
Transport in Porous Media30: 87–112, 1998. 87
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

Three-Dimensional Analytical Models for Virus

Transport in Saturated Porous Media

YOUN SIM and CONSTANTINOS V. CHRYSIKOPOULOS?
Department of Civil and Environmental Engineering, University of California, Irvine,
CA 92697, U.S.A.

(Received: 2 June 1997; in final form: 13 October 1997)

Abstract. Analytical models for virus transport in saturated, homogeneous porous media are devel-
oped. The models account for three-dimensional dispersion in a uniform flow field, and first-order
inactivation of suspended and deposited viruses with different inactivation rate coefficients. Virus
deposition onto solid particles is described by two different processes: nonequilibrium adsorption
which is applicable to viruses behaving as solutes; and colloid filtration which is applicable to viruses
behaving as colloids. The governing virus transport equations are solved analytically by employing
Laplace/Fourier transform techniques. Instantaneous and continuous/periodic virus loadings from
a point source are examined.
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Nomenclature

a, a1, a2 arbitrary constants
A defined in (9)
A� amplitude of the virus loading fluctuation, [M/T]
B defined in (10)
C concentration of virus in suspension (liquid phase), [M/L3]
C0 source concentration, [M/L3]
C∗ deposited (or filtered) virus concentration (virus mass/solids mass), [M/M]
Cg concentration of virus directly in contact with solids, [M/L3]
C∞ steady state virus concentration in the absence of inactivation, [M/L3]
Dx longitudinal hydrodynamic dispersion coefficient, [L2/T]
Dy lateral hydrodynamic dispersion coefficient, [L2/T]
Dz vertical hydrodynamic dispersion coefficient, [L2/T]
E defined in (A7)
f defined in (A15)
f0, f1, f2 arbitrary functions
F general functional form of virus source configuration, [M/L3T]
F−1 Fourier inverse operator
g defined in (A22)
G virus source loading function, [M/t]
h, h1, h2 defined in (A30), (A31) and (A32), respectively
H defined in (11)
I0[ ] modified Bessel function of first kind of order zero
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I1[ ] modified Bessel function of first kind of first order
J0[ ] Bessel function of first kind of order zero
k mass transfer rate constant, [T−1]
kc clogging rate constant, [T−1]
kr declogging rate constant, [T−1]
Kd partition or distribution coefficient, [L3M−1]
K0[ ] modified Bessel function of second kind of order zero
lx0, ly0, lz0 x, y andz Cartesian coordinates, respectively, of the virus point source, [L]
L−1 Laplace inverse operator
M total virus mass released into the porous formation, [M]
n wave number
N ,N1,N2 defined in (A24), (A25), and (A26), respectively
p dummy integration variable
P defined in (A43)
pfu plaque-forming units, [M]
q dummy integration variable
Q defined in (13)
r1 forward rate coefficient, [T−1]
r2 reverse rate coefficient, [M/L3T]
s Laplace transform variable with respect to time
sse sums of squared error
S defined in (A16)
t time, [T]
t0 arbitrary time, [T]
tp temporal period, [T]
U average interstitial velocity, [L/T]
v dummy integration variable
W virus source geometry function, [L−3]
x, y, z spatial coordinates, [L]

Greek Letters
α arbitrary constant
αx longitudinal dispersivity, [L]
αy lateral dispersivity, [L]
αz vertical dispersivity, [L]
β arbitrary constant
γ Fourier transform variable with respect to spatial coordinatex
δ( ) Dirac delta function
ζ dummy integration variable
η arbitrary argument
θ porosity (liquid volume/porous medium volume), [L3/L3]
λ inactivation rate coefficient of liquid phase viruses, [T−1]
λ∗ inactivation rate coefficient of deposited viruses, [T−1]
31, 32, 33 defined in (21a), (21b), and (21c), respectively
ξ dummy integration variable
ρ bulk density of the solid matrix (solids mass/aquifer volume), [M/L3]
τ dummy integration variable
φ Fourier transform variable with respect to spatial coordinatez
8 defined in (A18)
9 defined in (A13)
ω Fourier transform variable with respect to spatial coordinatey
�n spectrum of known coefficients, [M/T]
� mean virus mass release rate, [M/T]



