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Abstract. Mathematical models are developed for two-dimensional transient transport of colloids, 
and cotransport of contaminant/colloids in a fracture-rock matrix system with spatially variable 
fracture aperture. The aperture in the fracture plane is considered as a lognormally distributed random 
variable with spatial fluctuations described by an exponential autocovariance function. Colloids are 
envisioned to irreversibly deposit onto fracture surfaces without penetrating the rock matrix; whereas, 
the contaminant is assumed to decay, sorb onto fracture surfaces and onto colloidal particles, as well 
as to diffuse into the rock matrix. The governing stochastic transport equations are solved numerically 
for each realization of the aperture fluctuations by a fully implicit finite difference scheme. Emphasis 
is given on the effects of variable aperture on colloid and colloid-facilitated contaminant transport. 
Simulated breakthrough curves of ensemble averages of several realizations show enhanced colloid 
transport and more pronounced fingering when colloids are subject to size exclusion from regions 
of small aperture size. Moreover, it is shown that an increase in the fracture aperture fluctuations 
leads to faster transport and increases dispersion. For the case of contaminant/colloids cotransport it 
is shown, for the conditions considered in this work, that colloids enhance contaminant mobility and 
increase contaminant dispersion. 

Key words: Colloid transport, contaminant transport, single fracture, variable aperture, size exclu- 
sion, stochastic modeling. 

Nomenclature 

b fracture aperture, L 
c contaminant concentration in the fracture, M/L 3 

c~ contaminant concentration in the rock matrix, M/L 3 
co source contaminant concentration, M/L 3 

c* contaminant concentration adsorbed onto fracture surfaces, M/L 2 
c,~ contaminant concentration adsorbed inside the rock matrix, M/M 
dp colloidal particle diameter, L 

D hydrodynamic dispersion coefficient dyadic, L2/t 
79 Brownian diffusion coefficient for colloids and molecular diffusion coefficient for contami- 

nants, L2/t 
79m effective diffusion coefficient in the rock matrix, LZ/t 

* Author to whom correspondence should be addressed 
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total head potential in the fracture, L 
partition coefficient for contaminant sorption onto fracture surfaces, L 
contaminant partition coefficient in the rock matrix, La/M 
partition coefficient for contaminant sorption onto suspended colloids, L 
partition coefficient for contaminant sorption onto deposited colloids, L3/M 
fracture length in the x-direction, L 
fracture length in the y-direction, L 
colloid concentration in the liquid phase, M/L 3 
source colloid concentration, M/L 3 
colloid concentration adsorbed onto fracture surfaces, M/L 2 
maximum deposited colloid concentration on fracture surfaces, M/L 2 
number of deposited colloidal particles per unit surface area of the fracture, I/L 2 
maximum number of deposited colloidal particles per unit surface area of the fracture, I/L 2 
diffusive mass flux into the rock matrix, M/L2t 
retardation factor in the fracture 
retardation factor in the rock matrix 
contaminant concentration adsorbed on colloids in the liquid phase, M/M 
source solid-phase contaminant concentration onto suspended colloids, M/M 
contaminant concentration adsorbed on deposited colloids, M/M 
time, t 
interstitial velocity vector, Lit 
coordinate along the fracture length, L 
coordinate along the fracture width, L 
coordinate perpendicular to the fracture plane, L 
area blocked by a deposited colloidal particle, L 2 
longitudinal dispersivity, L 
transversal dispersivity, L 
fluid specific weight, M/L2t 2 
fraction of the fracture surface physically covered by colloids 
dummy integration variable 
porosity of the rock matrix 
colloid deposition coefficient, L 
first-order decay coefficient, lit 
fluid dynamic viscosity, M/Lt 
defined in (18) 
bulk density of the rock matrix, M/L 3 
colloidal particle density, M/L 3 
standard deviation of the lognormally distributed fluctuations of the fracture aperture 

I. Introduction 

T h e  d i sposa l  o f  haza rdous  wastes ,  par t icular ly  those  related to rad ioac t ive  under -  
g round  repos i to r ies  in deep,  f rac tured  low pe rmeab i l i t y  rocks  (e.g., grani tes ,  slates,  
and gne isses )  has  s t imula ted  the interest  o f  m a n y  researchers  to s tudy  c o n t a m i n a n t  
mig ra t i on  in such  types  o f  rocks  (e.g., Nere tn ieks  et  al . ,  1982; Abel in ,  1986; R a v e n  
et  al.,  1988; H a l d e m a n  et  al . ,  1991; Johns  and  Rober t s ,  1991; Kr i shnamoor thy ,  et  al .  
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1992). In these studies, contaminant transport is modeled assuming that dissolved 
species may sorb onto the immobile solid phase associated with fracture surfaces, 
and may diffuse into rock matrix micro-fissures. However, several experimental 
and field studies in fractured and porous media indicate that contaminants can also 
migrate adsorbed on the surface of colloid particles (e.g., Buddemeier and Hunt, 
1988; Champ and Schroeter, 1988; Toran and Palumbo, 1992; Moulin and Ouzou- 
nia_n, 1992). For instance, plutonium and americium at two different sites at Los 
Alamos, New Mexico were detected at distances much farther than what predicted, 
and it was verified that these metals were carried by colloid particles (McCarthy 
and Zachara, 1989). At the Nevada test site, radionuclides were found to move 
outside a nuclear detonation cavity by transport on colloidal particles (Buddemeier 
and Hunt, 1988). 

