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Analytical models for one-dimensional virus transport
in saturated porous media

Youn Sim and Constantinos V. Chrysikopoulos
Department of Civil and Environmental Engineering, University of California, Irvine

Abstract. Analytical solutions to two mathematical models for virus transport in one-
dimensional homogeneous, saturated porous media are presented, for constant flux as well
as constant concentration boundary conditions, accounting for first-order inactivation of
suspended and adsorbed (or filtered) viruses with different inactivation constants. Two
processes for virus attachment onto the solid matrix are considered. The first process is
the nonequilibrium reversible adsorption, which is applicable to viruses behaving as
solutes; whereas, the second is the filtration process, which is suitable for viruses behaving
as colloids. Since the governing transport equations corresponding to each physical process
have identical mathematical forms, only one generalized closed-form analytical solution is
developed by Laplace transform techniques. The impact of the model parameters on virus

transport is examined. An empirical relation between inactivation rate and subsurface
temperature is employed to investigate the effect of temperature on virus transport. It is
shown that the differences between the two boundary conditions are minimized at

advection-dominated transport conditions.

Introduction

The transport and fate of viruses in porous media are mainly
governed by virus attachment onto the solid matrix and inac-
tivation [Vilker, 1981]. Interactions between suspended viruses
and solid surfaces are often described by physical equilibrium
adsorption models such as the Langmuir and Freundlich iso-
therms. Both isotlierms assume that adsorption is amn instanta-
neous process, sorbed and liquid phase virus concentrations
are in equilibrium, and the adsorbate is conservative (i.e., non-
decaying) [Morel, 1983]. Therefore these isotherins may not be
applicable to virus sorption, because they cannot account for
deviations from equilibrium due to continuous virus jiiactiva-
tion [Grant et al., 1993]. Vilker [1981] suggested that the non-
equilibrium adsorption process is appropriate for models de-
scribing virus transport in porous media. This adsorption
process represents the rate of approach to equilibrium be-
tween adsorbed }and liquid phase virus concentrations, ac-
counting for virus transport to the outer layer of a solid particle
by mass transfer followed by virus immobilization. The colloid
filtration theory is frequently applied to virus transport in po-
rous miedia. Colloids are filtered by a solid matrix through
interception, sedimentation (mechanical filtration), and diffu-
sion.- Sinice the interception and sedimentation processes are
effective only for large-size particles (=1 wm), for the case of
virus filtration the effects of sedimentation and interception
can be neglected [Harvey and Garabedian, 1991].

Inactivation of suspenided as well as sorbed or attached vi-
ruses is an irreversible sink mechanism that is commonly de-
scribed by a first-order rate expression [Yates and Yates; 1988].
It has been reported that the inactivation rate is smaller for
attached than suspended viruses [Hurst et al., 1980; Gerba,
1984; Yates and Yates, 1988). Thus inactivation rates of sus-
pended and attached viruses should not be assumed equal. The
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most important factor for virus inactivation in the subsurface is
temperature [Corapcioglu and Haridas, 1984]. Viruses remain
infective much longer at lower temperatures (1°-8°C) than at
higher temperatures (20°-32°C) [Sobsey, 1983; Park et al.,
1992]. Correlations of virus inactivation rates with temperature
have been reported by Reddy et al. [1981] and Yates et al.
[1985].

There are several mathematical models available in the lit-

erature for virus transpott in porous media. Some of these
models treat viruses as solutes due to their small size |Grosser,
1984; Tim and Mostaghimi, 1991; Park et al., 1992; Vilker et al.,
1978]. Other virus transport models have adopted the well-
established filtration theory to account for virus deposition
onto the solid matrix [Matthess et al., 1988; Teutsch et al., 1991;
Yates and Ouyang, 1992].
- The present work extends the collection of virus transport
analytical models. Viruses behaving both as solutes and col-
loids are examined. The impact of first-order inactivation of
suspended as well as adsorbed (or filtered) viruses with differ-
ent inactivation constants is investigated. The effect of avail-
able boundary conditions and subsurface temperature on virus
transport is explored. Finally, existing virus breakthrough ex-
perimental data are successfully simulated.