THREE-DIMENSIONAL ANALYTICAL MODELS FOR VIRUS TRANSPORT 89

1. Introduction

Groundwater contamination by pathogenic viruses is a significant environmental
concern throughout the world. The penetration of viruses into aquifers is often asso-
ciated with pollution sources such as direct injection into wells, recharge basins,
irrigation, landfills, open dumps, graveyards, broken sewer pipelines, leaking septic
tanks, and urban runoff (Keswick and Gerba, 1980; Armon and Kott, 1994; Zelikson,
1994). It should be noted that although sludges are treated by various disinfection
methods such as chlorination and heat conditioning prior to disposal, highly resistant
viruses may remain infective (Berg, 1977).

Viruses are colloid particles with size ranging from 0.02 to 0.3mm (Brock and
Madigan, 1991). They vary widely in shape and chemical composition. Their surface
charge is established by the ionizable groups comprising the virus surface (capsid);
furthermore, at natural subsurface conditions viruses are generally negatively charged
(Taylor and Bosmann, 1981; Elimelechet al., 1995). Because viruses do not have
their own respiratory and biosynthetic functions, they reproduce inside other cells by
a process called infection. Therefore, unlike bacteria or protozoa, viruses present in
groundwater can not increase in numbers, but only decrease. Viruses are classified
on the basis of the hosts they infect. The most common types of viruses found in
groundwater which may infect human body are animal viruses such as:adenovirus,
coliphage, coxsackievirus, enterovirus, hepatitis, poliovirusandrotavirus(Gerba and
Keswick, 1981; Yates and Yates, 1988). As illustrated in Figure 1, viruses are larger
than dissolved contaminants, however, it should be noted that viruses are at the lower
end of the colloid size distribution. For this reason, virus adsorption onto the solid
matrix of a subsurface formation is described by either colloid filtration or solute
sorption processes.

Vilker (1981) suggested that the nonequilibrium adsorption process is appropri-
ate for models describing virus transport in porous media, assuming viruses behave
as solutes. Nonequilibrium adsorption represents the rate of approach to equilib-
rium between adsorbed and liquid phase virus concentrations, accounting for virus
transport to the outer layer of a solid particle by mass transfer followed by virus
immobilization. The colloid filtration theory is frequently employed to models of
virus transport in porous media, assuming viruses behave as colloids. Colloids are
attached onto the solid matrix through interception, sedimentation (mechanical fil-
tration), and diffusion. The interception and sedimentation processes are effective
only for large size particles (> 1mm). Because viruses are of submicron size (see
Figure 1), for the case of virus filtration, the effects of sedimentation and interception
can be neglected (Harvey and Garabedian, 1991; Penrod, 1995).

There are only a few analytical (Vilkeret al., 1978; Sim and Chrysikopoulos,
1995; Chrysikopoulos and Sim, 1996) and numerical (Grosser, 1984; Haridas, 1984;
Tim and Mostaghimi, 1991; Parket al., 1992; Yates and Ouyang, 1992; Sim and
Chrysikopoulos, 1996a) models available in the literature for the prediction of fate
and transport of viruses in subsurface formations. Analytical virus transport models,
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Figure 1. Size ranges of contaminants present in groundwater and effective pore diameters
of various porous media, adopted from Chrysikopoulos and Sim (1996). Contaminant sizes
are obtained from Stumm (1977), Matthess and Pekdeger (1981), and Buddemeier and Hunt
(1988); microfissure sizes are obtained from Birgersson and Neretnieks (1982); effective pore
diameters are calculated from average soil particle diameters reported by Mitchell (1976),
by assuming a cubic packing: effective pore diameter= particle diameter×√

2 − 1).

although limited by many assumptions, are very useful tools for preliminary estima-
tion of virus migration, examination of possible boundary conditions, validation of
numerical solutions, and determination of virus transport parameters from laboratory
or well defined field experiments.

