x2 ] Ax2s11/2 
× exp - 4Dr~2] exp 4r/2 dr/ (A26) 

Using the appropriate Laplace transform from the 
tabulation of van Genuchten and Alves 41 (p. 103) in 
conjunction with the first translation or shifting 
property L-l{e a'F(s)} = f ( t - a ) ,  where a_>0 and 
L 1 is the Laplace inverse operator, 36 the inverse of 
f ( s l )  is obtained as 

f ( , )  : exp  

x {exp [~mr ~lm/2Ax2" 4r/2 

x erfc[8r/2 T,/2 Axe2 (l'crnT) 1/2] 

1/2-- 2" 
+ exp ~mT-F nm a x  

47/2 

x erfc [8r/2 T1/2 + (e;m T) 1/2 dr~ (A27) 

where 

Ux x x 2 
- -  z - -  - -  B = ~ { - 2 ( D t ) l / 2  T t 4Dr/2 (A28a, b,c) 

Employing the following Laplace inverse relationship 
from the tabulation of Roberts and Kaufman 33 (p. 171) 

L l{g°(s{/2)} - 2(7r~)1/2 J0 exp - R(aJ) codw 

(129) 

where 

F + [(s2 + ~/)2 ÷ p] 1/2 (A30) 

shift 1/2 and s 2 replaces s 1 . Using the following 
s3 = s2 + H, the preceding equation can be written as 

{ ' } R(o~) = exp[-HaJ]L -1 [s 2 + p]l/2 
F +  3 

= exp[_Ha~]L-l{gO([s~ + p],/2)} (131) 

From the tabulation of Roberts and Kaufman 33 (p. 172) 
we can obtain the following Laplace inverse relationship 

L l{g°([s~ + p]l/2)} = Q(w) - p1/2 Q[(afi - u2) 1/2] 
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× Jl [ PVzu] du (A32) 

where 

a n d  s 4 replaces (sZ+P) 1/2. By using the inverse 
transform relationship L l{1/(a +s)}  = e -'~' from 
Laplace transform tables, 33 we get 

Q(~) = exp[-Fw] (A33) 

In view of eqns (A29)-(A33), the final form ofg( t )  can 
be written as 

' {s0  [ 1 g(t) - 2(Trt3)J/2 exp - ~ - o d ( F  + g )  wda~ 

[ 1 _ p1/2 exp - ~ -  - H~  - F(~ 2 - u2) 1/2 

× J1 [up1/2] wd~'d~} (A34) 

Now tha t f ( t )  and g(t) are specified, the desired solution 
is 

ncfp (t, x) = exp[-t~mt ] [f(t) * g(t)] (A35) 

where 

f ( t )  * g(t) = f(7-)g(t - r) dT (A36) 