Development of Models

The one-dimensional virus transport in homogeneous, satu-
rated porous media with first-order adsorption (or filtration)
and inactivation is governed by the following partial differen-
tial equation:

aC(t, x aC*(t, x 9%C(t, x aC(t, x
(x) 9 aC*(0x) | #Cx) | aCt,)
at (7] at ax ax

— AC(t, x) = A* 5 C* (1, %), (1)

where C is the concentration of virus in suspension; C* is the
mass of virus adsorbed on the solid matrix; D is the hydrody-
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namic dispersion coefficient; U is the average interstitial veloc-
ity; p is the bulk density of the solid matrix; A is the inactivation
constant of suspended viruses; A* is the inactivation constant
of adsorbed viruses; 6 is the porosity of soil medium; and ¢ is
time. The left-hand side of the preceding equation consists of
the accumulation terms, and the last two terms represent the
inactivation of suspended and adsorbed viruses, respectively.
The rate of virus attachment onto the solid matrix is described
by the following generalized expression:

p 9C*(¢, x)

0 ot =r1C(t’ x) _rZC*(t> x)?

(2
where r; and r, are the forward and the reverse rate coeffi-
cients. »

The desired expression for C* is obtained by solving (2)
subject to an initial condition of zero sorbed (or filtered) virus
concentration (C*(0; x) = 0) as

ri@ | r,0
C*(t, x) =7 C(m, x) exp [_T(I_ 7)] dr. 3)
0

In view of (2) and (3) the governing equation (1) can be written
as

aC(t, x) -p 32C(t, x) U aC(t, x) 4
at ax? dx (¢, %)
t
- %f C(71, x)e ™ dq, 4
0
where the following substitutions have been employed:
A=r +A, )
B =riA* — %), (6)
¥ = 0ry/p. (N

For a semi-infinite one-dimensional porous medium in the
presence of a continuous source of viruses, the appropriate
initial and boundary conditions are

C(0,x) =0, (8)
aC(t, 0)
-D ——— 4+ UC(t, 0) = UC,, (9)
ox
C(t, 0) = C,, (10)
aC(t, )
T 0 (11

where C,, is the source concentration. It should be noted that
for a given problem either (9) or (10) is used for constant flux
and constant concentration boundary condition cases, respec-
tively, but not both. The condition (8) establishes that thére is
no initial virus concentration within the one-dimensional po-
rous medium. The constant flux boundary condition (9) implies
virus concentration discontinuity at the inlet. Condition (10)
represents the constant concentration boundary condition. The
downstream boundary condition (11) preserves concentration
continuity for a semi-infinite system. For the case of constant
flux boundary condition, (4) subject to conditions (8), (9) and
(11) is solved analytically following the methods of Lapidus
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and Amundson [1952] and Chrysikopoulos et al. [1990]. Taking
Laplace transforms of (4), (8), (9), and (10) with respect to
time and space yields

~ _ - dCs, 0)
sC*(s,y) — C*(0, ) = D[VZC'(S, V) = ¥Cs, 0) — — ]

~ ~ - B
- U[’YC.(Sa 7) - C(S’ 0)] - &QC'(S, ’Y) - ST% C.(S, 7)’ (12)
(0, v) =0, (13)
dC(s,0) UC,
-D T+ UC (s, O)ZT’ (14)
dC(s, »)
- 0, (15)

where the tilde and solid degree sign signify Laplace transform
with respect to time and space, respectively, and s and v are the
corresponding Laplace domain variables. Substituting bound-
ary conditions (13) and (14) into (12) and solving for C*(s, ),
yields

yC(s, 0) — (UCy/sD)

CoN=Ginrmyru—n 19
where the following substitutions have been employed:
M= -U/2D, (17a)
4 U? B 172
N=<5+B+W+5(s_+—%)) (17b)