Multidimensional contaminant transport models have several advantages over
one-dimensional models. For example, multidimensional models can account for
concentration gradients and contaminant transport in directions perpenticular to the
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groundwater flow. As indicated by Leij and Dane (1990), measuring experimentally
lateral and vertical dispersion coefficients is not a trivial task. However, multidimen-
sional transport models can provide such parameters by direct fitting of available
experimental data. In addition, multidimensional models can easily account for a
variety of boundary conditions as well as contaminant source geometries.

Although several multidimensional, analytical solute transport models have been
presented in the literature (Hunt, 1978; Goltz and Roberts, 1986; van Dujin and van
der Zee, 1986; Batu, 1989, 1993; Batu and van Genuchten, 1990; Leij and Dane, 1990;
Leij et al., 1991, 1993; Bellinet al., 1993; Chrysikopouloset al., 1994; Chrysikopou-
los, 1995; to mention a few), to our knowledge, the literature on multidimensional
analytical virus transport models is nonexistent. Consequently, the present research
focuses on the development of analytical solutions for three-dimensional models
of virus transport in porous media. Generalized analytical solutions applicable to
nonequilibrium virus deposition and filtration under instantaneous, continuous and
temporally fluctuating point source virus loading conditions are derived.

2. Model Development

The transport of viruses in saturated, homogeneous porous media, accounting for
three-dimensional hydrodynamic dispersion in a uniform flow field, virus adsorp-
tion, and first-order inactivation of liquid phase and deposited viruses with different
inactivation rate coefficients, is governed by the following partial differential equa-
tion

∂C(t, x, y, z)

∂t
+

+ρ

θ

∂C∗(t, x, y, z)

∂t
− Dx

∂2C(t, x, y, z)

∂x2 −

−Dy
∂2C(t, x, y, z)

∂y2 − Dz
∂2C(t, x, y, z)

∂z2 + U
∂C(t, x, y, z)

∂x
+

+λC(t, x, y, z) + λ∗ ρ

θ
C∗(t, x, y, z) = F(t, x, y, z), (1)

whereC is the liquid phase virus concentration;C∗ is the virus concentration depos-
ited onto the solid matrix;Dx , Dy , andDz are the longitudinal, lateral, and verti-
cal hydrodynamic dispersion coefficients, respectively;U is the average interstitial
velocity; t is time;x, y, andz are the spatial coordinates in the longitudinal, lateral,
and vertical directions, respectively;ρ is the bulk density of the solid matrix;θ is
the porosity of the porous medium;λ is the inactivation rate coefficient of liquid
phase viruses;λ∗ is the inactivation rate coefficient of deposited viruses; andF is a
general form of the virus source configuration. The first two terms on the left-hand
side of the preceding equation are accumulation terms, whereas the last two terms
on the left-hand side represent the inactivation of liquid phase and deposited viruses,
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respectively. The accumulation of deposited viruses on the solid matrix is described
by the following generalized mass balance expression

ρ

θ

∂C∗(t, x, y, z)

∂t

= r1C(t, x, y, z) − r2C
∗(t, x, y, z) − λ∗ ρ

θ
C∗(t, x, y, z), (2)

wherer1 andr2 are the forward and the reverse rate coefficients. The appropriate
initial and boundary conditions for an infinite three-dimensional porous medium are

C(0, x, y, z) = C∗(0, x, y, z) = 0, (3)

C(t, ±∞, y, z) = 0, (4)

C(t, x,±∞, z) = 0, (5)

C(t, x, y,±∞) = 0. (6)

The expression describingC∗ is obtained by solving (2) subject to the initial
condition (3) to yield

C∗(t, x, y, z) = r1θ

ρ

∫ t

0
C(τ, x, y, z) exp

[
−
(

r2θ

ρ
+ λ∗

)
(t − τ)