In modeling flow and contaminant transport in fractured rocks, the most common 
conceptual model employed by several researchers is a single fracture separated 
by a constant aperture, which is known as the parallel plate model (e.g., Grisak and 
Pickens, 1981; Neuzil and Tracy, 1981; Neretnieks, 1983; Novakowsld etal., 1985; 
Raven et aL, 1988; Shapiro and Nicholas, 1989, to mention a few representative 
studies). The shape of a fracture is primarily influenced by the mechanical properties 
of the rock, the geometric characteristics of the fracture surfaces, the relative 
displacement of the two surfaces, and the stress to which the rock is subjected to 
(Abelin, 1986). One of the problems associated with the parallel plate model is that 
it ignores the roughness, waviness, and tortuosity of the fracture surfaces (Schrauf 
and Evans, 1986). Moreover, at high normal stresses caused by the overburden 
pressure, fracture surfaces tend to close, the contact area between these surfaces 
increases and consequently the fracture aperture takes on a range of values rather 
than one single value (Moreno et al., 1988). 

Because the simplifying assumptions associated with the parallel plate model 
do not represent real rock fractures, several modifications have been proposed. A 
correction term is often included in the equation describing the flow in a fracture 
to account for surface roughness, absolute height of asperities (roughness pertur- 
bations in the fracture surface), and/or tortuosity of the flow (e.g., Witherspoon 
et al., 1980; Neuzil and Tracy, 1981). Gale et aL (1985) indicated that a correction 
for roughness alone is not adequate for fractures with surfaces highly in contact, in 
which case preferential flow paths may occur. Preferential flow has been observed 
in several field and laboratory experiments (Neretnieks, 1985; Pyrak et al., 1985; 
Abelin, 1986; Bourke, 1987; Haldeman et aL, 1991). Various conceptual models 
have been proposed in the literature for simulation of preferential flow in one- 
and two-dimensional variable aperture fractures (Tsang and Tsang, 1987; Moreno 
et al., 1988). 

Colloids are very fine particles that range in size between 10 -3 and 1 #m 
(Buddemeier and Hunt, 1988). A wide variety of micro-organisms, organic, and 
inorganic colloidal material have been found in groundwaters. These may include 
clay minerals, metal oxides, viruses, bacteria, and organic macromolecules (e.g., 
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humic substances) (Higgo et al., 1993). Formation of mobile colloidal suspensions 
in subsurface formations can be attributed to a number of mechanisms: (1) matrix 
dissolution due to changes in pH or redox conditions; (2) supersaturation with 
respect to inorganic species; (3) disruption of the mineral matrix by large alterations 
in flow conditions due to injection, pumping or large rainfall infiltrations; (4) release 
and movement of viruses and bacteria; and (5) formation of micelles from the 
agglomeration of humic acids (Puls et al., 1993). Colloids, both in the liquid-phase 
and fixed onto solid surfaces, have high specific surface area per unit mass; thus, 
they possess a high sorptive capacity for contaminants (e.g., Sposito, 1984; Enfield 
and Bengtsson, 1988; McCarthy and Zachara, 1989). 

In order for colloids to considerably affect the transport of contaminants in 
the subsurface, the suspended colloidal concentration must be sufficiently high 
and stable (i.e., remain in suspension). Concentrations as high as 63 mg/1 have 
been observed in some subsurface systems (Buddemeier and Hunt, 1988). The 
existence and persistence of stable colloidal suspensions depends on a combination 
of van der Waals attractive forces that promote aggregation, electrostatic repulsive 
forces that keep particles apart, and fluid chemistry. When electrostatic repulsions 
are dominant, especially at low ionic strengths, the particles are electrostatically 
stabilized and remain in a dispersed state (McCarthy and Zachara, 1989). 

The presence of mobile colloidal suspensions can enhance the transport of con- 
taminants, which might otherwise be retarded through conventional mechanisms. 
In addition to enhancing contaminant transport, certain types of colloids are also 
hazardous to human health (e.g., supersaturated nuclear species, microorganisms). 
Consequently, the first part of the paper is devoted solely to colloid transport in 
fractures. Moreover, the effect of colloid exclusion from areas of small aperture 
size on colloid transport and ultimately on contaminant transport is examined. This 
study of colloid exclusion was motivated by experimental observations of retarda- 
tion factors with values < 1 (e.g., Champ and Schroeter, 1988; Enfield et al., 1989; 
Harvey et al., 1989; Toran and Palumbo, 1992). Finally, the impact of the pres- 
ence of colloids on contaminant transport is investigated. The stochastic models 
derived in this paper describe colloid and contaminant transport in the presence of 
colloids within a two-dimensional fracture with spatially variable aperture. Colloid 
deposition onto fracture surfaces and contaminant diffusion into the rock matrix 
are incorporated into the transport models as first order processes. Contaminant 
sorption onto fracture surfaces, suspended and deposited colloids, and onto rock 
matrix solid surfaces is described by linear equilibrium isotherms. The reduction 
in contaminant matrix diffusion and fracture sorption, due to fracture surface area 
shrinkage caused by deposited colloids, is also accounted for. 