Using the following Laplace inversion ideritities [Roberts and
Kaufman, 1966]

M-
(y+ M+ N)(y+M-~N)

(M + N)e M5 — (A — N)e~ M-+

2N ’ (18)

1 e‘(M—N)x . e—(MJrN)x
_1 —
* {(7+M+N)(7+M—N)} 2N g
(19)
where £ ' is the Laplace inverse operator, the inverse Laplace
transform of (16) with respect v is obtained as

- UcC, Ux 7 s
C(S,X)ZWeXp D m@“f‘m@ N (20)

where
x IR
*p| “pm sttt pt %
®= U UZ % 1/2 (21)
et Sttt TR

It should be noted that for the evaluation of C(s, 0), which is
already substituted in (20), the boundary condition (15) has
been employed.

The inverse Laplace transform of (20) with respect to s is
obtained by using the following relationship [Lapidus and
Amundson, 1952]:
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o 1 . va
£ {S+%f<s+%+s+%)}

=6‘7"J Jo2(ag(t = OHV21£() dg, (22)
o :

where a is a constant, the arbitrary function f(¢) is the inverse
Laplace transform of f(s), and J,, is the Bessel function of the
first kind of zeroth order. In view of (21), f(s) is assumed to be
as follows: '

exp [—a;(s + ay)¥?]
as+ (s + ay))l?

Fs) = (23)

where o, a,, and a; are constants. Furthermore, in view of the
preceding expression

- a
®=f<s+%+s+%>

S+ (2K + ag)s + HP+ Ha, +a\ V2

<P T s+ %
S+ (2K + axs + H2+ Hay, +a)?

as + s+ ¥

(24)

The inverse Laplace transform of (23) is [Roberts and Kaufman,
1966]

-

1 2
fio = W exp [4—1‘1 - azt:, — o exp [a a5 + (0 — a,)t]

o
-erfc [ﬁ + a3t}/2:l.

2t1 (25)

By simple comparison of (21) and (24), the unknown constants
are evaluated:

a=% (26a)

a; =x/D"? (26b)

o= d + (UY4D) — % (26¢)
a; = U/2D"2, (26d)

Then, the inverse £ '{®/(s + %)} = ®(¢) can be deter-
mined by combining (22)—(26). Therefore

1 4 s d
& {;(m®+m@>} = HD(1) dT+ D(2),
0

(27
where the convolution theorem has been applied. In view of

(20) and (27) the desired general solution for the constant flux
boundary condition is obtained as

CoU Us cl
Colt, %) = pyir2 exp [ﬁH j J e~ 2B~ )]
[ORg1]
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1 —x? U?
'{<wz>“2‘“"‘p[m+<%’“‘ﬁ>4
U Ux ‘
~ SpT X [QB-I-(%—&@){]
x U { 1/2
.erfc[ng)l/z—'_i(B) ]}d{df
+ e_%’f Jo[2(BE(r — )]
0
1 —x? U?
'{(wg)ﬂze"p[m*(%‘“_iﬁ)g]
U Ux
~ 3T EXP [E+(?€—sﬁ)§]
X U/(¢\"?
.erfc[*zmmﬁ(ﬁ) ”d;}, (28)

where the subscript ¢f indicates the use of the constant flux
upstream boundary condition. For the case of constant con-
centration boundary condition, the governing integrodifferen-
tial equation (4) is solved analytically subject to conditions (8),
(10), and (11) in a similar fashion to yield

Ux
C.(t, x) = Cyexp [E}

! e | T L2(BL(r ~ )
.[ J’o %(e # fo 2(D_7T§3)1/2

_x2 UZ
* €Xp m‘i‘ %—Sﬁ—mg dé’ dr

o o [HL2@ L~ )
e 200707

2 U2
-exp[ﬁ+ (%—w—m)g} dg}, (29)

where the subscript cc indicates the use of the constant con-
centration upstream boundary condition.