]
dτ, (7)

whereτ is a dummy integration variable. In view of (2) and (7) the governing equation
(1) can be written as

∂C(t, x, y, z)

∂t
−

−Dx
∂2C(t, x, y, z)

∂x2 − Dy
∂2C(t, x, y, z)

∂y2 − Dz
∂2C(t, x, y, z)

∂z2 +

+U
∂C(t, x, y, z)

∂x
+ AC(t, x, y, z) −

−B
∫ t

0
C(τ, x, y, z) e−H(t−τ) dτ = F(t, x, y, z), (8)

where the following substitutions have been employed

A = r1 + λ, (9)

B = r1r2θ

ρ
, (10)

H = r2θ

ρ
+ λ∗. (11)
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Equation (8) subject to conditions (3)–(6) is solved analytically by straightforward but
laborious procedures. Taking Laplace transforms with respect to time variablet and
Fourier transforms with respect to space variablesx, y, andz of (8) and subsequently
employing the transformed initial and boundary conditions, followed by inverse
transformations yields the desired analytical solution (see Appendix A)

C(t, x, y, z) =
(

1

16π2DxDy

)1/2 ∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
×

× exp
[
U(x − q)

2Dx

]
F(t − τ, q, v, p)×

×
[
HQ(τ, x − q, y − v, z − p)+

+∂Q(τ, x − q, y − v, z − p)

∂τ

]
dp dv dq dτ, (12)

where

Q(t, x, y, z) = e−Ht
∫ t

0
I0

[
2
(Bζ(t − ζ )

)1/2
] ( 1

4πDzζ 3

)1/2
×

× exp
[
− 1

4ζ

(
x2

Dx
+ y2

Dy
+ z2

Dz

)
−

−ζ

(
A+ U2

4Dx
−H

)]
dζ, (13)

∂Q(t, x, y, z)

∂t

= e−Ht
∫ t

0

{( Bζ

t − ζ

)1/2
I1

[
2
(Bζ(t − ζ )

)1/2
]

−

−HI0

[
2
(Bζ(t − ζ )

)1/2
]}( 1

4πDzζ 3

)1/2
×

× exp

[
− 1

4ζ

(
x2

Dx
+ y2

Dy
+ z2

Dz

)
− ζ

(
A+ U2

4Dx
−H

)]
dζ +

+e−Ht

(
1

4πDzt3

)1/2
exp

[
− 1

4t

(
x2

Dx
+ y2

Dy
+ z2

Dz

)
−

−t

(
A+ U2

4Dx
−H

)]
, (14)
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whereI0 and I1 are the modified Bessel functions of the first kind of zeroth and
first order, respectively. It should be noted that the Leibnitz rule (Greenberg, 1978,
eq. 1.41, p. 18) as well as the Bessel function relationships dI0[η]/dη = I1[η]
(Abramowitz and Stegun, 1972, Equation 9.6.27, p. 376) andI0[0] = 1 were
employed in the derivation of (14).

2.1. point source configuration

The virus source configuration is represented by the following general function

F(t, x, y, z) = G(t)W(x, y, z), (15)

whereG(t) is the virus mass release rate from the source; andW(x, y, z) signifies the
inverse of the source volume from which the virus mass is introduced into a porous
medium. It should be noted, however, thatG(t) characterizes the source loading
type. In this work, instantaneous as well as continuous or temporally periodic source
loading functions are considered. Furthermore,W(x, y, z) characterizes the source
physical geometry. Although point, two and three-dimensional source geometries can
be applied to the general analytical solution derived (12)–(14), the present research
efforts focus on a point source configuration as illustrated schematically in Figure 2,
which can be described mathematically by

W(x, y, z)

= 1

θ
δ(x − lx0)δ(y − ly0)δ(z − lz0), −∞ < lx0, ly0, lz0 < ∞, (16)

wherelx0, ly0, lz0 representx, y, z Cartesian coordinates of the virus point source,
respectively; andδ is the Dirac delta function.