MODELING OF COLLOID AND COLLOID-FACILITATED CONTAMINANT TRANSPORT 201 

2. Development of Models 

2.1. FLOW MODEL 

Realizations of the variable aperture field in the fracture plane are generated by 
the geostatistical code COVAR (Williams and E1-Kadi, 1986), assuming that the 
fracture aperture is a stationary stochastic variable with a known probability dens- 
ity function and spatial correlation length. COVAR generates a covariance matrix, 
based on a preselected autocovariance function. The fracture plane is superimposed 
by a rectangular mesh of regular size, where each unit element enclosed by grid 
lines is assigned a different aperture. Flow in the rock matrix is neglected, because 
the saturated hydraulic conductivity in the rock matrix is several orders of magni- 
tude smaller than the saturated hydraulic conductivity in the fracture (Streltsova, 
1988). 

The two-dimensional steady-state partial differential equation (pde) for flow in 
a spatially variable aperture fracture is derived from mass balance considerations 
over a fixed control fracture volume, and is given as 

(1) 

where b is the fracture aperture at a location (x, y); and h is the total head potential. 
For the derivation of the above equation it was assumed that the cubic law for 
incompressible laminar flow between two parallel plates (Schrauf and Evans, 1986) 
can simulate efficiently the flow through each unit element of the fracture. The 
preceding equation is a stochastic pde, because one of its parameters, namely 
b, is a stochastic variable. For each realization of the aperture field, a five-point 
central finite difference numerical approximation is employed for the solution of the 
governing flow equation (Lapidus and Pinder, 1982). The aperture at the interface 
of two adjacent elements in the x- and y-directions are obtained by employing the 
harmonic mean (Huyakorn and Pinder, 1983). The boundary conditions imposed on 
the flow model are: a constant head gradient with flow towards the right boundary, 
and impervious upper and lower boundaries. The resulting set of linear equations, 
with as many unknowns as the number of unit elements in the fracture, is solved 
using a banded LU decomposition matrix solver algorithm (Press et al., 1992) to 
obtain the total head potential in every unit element. Velocity components in the 
x- and y-directions are then calculated for every unit element from the steady-state 
volumetric fluxes by the following expressions: 

= b (x'Y)7 Oh(x'Y) Oh( 'Y) 
12# Ox ' Uy = - 12# Oy ' 

(2a, b) 

where 3' is the fluid specific weight; and # is the fluid dynamic viscosity. 
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2.2. COLLOID TRANSPORT MODEL 

The governing partial differential equation for colloid transport in a two-dimensional 
fracture with spatially variable aperture, assuming that colloids are stable and of 
equal size, is derived from mass balance considerations, and is given by 

On(t,x,y) 
b(x, y) (9 t 

= v .  [b(x, y)D. vn(t,  ~, y ) -b (x ,y )u~( t , x ,y ) ] -  2~ x, y) 
Ot , ( 3 )  

where n is the concentration of colloids suspended in the liquid phase; n* is the 
concentration of colloids deposited on the fracture surfaces, expressed as mass of 
colloids per unit area of the fracture surface; t is time; V is the two-dimensional 
vector gradient operator (del); V. denotes divergence (V.  F =OFz/Ox + cOFy/Oy, 
where F is an arbitrary two-dimensional vector); U is the interstitial flow velocity 
vector defined as 

u~(~, y) ' (4) 

where Ux and Uy are the velocity components in the x- and y-directions, respec- 
tively; and D is a 2 • 2 matrix of hydrodynamic dispersion coefficients 

D= ( Dxx(x,y) D~y(X,y) ) (5a) 
Dy~:(x,y) Dyy(x,y) ' 

where each coefficient is defined by (Bear and Vermijt, 1987) 

Dpq = aT~pq(U~ + U2y) l/2 + ( a z  - aT) Up Uq 
(U~ + U~)1/2 + V, (55) 

where a r  and aT are the longitudinal and transversal dispersivities in the x- 
and y-directions, respectively; 5pq is the Kronecker delta; and 79 is the Brownian 
diffusion coefficient for colloids; and the subscript pq = xx, xy, yx, or yy. It 
should be noted that for the derivation of (3) it is assumed that colloids do not 
penetrate into the rock matrix. This assumption is based on the work by Bowen 
and Epstein (1979) and Bradbury and Green (1986) who investigated the colloidal 
particle accessibility to several types of rock matrix pores and reported no colloidal 
penetration. In addition, it is assumed that no colloid mass is lost through particle 
straining (entrapment between the fracture surfaces). 