For the special case of A = A* = 0 using the following
substitutions: r,6/p = ky, r,0/p = k,, p/0 = 1/e,r, = k,/e,
and the Bessel function relationship I,(z) = Jy(iz), where I,
is the modified Bessel function of the first kind of zeroth order
and z is an arbitrary argument [Abramowitz and Stegun, 1972],
the analytical solution for the constant concentration boundary
condition (29) reduces to the solution presented by Lapidus
and Amundson [1952]. It should be noted that in the notation
of Lapidus and Amundson [1952), k, and k, are the forward
and reverse reaction rates, respectively, and e is the fractional
void volume.
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Nonequilibrium Adsorption Model (S Model)

Assuming that the adsorption process consists of virus dif-
fusion to the outer layer of a solid particle by nonequilibrium
mass transfer, and virus immobilization onto the solid particle
while in equilibrium with the liquid phase virus concentration
in the outer layer, the sorption term in the governing equation
(1) can be written as '

p aC*(t, x)

0 o =k[C(t, x) — C,(t, x)],

(30)
where k is the mass transfer rate constant; C, is the liquid
phase virus concentration in direct contact with solids, which is
evaluated from an appropriate isotherm relationship. Vilker
[1981] suggested the Langmuir isotherm
C* = 0Q°bC,/(1 +bC,),

(31)

where Q° is the Langmuir monolayer capacity, an ultimate
solid phase concentration of adsorbed viruses, and b is a con-
stant related to the bonding energy. Assuming that the liquid
phase virus concentration is small or its affinity for the adsor-
bent is very low (bC, << 1), C, can be written as

C,= C*/Q°b. (32)

This assumption is reasonable and does not limit the virus
transport model, because liquid phase virus concentrations
present in the subsurface are expected to be relatively low. The
preceding relationship is essentially a linear isotherm which
does not differ from a Freundlich isotherm with unity expo-
nent.

In view of (2), (30), and (32) the following substitutions

rn=k r,=k/Q°, (33)

can be employed in the general solutions (28) and (29) to
obtain the corresponding S model solutions for constant flux
and constant concentration boundary conditions, respectively.

Filtration Model (C Model)

Assuming that the colloid filtration theory is applicable to
virus transport, the rate of virus filtration is defined as [Herzig
et al., 1970]

p dC*(t, x)

- _ P
0 Y =k.C(t, x) k,6C ,

(34)
where C* is now the virus concentration retained in the porous
medium by the filtration process, and k. is the clogging rate
constant; k, is the declogging rate constant. The rate of virus
filtration depends on the interstitial velocity, suspended virus
concentration, and filter coefficient. Although colloid filtration
is a time dependent process where deposited colloids may alter
the surface structure as well as the porosity of the filtering
medium and consequently lead to a variable filter coefficient,
for the filtration of submicron particles like viruses it is as-
sumed that no change in the filter coefficient occurs progres-
sively in time. The clogging rate constant can be written as

k.= UGF(C*), (35)

where ¢ is the filter coefficient, and F(C*) accounts for vari-
ations of porosity with increasing particle attachment. When
there is no particle-particle interaction (“clean” media),
F(C*) is assumed to be 1. '

In view of (2) and (34) the following substitutions
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Table 1. Model Parameters for Simulations

Parameter Value Reference
b 1.05 x 10711 ml virus Vilker [1981]
Q° 1.89 x 108 sites/mg Vilker [1981]
o 1.5 g/em® Yates and Ouyang [1992]
0 0.25 Park et al. [1992] )

ra= k,pl6, (36)

r1=kc

can be employed in the general solutions (28) and (29) to
obtain the corresponding C model solutions for constant flux
and constant concentration boundary conditions, respectively.