2.1.1. Instantaneous Virus Loading

For the case of instantaneous virus loading, the mass release rate function is described
by the following expression

G(t) = Mδ(t − t0), (17)

whereM signifies the total virus mass released; andt0 is the time of instantaneous
virus release. Combining (12) and (15)–(17) yields

C(t, x, y, z) = M

θ

(
1

16π2DxDy

)1/2
exp

[
U(x − lx0)

2Dx

]
×

×
[
HQ(t − t0, x − lx0, y − ly0, z − lz0)+

+∂Q(t − t0, x − lx0, y − ly0, z − lz0)

∂t

]
, (18)
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Figure 2. Schematic illustration of a virus point source with coordinateslx0, ly0, lz0.

where the following property of Dirac delta function was employed∫ β

α
f0(t)δ(t − t0) dt = f0(t0), α < t0 < β, (19)

andf0 is an arbitrary function. The desired analytical solution for the case of instan-
taneous virus loading conditions is obtained by substituting (13) and (14) into (18),
to yield

C(t, x, y, z)

= M

θ

∫ t−t0

0

(
1

64π3DxDyDzζ 3

)1/2
×

× 31(t − t0) 32(t − t0) 33(ζ, x − lx0, y − ly0, z − lz0) dζ +

+M

θ

(
1

64π3DxDyDz(t − t0)
3

)1/2
×

× 31(t − t0) 33(t − t0, x − lx0, y − ly0, z − lz0), (20)

where the following definitions were employed

31(t) = exp
[−Ht

]
, (21a)

32(t) =
( Bζ

t − ζ

)1/2
I1

[
2
(Bζ(t − ζ )

)1/2
]
, (21b)
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33(t, x, y, z) = exp
[

Ux

2Dx
− 1

4t

(
x2

Dx
+ y2

Dy
+ z2

Dz

)
−

−t

(
A+ U2

4Dx
−H

)]
, (21c)

andζ is a dummy integration variable.

2.1.2. Continuous or Periodic Virus Loading

For the case of a continuous or temporally periodic virus loading, the mass release
rate function can be represented by a generalized Fourier series (Hassani, 1991)

G(t) = � +
∞∑

n=1

�n exp
[
i2nπt

tp

]
, (22)

where� represents the mean value of the virus mass release rate from the source;
�n is a spectrum of known coefficients;n is the wave number; andtp is the temporal
period of fluctuation. It should be noted that for the special case of an infinite period
(tp → ∞), (22) reduces to a constant rate source loading (G = �). In view of (19),
combining (12) with (15), (16) and (22) yields

C(t, x, y, z) =
(

1

16π2DxDy

)1/2 ∫ t

0
×

× exp
[
U(x − lx0)

2Dx

]
G(t − τ)

θ
×

×
[
HQ(τ, x − lx0, y − ly0, z − lz0) +

+∂Q(τ, x − lx0, y − ly0, z − lz0)

∂τ

]
dτ. (23)

The desired analytical solution for continuous/periodic virus loading conditions is
obtained by substituting (13) and (14) into (23), to yield

C(t, x, y, z) =
∫ t

0

∫ τ

0

(
1

64π3DxDyDzζ 3

)1/2G(t − τ)

θ
×

×31(τ ) 32(τ ) 33(ζ, x − lx0, y − ly0, z − lz0) dζ dτ +

+
t∫

0

(
1

64π3DxDyDzτ3

)1/2G(t − τ)

θ
×

×31(τ ) 33(τ, x − lx0, y − ly0, z − lz0) dτ. (24)
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2.2. nonequilibrium virus adsorption (s model)

Assuming that the adsorption process consists of virus diffusion to the outer layer of
a solid particle by nonequilibrium mass transfer and virus immobilization onto the
solid particle while in equilibrium with the liquid phase virus concentration in the
outer layer, the expression for accumulation of adsorbed viruses (2) can be replaced
by (Sim and Chrysikopoulos, 1996a)

ρ

θ

∂C∗(t, x, y, z)