Although microscopically the deposition of colloids is affected by many physic- 
ochemical processes, in order to model macroscopic colloid transport the following 
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phenomenological equation describing the mass flux of colloids onto the fracture 
surfaces is used 

2 1/2 n( t , x , y )  n* 
On*(t ,x ,y)  _ ~[UZ(x ,y)+ U~(x,y)] b(x,y)  ' < nmax , (6) 

Ot O, n* >_ nm~ x 

where t~ is the colloid deposition coefficient, which is a lumped parameter account- 
ing for several colloid deposition mechanisms (i.e., Brownian diffusion, van der 
Waals forces, electric double layer forces); and nma x is the maximum deposited col- 
loid concentration, which is a function of colloidal size and the number of available 
sites for colloid deposition. The above equation is based on the deep-bed filtration 
theory (Herzig et aL, 1970). Similar relationships have been used for colloid trans- 
port in porous media (e.g., Harvey and Garbedian, 1991). Champ and Schroeter 
(1988) indicated that the filtration process in fractured systems is similar to that 
found in a gravel aquifer. Bowen and Epstein (1979) provided a similar relationship 
to (6) for the deposition of colloids in fractured media. One of the limitations of 
(6) is that it does not account for the reduction in fracture permeability as a result 
of colloid deposition onto fracture surfaces. 

The maximum deposited colloid concentration n~nax is determined assuming 
that every deposited particle effectively blocks a certain area a of the fracture 
surface from further colloid deposition. This assumption has also been employed 
by Song and Elimelech (1993) for colloid transport in porous media. The area 
blocked by a colloid particle is a function of colloid diameter and the number 
of adsorption sites on the fracture surface. Knowing the area blocked by each 
deposited particle, the maximum number of colloids that can cover uniformly 
(i.e., square packing) every unit element in the fracture surface is determined. The 
deposited colloidconcentration in the fracture domain is then calculated every time 
step and deposition is cut off from elements in the fracture where n* _> * 7Zma x. 

The necessary initial and boundary conditions for the physical system consid- 
ered in this study are: 

n(O, x, y) = O, (7a) 

n(t, O, y) = no, (7b) 

On(t, gx, y) 
Ox 

- O, ( 7 c )  

Oy + Uy(x, 0) n(t, x, 0) = 0, (7d) 

On(t, x, gy) 
-Dvv(x , s  ~y + Uv(x,gv)n(t ,x ,gu) = O, (7e) 
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where no is the constant colloid concentration at the source; and gz and gu are the 
dimensions of the fracture in the x- and y-directions, respectively. Equation (7c) 
represents a zero dispersive flux boundary, while (7d) and (7e) represent impervious 
boundaries. Because b is a stochastic variable, it follows that (3) is a stochastic 
partial differential equation. For every single realization of the aperture field, (3) 
subject to (7a)-(7e) is solved numerically by employing the fully implicit finite 
difference method, as outlined by Huyakorn and Pinder (1983) and Strikwerda 
(1989). A two-point backward difference approximation for the time derivative 
and a central difference approximation for the spatial derivatives are employed. 
The resulting approximation is second-order accurate. 

Applying the resulting finite difference equation to each element in the fracture 
plane leads to a set of linear equations. By solving this set of equations in a similar 
fashion to the flow problem, the colloid concentration at each unit element is 
obtained. 

2.3. CONTAMINANT TRANSPORT MODEL 

The two-dimensional contaminant transport in a spatially variable aperture fracture 
in the presence of colloids, assuming that the contaminant may decay, sorb onto 
fracture surfaces as well as onto suspended and deposited colloids, and diffuse 
into the rock matrix; whereas, colloids may sorb onto fracture surfaces but may 
not penetrate the rock matrix (see Figure 1), is governed by the following partial 
differential equation: 

(Accumulation = Dispersion - Advection - Matrix diffusion - Decay) 

b OC .0c* 0, + 2(1 + bO(n ) + 20(n 

- 2 ( 1  - e)q* - )~[bc + bns + 2(1 - e)e* + 2n*s*], (8) 

where c(t, x, y) is the contaminant concentration in the fracture; c*(t, x, y) is the 
contaminant concentration adsorbed onto fracture surfaces, expressed as mass of 
contaminant per unit area of fracture surface; s(t, x, y) is the contaminant con- 
centration adsorbed on suspended colloids in the liquid phase, expressed as mass 
of contaminant per mass of colloids; s* (t, x, y) is the contaminant concentration 
adsorbed on deposited colloids, expressed as mass of contaminant per mass of 
deposited colloids; ~(t, x, y) is the fraction of the fracture surface physically cov- 
ered by colloids; q* is the diffusive mass flux of the contaminant in a direction per- 
pendicular to the fracture plane; and A is a first-order decay coefficient. Contaminant 
sorption onto fracture surfaces as well as diffusion into the rock matrix axe depen- 
dent on the portion of the fracture surface area which is free of deposited colloids. 
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Colloid 
I~nntamln~ nt 

Flow 

Rock Matrix 

Fig. 1. Schematic illustration of contaminant transport in the presence of colloids in a 
spatially variable aperture fracture. Contaminants can sorb onto colloids as well as onto 
fracture surfaces and may diffuse into the rock matrix. Colloids deposit onto fracture surfaces 
but do not penetrate the rock matrix. 