Model Simulations and Discussion

To illustrate the effect of the parameters of the nonequilib-
rium adsorption model (S model) and filtration model (C mod-
el), temporal and spatial virus distributions have been calcu-
lated for a variety of situations for both of the boundary
conditions considered. For presentation purposes, calculated
concentrations were normalized by the source concentration.
The integrals in (28) and (29) were evaluated by the extended
Simpson’s rule [Press et al., 1992]. Unless otherwise specified,
breakthrough curves are predicted at a distance x = 9 cm
downstream from the source, whereas snapshots are given at
t = 10 days. The fixed parameter values used for the calcu-
lations are shown in Table 1, whereas the ranges of attachment
and inactivation parameter values used for model simulations
are adopted from Reddy et al. [1981], Vilker [1981], and Mat-
thess et al. [1988]. v

The general solution modified for the S model for the case
of constant flux boundary condition is employed to investigate
the effect of the mass transfer rate and the two inactivation
constants on suspended virus concentration. In Figures 1-3, we

1.0 T T T T

0.8

0.6 1
[}
(4]
o
0.4 = 0.07 hr -1 1
0.2f .
0.0
0 30 60 90 120 150
X (cm)

Figure 1. Variation of normalized concentration with dis-
tance and mass transfer rate constant as predicted by the S
model with constant flux inlet boundary condition (¢t = 240
hours, D = 15 ecm?h, U = 4 cm/h, A = 0.006 d7!, and A* =
0.003 d™1). ‘



SIM AND CHRYSIKOPOULOS: MODELS FOR ONE-DIMENSIONAL VIRUS TRANSPORT

have plotted normalized concentration profiles for three dif-
ferent mass transfer and inactivation rate constants. These
illustrations indicate that the liquid phase virus concentration
decreases with increasing k, A, and A*. Furthermore, an in-
crease in A* leads to a decrease in C,, and consequently an
increase in the rate of virus adsorption onto the solid matrix
(see (30)), which causes a reduction in the suspended virus
concentration. Here, it is implicitly assumed that C, is not
affected by inactivated viruses still occupying adsorption sites;
this assumption is reasonable for low concentrations but can
only be verified experimentally. For the case where A* = 3 the
parameter % is zero (see (6)), and the last term of the virus
transport model (4) vanishes, which implies that the rate of
inactivation of the adsorbed viruses equals the mass transfer—

c/c,

0.0 .
0 100 200 300 400 500 600
X (cm)
1.0 T T T T
_ -1
% =034d o5
1.0
08f 4
o6 d
o
(8
S,
(S
0.4r .
0.2f J
(b)
0.0 A : A .
0 3 6 9 12 15
T (hr)

Figure 2, Effect of inactivation constant of suspended viruses
on (a) spatial and (b) temporal normalized virus distribution
predicted by the S model with constant flux inlet boundary
condition (¢ = 240 hours,x = 9 cm, D = 15 cm?h, U = 4
cm/h, A* = 0d™Y, and k = 0.005 h™1).
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Figure 3. Effect of inactivation constant of adsorbed virus on
(a) spatial and (b) temporal normalized virus distribution pre-
dicted by the S model with constant flux inlet boundary con-
dition (+ = 240 hours,x = 12 ¢cm, D = 15 cm*h, U = 4
em/h, A = 025d7 %, and k = 0.6 h™").

limited rate of adsorption. However, when A* > 3, which
implies the inactivation rate of adsorbed viruses is considerable
compared to the mass transfer-limited rate of adsorption, the
normalized concentration of suspended viruses, instead of in-
creasing and reaching asymptotically the value of 1, reaches a
point of maximum concentration and then decreases to a min-
imum asymptotic value.

The general solution modified for the C model with constant
flux boundary condition is employed to investigate the effect of
the model parameters on liquid phase virus concentration.
Normalized concentration profiles for three different clogging
and declogging rate constants are presented in Figures 4a and
4b. These snapshots indicate that the suspended virus concen-
tration increases with decreasing k, and increasing k,, due to
the decreased amount of filtered viruses. The trends of the
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Figure 4. Variation of normalized suspended virus concen-
tration with distance and (a) clogging rate constant and (b)
declogging rate constant as predicted by the C model with

constant flux inlet boundary condition (¢ = 240 hours, D =
15 em?h, U = 4 cm/h, A = 0.006 d~*, and A* = 0.003 d™%).

breakthrough and snapshots describing the effects of both in-
activation constants are similar to the corresponding trends
generated by the S model.

In order to investigate the differences between the two
boundary conditions considered in this work, simulated break-
through curves using (28) and (29) of the S model are plotted
in Figure 5 for two different Peclet numbers (Pe = U€/D,
where ¢ is a characteristic or reference length). The differences
in the liquid phase virus concentrations due to the different
boundary conditions become negligible with increasing Pe.
This result is expected, because by decreasing the hydrody-
namic dispersion coefficient and increasing the interstitial ve-
locity the boundary conditions (9) and (10) become approxi-
mately equivalent.
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It has been shown by van Genuchten and Parker [1984], Batu
and van Genuchten [1990], and Leij et al. [1991] that improper
use of boundary conditions may lead to errors in conservation
of mass. Assuming that the total virus mass flux entering
through the inlet boundary is constant, we can test whether the
inlet boundary condition used satisfies mass conservation in
the system for the case where mass loss due to inactivation
processes is neglected. Following the work of varn Genuchten
and Parker [1984], the relative virus mass balance error, E, can
be defined as

1 o
E:Ec‘f‘EC*—l:mjo C(t,x)dx

p T e _
+ 6UtC0f C*(t,x)dx — 1,
0

where the term UtC,, is the mass of viruses entering the system
at the inlet boundary over the time period ¢, and the integrals
on the right-hand side of the preceding equation represent the
mass of viruses suspended in solution and deposited onto the
solid matrix, respectively, present in the system at time ¢. In
view of (3) the integral expression for the deposited virus
concentration in (37) can be written as

Ee=-—" " ¢t 18— o drax
< =Tic, 0 T, X) exp ’ 7) | drdx.

' (38)

(37)

The multiple integral expressions are evaluated numerically.
The total relative mass errors for the two boundary conditions
are compared by plotting E as a function of Peclet number (see
Figure 6). The comparison indicates that the relative mass

o8 ]

cic,

04r

0.2F

0.0

T (hr)

Figure 5. Effect of inlet boundary condition on temporal
normalized virus distribution for different Pe values as pre-
dicted by the S model (£ =30 cm, A = A* =0d ', and k =
0.1 h™%), Solid and dashed lines represent the constant con-
centration and the constant flux boundary condition, respec-
tively.
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balance error for the constant concentration boundary condi-
tion is minimized with increasing Pe. Therefore the discrep-
ancies in the normalized concentrations between the two
boundary conditions shown in Figure 5 are attributable to this
relative mass balance error caused by the constant concentra-
tion boundary condition.

Most of the mathematical models available for transport of
microorganisms in porous media employ temperature inde-
pendent inactivation rate coefficients. However, Reddy et al.
[1981] and Yates et al. [1985] have shown that the inactivation
rate is temperature dependent and have presented empirical
expressions that relate the inactivation rate to temperature.
The equation presented by Reddy et al. [1981] represents the
relationship between two inactivation rate constants at two
different temperatures

Az = ()\1)1.07(T2_T1), (39)

where A; and A, denote the inactivation rate constants at
temperatures 7y and T, in degrees Celsius, respectively; while
the correlation by Yates et al. [1985] determines an average
inactivation rate constant at a given temperature

A =0.0187 — 0.144, (40)

where A is expressed in log,, (PFU) per day, and PFU is
plaque-forming units. Both expressions indicate that the inac-
tivation rate increases with temperature. Yates and Ouyang
[1992] suggested that the inactivation rate constants of ad-
sorbed (or filtered) viruses are one half of the constants for
suspended viruses (A* = A/2). To illustrate the effect of tem-
perature on suspended virus concentration (see Figure 7), we
employed correlation (39) and the general analytical solutions
modified for § and C models with constant flux boundary
condition, for the case of Poliovirus (A = 0.04 d Y at T = 4°C
[Reddy et al., 1981]). It is shown in Figure 7 that an increase in
temperature leads to an increase in the inactivation rate and,

18

151

12t

Constant Concentration b.c.