The stochastic transport equation (8) has been derived from a mass balance over a 
representative unit fracture. The first and second terms on the right-hand side of the 
preceding equation represent the dispersive and advective transport of the contam- 
inant in solution and adsorbed on suspended colloids, respectively; the fourth term 
on the left-hand side, which is associated with On*s*/Ot, represents the deposition 
of colloidal particles with sorbed contaminant on their surfaces in conjunction with 
contaminant sorption onto deposited particles (n's* = (1 - e)n*s* + on*s*). It 
should be noted that for the derivation of (8) it is also assumed that contaminant 
sorption onto a colloidal particle does not alter the hydrodynamic and deposition 
mechanisms of the colloid, It is further assumed that the transport properties of 
the colloid-bound contaminant are altered to those of colloids. The hydrodynamic 
dispersion coefficient of colloidal particles is the sum of mechanical dispersion and 
Brownian diffusion, while for the case of dissolved contaminants it is the sum of 
mechanical dispersion and molecular diffusion. Generally, mechanical dispersion 
dominates Brownian diffusion and molecular diffusion. Therefore, the same hydro- 
dynamic dispersion coefficient is used for both the contaminant and colloids. 

Contaminant sorption onto fracture surfaces as well as onto suspended and 
deposited colloids is assumed to be governed by the following linear reversible 
equilibrium isotherms 

= Ks4t ,  x, y), (9) 

4t ,  x, y ) =  K 4t, y), (lo) 

x,v) = K ,dt, x, y), (11) 
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where K f, Kn, and Kn, are the partition coefficients for contaminant sorption 
onto fracture surfaces, suspended colloids, and deposited colloids, respectively. 
The diffusive mass flux normal to the fracture-matrix interface is expressed by 

&rag x, y, z)l 
q* = -OD,~ Oz ,z=b/2' 

(12) 

where 0 is the porosity of the rock matrix; Dm is the effective diffusion coefficient 
in the rock matrix; era is the contaminant concentration in the rock matrix; and z 
is the coordinate perpendicular to the fracture plane. The reduction in contaminant 
sorption onto fracture surfaces, and contaminant diffusion into the rock matrix 
due to colloid deposition is accounted for by adjusting the value of f i t ,  x, y) in 
every unit element. The value of E ranges from a lower limit of zero for the case 
of no colloid deposition to an upper limit of one for complete monolayer colloid 
coverage (0 < e < 1). Assuming that colloidal particles are spherical and of equal 
size, the number of particles deposited per unit surface area of the fracture surface 
is calculated every time step by 

N * ( t , x , y ) -  6n*( t ' x 'u )  
pprd 3 , (13) 

where N* is the number of particles per unit area; pp is the density of parti- 
cles; and dp is the diameter of particles. The value of e is evaluated by e = 
(TrdZp/4a)(N*/N~ax), where N~a x is the maximum number of colloidal particles 
per unit surface area, and it is determined using Equation (13) by replacing N* and 
n* with Nrnax and nma x *  , respectively. 

Substituting Equations (9)-(12) into (8) yields the final contaminant transport 
partial differential equation, the solution of which requires the time and space 
dependent colloid concentration in the fracture and contaminant concentration in 
the rock matrix. The colloid concentration in the fracture n(t, x, y) is obtained by 
solving the system of governing equations presented in Section 2.2. Determination 
of em (t, x, y, z) is obtained from the following one-dimensional partial differential 
equation governing contaminant diffusion in a direction perpendicular to the frac- 
ture plane, assuming that the interstitial liquid in the rock matrix is stationary and 
the contaminant undergoes decay and sorption onto the rock matrix 

OCm(t, x, y, z) "Din 02Cm(t, x, y, z) _ Acre(t, x, y, z), (14) 
Ot = Rra Oz 2 

where Rm is the retardation factor in the rock matrix defined as 

pbKm 
= i + (15) 

0 

which implies that contaminant sorption onto rock-matrix solid surfaces is described 
by a linear reversible equilibrium isotherm; Pb is the bulk density of the rock matrix; 
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and K,~ = c~/Cm is the contaminant partition coefficient in the rock matrix, 
defined as the mass of contaminant adsorbed per unit mass of solid rock matrix 
(c*) divided by the contaminant concentration in the rock matrix (era). 

The appropriate initial and boundary conditions for the contaminant transport 
equation (8) are obtained by replacing in Equation (7) n(t, x, y) and no with 
c(t, x, y) and co (constant contaminant concentration at the source), respectively. It 
is assumed that the contaminant and colloids are introduced simultaneously at the 
inlet boundary, and that co and no are in equilibrium at the boundary. This implies 
that at the source there is also a solid-phase contaminant concentration adsorbed 
onto suspended colloids (so). The final contaminant transport equation, resulting 
from substituting (9)-(12) into (8), is coupled together with (14) by imposing the 
following boundary conditions: 

= o, cm(t,x,y,b/2)= (16a,b) 

Ocm(t ,x ,y ,  ee) 
Oz = 0. (16c) 

The numerical discretization for the contaminant transport model is obtained by 
employing the same finite difference approximation schemes used for the solution 
of the colloid transport model. The resulting set of linear equations is solved 
in a similar fashion to the colloid transport model, and yields the contaminant 
concentration at each unit element. 