Constant Flux b.c.

0 10 20 30 40

Pe

Figure 6. Variation of the relative mass error for constant
flux and constant concentration boundary conditions obtained
by S model as a function of Pe (¢t = 240 hours, £ = 1000 cm,
A=A*=0d% andk = 0.01 hr™Y).
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Figure 7. Variation of normalized suspended virus concen-
tration versus groundwater temperature (¢ = 240 hours, x =
9cm,D =15 cm*h, U =4 cm/h, k =01 hr Y k. = 0.1
hr™%, and £, = 0.005 hr™).

consequently, to a decrease in the suspended virus concentra-
tion for both models.

The general solution for the case of constant flux boundary
condition (equation (28)) was evaluated by simulating the bac-
teriophage M S-2 breakthrough response from the second col-
umn experiment published by Bales et al. [1991}. The unknown
parameters were obtained by a nonlinear least square regres-
sion method [Kahaner et al., 1989]. Given that for the partic-
ular experimental data set § = 0.35, p = 1.6 g/cm®, and U =
13.32 cm/h, the estimated parameters are D = 31.75 cm?/h,
ri=079h"4r, =958 gmL " h™% and A = A* = 0. The
estimated values of the inactivation rate constants were ex-
pected to be approximately zero because the experiment was
run at 4°C in order to eliminate viral inactivation [Bales et al.,
1991]. For the nonequilibrium adsorption case, in view of (33),
k =0.79 h!and Q° = 8.27 X 107> mL/mg. For the case
of virus filtration, in view of (36), k. = 0.79 h™! and k, =
2.09 h™'. The experimental data together with the model
simulated profile are shown in Figure 8. Good agreement be-
tween the experimental data and the simulated concentration
history is shown.

Summary and Conclusions

One-dimensional virus transport in homogeneous porous
media was modeled by accounting for first-order rate inactiva-
tion for suspended and attached viruses and two different at-
tachment processes: nonequilibrium adsorption (S model) and
modified colloid filtration (C model). Since the two physically
different attachment processes have identical mathematical
forms, only one generalized partial differential equation was
solved analytically for both constant flux and constant concen-
tration boundary conditions using Laplace transform tech-
niques. The specific analytical solution for each model can be
obtained by substituting the appropriate parameters corre-
sponding to either adsorption or filtration.

The effect of model parameters and boundary conditions on
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Figure 8. Bacteriophage MS-2 normalized concentration
breakthrough data adopted from Bales et al. [1991] (open cir-
cles) and simulated concentration history (solid curve).

liquid phase virus concentration was investigated. The virus
concentration was found to be mostly sensitive to the mass
transfer rate constant for the S model and to the clogging/
declogging rate constants for the C model, as well as to the
inactivation rate constants. It was demonstrated that the con-
stant flux boundary condition leads to conservation of mass.
Furthermore, it was shown that the suspended virus concen-
tration decreases considerably with increasing subsurface tem-
perature,

The results of this investigation are well suited for interpre-
tation and evaluation of transport parameters from laboratory-
packed column experiments and possibly some field studies
where the assumption of one-dimensional flow under constant
hydrodynamic and physicochemical parameters is valid. The
methodology of this work can provide a starting point for
generalization to the solution of more complicated physical
systems and multidimensional virus transport models.

Notation
A defined in (5), t 1.
b constant related to the bonding energy, L3/M.
®  defined in (6), £ 2,
C concentration of virus in suspension (liquid
phase), M/L3.
C, source concentration, M/L>,
C* sorbed virus concentration (virus mass/solid
mass), M/M.
concentration of virus directly in contact with
solids, M/L>.
D hydrodynamic dispersion coefficient, L?/t.
E relative mass balance error, defined in (37).
complementary error function, equal to
(2/7Y?) [= "7 dz.
# defined in (7), ¢ %
| modified Bessel function of first kind of order
zero.
Jo[ 1 Bessel function of first kind of order zero.
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k mass transfer rate constant, £ 1.
k. clogging rate constant, ¢ 1.
k, declogging rate constant, ¢,
k, forward reaction rate, ¢ L.
k, reverse reaction rate, ¢ 1.
€ characteristic or reference length, L.
Laplace inverse operator.
M defined in (17a).
N defined in (17b).
Pe Peclet number, equal to U€/D.
PFU plaque-forming units.
Q° Langmuir monolayer capacity, M/M.
r, forward rate coefficient, t .
r, reverse rate coefficient, M/L3t.
s Laplace transform variable with respect to
time.
time, .
temperature, °C.
average interstitial velocity, L/¢.
spatial coordinate in the longitudinal direction,
L.
z arbitrary argument.
«y, ay, Gy constants.
v Laplace transform variable with respect to
space.
e fractional void volume, L3/L3,
dummy integration variable.
porosity (liquid volume/porous medium
volume), L3/L3.
defined in (21).
inactivation constant of suspended viruses, r
inactivation constant of adsorbed (or filtered)
viruses, £ 1.
p bulk density of the solid matrix (solids mass/
aquifer volume), M/L3.
7 dummy integration variable.
¢ filter coefficient, .7 1.

Subscripts

= TN«

D e

>
x> @

cc constant concentration boundary condition.
cf constant flux boundary condition.
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Correction to “Analytical models for one-dimensional virus
transport in saturated porous media” by Youn Sim

and Constantinos V. Chrysikopoulos

In the paper “Analytical models for one-dimensional virus
transport in saturated porous media” by Youn Sim and Con-
stantinos V. Chrysikopoulos (Water Resources Research, 31(5),
1429-1437, 1995), the expression (2) for the rate of virus at-
tachment onto the solid matrix is incorrect. The error is asso-
ciated only with the description of parameter r, and does not
affect the derived analytical solutions. It should be noted, how-
ever, that only simulations for A* > 0 (Figures 1, 3, and 4) are
influenced by this correction. Reevaluation of the results fol-
lows.

The parameter r, following (2) on page 1430 should be
defined as “effective” reverse rate coefficient to also account
for inactivation of adsorbed (or filtered) viruses. For the Non-
equilibrium Adsorption Model (S Model) equation (30) should
be replaced by the following:

POICTLY) e c P ace 30
6 e = KIC(x) = Clt, )] = G ATCH (1, x). (30)
As a consequence,

kK p
0 e

Similarly, for the Filtration Model (C Model) equation (34)
should be replaced by the following:

AE (33b)

r

AT ety =2k +A)C ). (34
o o LX) TGl " :
As a consequence,
p
) ()

Reevaluation of the normalized virus concentration curves in
Figures 1, 3a, and 4 leads to similar results. However, in Figure

Copyright 1996 by the American Geophysical Union.
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3b, the case of A* > J€ is no longer an option. The reason is
that in view of the corrected r,, the parameter % = 6r,/p can
never be less than A*.

The solutions derived in this work, unlike other analytical
solutions present in the literature, account for first-order inac-
tivation of suspended and adsorbed viruses with different in-
activation constants (A # A*). This assumption is consistent
with the work of Hurst et al. [1980], Gerba [1984] and Yates and
Yates [1988]. For each of the two models considered, analytical
solutions were derived for both constant flux and constant
concentration upstream boundary conditions. In view of the
redefined “effective” reverse rate coefficient (36b), the solution
to the C Model for the constant concentration boundary con-
dition was tested against a solution to a bacterial transport
model presented by Corapcioglu and Haridas [1985], which
accounts for microbial decay of suspended and attached bac-
teria with identical rates (A = A*). For this limiting case the
two solutions result in almost identical concentration profiles.
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