2.4. VALIDATION OF MODELS 

The analytical solution to the one-dimensional version of the colloid transport 
model, introduced in Section 2.2, for a semi-infinite fracture idealized as two par- 
allel plates with constant aperture subject to constant concentration inlet boundary 
condition has been presented by Abdel-Salam and Chrysikopoulos (1994) 

n(t,x) = 

where 

n O { e x P [ 2 ~ ( l _ ~ )  1 ~ [ x - U t ~ ]  --i e"c L 2--(~Dt)l/----B ] + 

r x +vt, 1  + exP[2 (1 erfc j , (17) 

8e;D ~ 1/2 
= 1 + - - ~ - j  (18) 

Figure 2 shows a comparison between the numerical solution of the colloid 
transport model and the above analytical solution for two different fracture aper- 
tures at a distance x = 5 m downstream of the inlet boundary. It is clear from 
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Fig. 2. Comparison between the analytical solution (broken lines) and numerical simulations 
(solid lines) of the colloid transport model for two different fracture apertures (Here D = 
0.25 m2/y, U = 1.0m/y, n = 1.0 • 10-1~ 

Figure 2 that very good agreement between the numerical and analytical solution 
is achieved. The breakthrough curves presented in Figure 2 do not reach the max- 
imum value of relative concentration one, because some colloid mass is lost via 
irreversible deposition onto the fracture surfaces. Moreover, the liquid-phase col- 
loid concentration decreases with decreasing fracture aperture, because a reduction 
in fracture aperture increases the accessibility of colloidal particles to the fracture 
surfaces, and leads to increased colloid deposition. 

The numerical solution of the contaminant transport model, introduced in 
Section 2.3, is validated against the analytical solution of the following partial 
differential equation, which describes contaminant transport without the presence 
of colloids in a one-dimensional fracture idealized as two parallel plates with 
constant aperture 

R ~  - DO2 (t'z) u 
Ot Ox 2 Ox 

20D.~ Ocm(t, *, z) ~=~/2 
-R c(t, x) + - - - 7  oz 

where R is the retardation factor in the fracture defined as 

(19) 

R = 1 + 2K____j_f (20) 
b 
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The analytical solution of Equation (19) for a semi-infinite fracture subject to 
constant concentration inlet boundary condition and using Equations (14)-(16) 
with c,~(t, x,  z) (independent of y), is given by (Tang et al., 1981) 

7rl/2 exp B -  ~ • 
~7 

4D~-2 + 4C2 J erfc[8ffST-T/2 + (21) 

where 

[ 20 ,/2 
T = t 4D~2], A = - ~ ( R m D m )  , (22a, b) 

B = 2---D' r /=  , (22c,d) 

and ( is a dummy integration variable. A comparison between the numerical and the 
analytical solution for two different partition coefficients for contaminant sorption 
onto fracture surfaces KI  is presented in Figure 3. The two solutions are in very 
good agreement. Figure 3 also illustrates that the contaminant concentration in 
solution increases with decreasing Ky, because the contaminant mass sorbing onto 
the fracture surfaces reduces (see (9)). 

3. Simulations and Discussion 

3.1. FLOW 

The hypothetical fracture used in this work has dimensions gz = 8 m and gv = 4 m, 
and it is partitioned into 80 • 40 uniform unit elements of equal size. The fracture 
aperture is assumed lognormally distributed with mean 1.65 #m and standard devi- 
ation 0.45. These values are approximately equal to those used by Moreno et al. 
(1988). The assumption of lognormally distributed aperture fluctuations is in agree- 
ment with measured apparent apertures from selective cores and well logs (Bianchi 
and Snow, 1968), apertures derived from permeability tests in granite (Bourke et al., 
1985), and aperture measurements of laboratory core samples (Gale, 1982; Haka- 
mi and Barton, 1990). Here, an isotropic exponential autocovariance function is 
employed with a correlation scale of 0.3 m. The aperture size ranges from 3 #m to 
200 #m. 
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Fig. 3, Comparison between the analytical solution (broken lines) and numerical simulations 
(solid lines) of the contaminant transport model without the presence of colloids for two 
different partition coefficients for contaminant sorption onto fracture surfaces (Here b = 
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Fig. 4. Velocity vector field in the fracture plane for a single realization of the aperture field. 
Arrow lengths are proportional to velocity magnitudes. 

Figure 4 shows a plot of  the velocity vector field in the fracture plane for a single 
realization of  the aperture field. The constant head gradient imposed on the flow 
model is 3.0• 10 -5.  This value represents a 1.72m/y velocity in a fracture with 
constant aperture of  45 #m (this is the mean of the assumed lognormal distribution). 
The length of each arrow is proportional to the magnitude of  the resultant velocity, 
with values ranging between 0.4--4.0 rn/y. Velocities below 0.4 rn/y and above 
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TABLE I. Typical parameter values for the transport models 
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Parameter Value References 

•ra 1.0• 10 -6 m2/y Skagius and Neretnieks (1986) 
Kf  1.0x 10 -4 m KBS-3 (1983) 
Kn 5.0• 10 -3 m3/g 
Kn* 1.0• 10 -5 m3/g 

O~L 0.2 m 

aT 0.02 m 
0 0.003 Abelin (1986) 

1.0• 10 - l~  m Bowen and Epstein (1979), 

Toran and Palumbo (1992) 
)~ 1.0• 10 -6 l/y Abelin (1986) 
pb 2.0 • 106 g/m 3 Skagius and Neretnieks (1986) 

4.0 m/y are not shown. Since the velocity is proportional to the aperture squared 
and the head gradient, high velocities are found within elements with large aperture 
size and/or large head gradient. 

3.2. COLLOID TRANSPORT WITH AND WITHOUT SIZE EXCLUSION 

For fractures with spatially variable aperture, it is expected that colloids will bypass 
small size elements by following the least resistive pathways. This phenomenon 
is known as size exclusion. In order to understand and evaluate the effect of 
size exclusion on colloid transport and ultimately on contaminant transport, we 
investigated colloid transport for both cases of with and without size exclusion. 
Simulations are conducted using the numerical solution of the colloid transport 
equation (3), which does not account for particle entrapment between the fracture 
surfaces. With the exception of ar and aT the parameter values used in the 
colloid transport model simulations have been obtained from Bowen and Epstein 
(1979) and Toran and Palumbo (1992), and they are listed in Table I. The grid- 
P6clet-numbers, Pex = UxAx/D~x, and Pev = UvAy/Duu in the x- and y- 
directions, respectively (Kinzelbach, 1986), ranged from 0.01 to 1.67. This range 
is in agreement with the recommendation by Kinzelbach (1986) who suggested 
that grid-Peclet-numbers should be < 2, in order to avoid numerical problems. 

Figure 5 shows a comparison between colloid concentration in the fracture 
plane with and without size exclusion for a single realization after six years of 
simulation time. The scale in Figure 5 ranges from black representing high con- 
centration (n/no = 1) to white representing low concentration (n/no = 0). The 
two-dimensional snapshot in Figure 5a portrays the colloid concentration where 
colloids are allowed to travel throughout the whole fracture plane. Because of the 
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Fig. 5. Spatial distribution of normalized suspended colloid concentration in the fracture 
plane, for transport: (a) without size exclusion and (b) with size exclusion. The colloid source 
is uniformly distributed across the entire width of the inlet boundary (Here t = 6 y). 

variable aperture nature of the fracture, formation of some fingering occurs. In Fig- 
ure 5b, colloids are restricted from entering elements with apertures smaller than 
15 #m, assuming that colloidal particles are spherical and of equal diameter (1 #m) 
so that the possibility of particle straining is eliminated (Sakthivadivel, 1969; and 
Herzig et al., 1970). No-flow elements are simulated by setting both the advective 
and dispersive fluxes into these elements to zero. It is clear from Figure 5b that size 
exclusion leads to faster breakthrough and more pronounced fingering. The small 
white spots in Figure 5b represent the no-flow elements. Similar results have been 
observed for the special case where the colloid source does not cover the whole 
fracture width, but 0.4 m at the center of the inlet boundary (see Figure 6). 

Because the governing colloid transport equation is stochastic, the effect of 
size exclusion on colloid transport is best illustrated by comparing both cases 
of colloid transport with and without exclusion for the ensemble average (i.e., 
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Fig. 6. Spatial distribution of normalized suspended colloid concentration in the fracture 
plane, for transport: (a) without size exclusion and (b) with size exclusion. The colloid source 
is 0.4 m wide at the center of the inlet boundary (Here t = 6 y). 

expected value) of several realizations. The ensemble breakthrough curves shown 
in Figure 7 are based on 60 realizations for colloid concentration averaged across 
the fracture width at 3 and 4 m downstream from the inlet boundary. The number of 
realizations is chosen such that additional realizations do not change the calculated 
ensemble average. Figures 7a and 7b indicate that size exclusion leads to an earlier 
breakthrough of  colloids and that the difference in breakthrough time increases 
with distance downstream from the source. The long tailing of the breakthrough 
curves for colloids with size-exclusion and the intersection between the curves 
corresponding to the cases of with and without size exclusion presented in Figure 7, 
indicate that size exclusion enhances the dispersion of colloids. 

The impact of  standard deviation ~r of the lognormally distributed fluctuations 
of the fracture aperture on the ensemble average breakthrough curve, based on 
60 realizations, for colloid transport with size exclusion is shown in Figure 8. It 
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Fig. 7. Temporal distribution of normalized suspended colloid concentration for an ensemble 
average of 60 realizations at a distance of: (a) 3.0 m and (b) 4.0 m downstream of the source. 
Solid lines represent transport without size exclusion and broken lines represent transport with 
size exclusion. 

is clear that increasing the standard deviation leads to an earlier breakthrough of  
colloids.  This is because, increasing cr leads to a greater variability in the aperture 
distribution within the fracture plane, which in turn contributes to the preferential 
transport of  colloids,  and consequently increases the dispersion of  colloids.  An 
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Fig. 8. Temporal distribution of normalized suspended colloid concentration for an ensemble 
average of 60 realizations at a distance of 4.0 m downstream of the source for three different 
standard deviations of the aperture fluctuations and with colloids subjected to size exclusion. 

increase in tr also yields similar results for the case of colloid transport without 
size exclusion. 

3.3. CONTAMINANT TRANSPORT IN THE PRESENCE AND ABSENCE OF COLLOIDS 

Colloid-facilitated transport is dependent mainly on the liquid-phase colloid con- 
centration, colloid deposition rate, and the interaction between the contaminant 
and colloids. Simulations based on the previously presented contaminant transport 
model in the absence and presence of  colloids are conducted with parameter values, 
other than the colloid transport model parameters, obtained from KBS-3 (1983), 
Abelin (1986), and Skagius and Neretnieks (1986). These parameter values are 
listed in Table I. The contaminant source concentration co is assumed to be equal 
to the colloid source concentration no. The dissolved contaminant is not expected 
to be subject to size exclusion, and consequently it is expected to sample every 
unit element of  the fracture plane, because its molecular size is 7-10 orders of 
magnitude smaller than the size of colloids. Nevertheless, contaminant sorbed onto 
colloidal particles is subjected to colloid transport behavior and it is affected by size 
exclusion. Figure 9 shows a two-dimensional snapshot corresponding to a single 
aperture field realization for contaminant transport in the absence (Figure 9a) and 
presence of  colloids (Figure 9b), where colloids are subject to size exclusion. It 
is clear from this figure that, for the set of parameters considered, the presence of 
colloids enhanced contaminant transport. 
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Fig. 9. Spatial distribution of normalized liquid-phase contaminant concentration in the 
fracture plane: (a) in the absence of colloids and (b) in the presence of colloids. The contaminant 
and colloid sources are uniformly distributed across the entire width of the inlet boundary (Here 
t ----- 6y). 

Figure 10 presents ensemble breakthrough curves for contaminant transport in 
the absence and presence of colloids, with colloids subjected to size exclusion. The 
curves are based on 60 realizations for contaminant concentration averaged over 
the fracture width at a distance 3 and 4 m downstream from the inlet boundary. It 
is clear from Figure 10 that the presence of colloids leads to an earlier contaminant 
breakthrough and increased contaminant dispersion. This is demonstrated in Figure 
10 by the long tailing of the breakthrough curves corresponding to the case where 
colloids are present. 

The effect of the partition coefficient for contaminant sorption onto suspended 
colloids Kn on contaminant transport in the presence of colloids subjected to size 
exclusion is shown in Figure 11. The breakthrough curves presented in Figure 11 
are based on an ensemble average of 60 realizations. It is clear that increasing Kn 
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leads to an earlier breakthrough of  the contaminant. This could be attributed to the 
increase o f  contaminant sorption onto suspended colloids, which in turn decreases 

contaminant retardation by sorption onto the fracture surfaces and by diffusion into 
the rock matrix. 



218 ASSEM ABDEL-SALAM AND CONSTANTINOS V. CHRYSIKOPOULOS 

0,7 

o.6: 

0.5 

o 0 .4  

0 
0.3 

0.2 

0,1 

0.0 
u.O 

- ' i  ' ' .  

(a) 

2.0 4.0 6.0 8.0 10.0 

T i m e  (y) 

0.7 

0.6 

03 

o 0 .4  

0,3 

0.2 

0.1 

0.0 u.O 

(b )  3 ] 

K n = ~  

2.0 4.0 6.0 8.0 10.0 

T i m e  (y)  

Fig. 11. Effect of partition coefficient for contaminant sorption onto suspended colloids on 
temporal distribution of normalized liquid-phase contaminant concentration for an ensemble 
average of 60 realizations at a distance of (a) 3.0 m and (b) 4.0 m downstream of the source. 

4. Summary  and Conclusions 

This work focuses on the analysis of colloid and colloid-facilitated contaminant 
transport in a two-dimensional fracture-rock matrix system with a spatially variable 
aperture and homogeneous, isotropic rock matrix. First, several random realizations 
of the velocity field in the fracture plane were generated assuming that the fracture 
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aperture is a stochastic variable. Then, a colloid transport model accounting for 
irreversible colloid deposition onto fracture surfaces was developed. Finally, a 
comprehensive model of contaminant transport in the presence of colloids was 
presented, accounting for reversible contaminant sorption onto fracture surfaces 
and onto suspended as well as deposited colloids, and allowing for contaminant 
diffusion into the rock matrix and first order decay. 

Several model simulations indicate that a fracture with spatially variable aper- 
ture causes the contaminant and colloids to follow preferential paths within the 
fracture plane. Faster transport and more pronounced fingering of colloids are 
observed when colloids are excluded from elements in the fracture plane with 
small aperture size. Similar results are obtained for the special case where the 
colloid source is only 0.4 m wide at the center of  the inlet boundary. Size exclu- 
sion also increases the dispersion of  colloids. Moreover, it is shown that, for the 
parameter set considered, colloids enhance the transport of contaminants and yield 
long tailed contaminant breakthrough curves. 

Although, the models presented provide very good means of predicting and 
analyzing the effect of  spatially variable aperture on colloid and colloid-facilitated 
contaminant transport, some of the limitations inherent to the models are their 
inability to account for (a) kinetic sorption between the contaminant and colloids; 
(b) particle entrapment between the fracture surfaces; and (c) reduction in perme- 
ability because of  colloid deposition onto fracture surfaces. Nonetheless, this work 
can provide a starting point for generalization to the solution of more complicated 
physical systems. 
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