∂t
= k

[
C(t, x, y, z) − Cg(t, x, y, z)

]
− λ∗ ρ

θ
C∗(t, x, y, z), (25)

wherek is the mass transfer rate constant; andCg is the liquid phase concentration of
virus in direct contact with solids. Vilker (1981) suggested that the Langmuir isotherm
may represent the equilibrium relationship between immobilized viruses and viruses
in the outer layer of the solid matrix. However, experimental results indicated that
for low liquid phase virus concentrations and when conditions are such that virus
affinity for the adsorbent is very small, the nonlinear form of the Langmuir isotherm
can be linearized to the following linear equilibrium relationship

C∗(t, x, y, z) = KdCg(t, x, y, z), (26)

whereKd is the partition or distribution coefficient. The nonequilibrium adsorption
model is appropriate for viruses with size relatively small or similar to the size
of solutes. Thus, molecular diffusion together with local hydrodynamic conditions
control the adsorption of viruses onto the solid matrix.

In view of (2), (25), and (26), the following substitutions

r1 = k, (27)

r2 = k

Kd
, (28)

can be employed into (20) or (24) to yield the corresponding S model solution for
either instantaneous or continuous virus loading, respectively.

2.3. virus filtration (c model)

Assuming that the colloid filtration theory is applicable to virus attachment onto the
solid matrix of a subsurface formation, the accumulation of filtered viruses can be
written as

ρ

θ

∂C∗(t, x, y, z)

∂t

= kcC(t, x, y, z) − kr
ρ

θ
C∗(t, x, y, z) − λ∗ ρ

θ
C∗(t, x, y, z), (29)

whereC∗ is now the virus concentration retained in the porous medium by the filtra-
tion process;kc is the clogging rate constant; andkr is the declogging rate constant.
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For viruses with size considerably larger than the size of solutes, the filtration model
can represent the attachment of viruses onto the solid matrix more appropriately by
incorporating the effect of virus size, solid size, and interstitial water velocity.

In view of (2) and (29) the following substitutions

r1 = kc, (30)

r2 = krρ

θ
, (31)

can be employed into (20) or (24) to yield the corresponding C model solution for
either instantaneous or continuous virus loading, respectively.

3. Model Simulations and Discussion

Model simulations under nonequilibrium virus adsorption (S model) as well as virus
filtration (C model) conditions and two different source configurations are performed
for a variety of situations. The integrals present in the analytical solutions (20) and
(24) are evaluated numerically by the integration routine Q1DA, which utilizes an
automatic adaptive quadrature algorithm (Kahaneret al., 1989). The virus source is
assumed to be located atlx0 = ly0 = lz0 = 100 cm, and the instantaneous virus
release to occur att0 = 0 d. For simplicity, the values forM and� are set to unity.
Unless otherwise specified, the fixed parameter values used in the simulations are
those listed in Table I. Furthermore, the concentrations generated under continuous
virus loading conditions are normalized by the steady-state concentration in the
absence of inactivation, evaluated att = 100 d (C∞) as suggested by Hunt (1978).

The solution to the C model under continuous virus loading conditions (Equa-
tions (24), (30), (31)) is employed to investigate the effect of the two different inac-
tivation rate coefficients incorporated into the governing virus transport equation (1)
on suspended virus concentration. Figures 3a and 3b present breakthrough curves
at a location with coordinatesx = 109 cm andy = z = 100 cm, for three dif-
ferent inactivation rate coefficients for liquid phase (λ) and adsorbed (λ∗) viruses,
respectively. Concentration profiles are conveniently normalized by the steady-state
concentration in the absence of inactivation. It is shown that the liquid phase virus

Table I. Model parameters for simulations.

Parameter Value

Dx 15 cm2/hr
Dy = Dz 1.13 cm2/hr
Kd 20 ml/g
U 4 cm/hr
ρ 1.5 g/cm3

θ 0.25
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Figure 3. Effect of the inactivation rate coefficients for (a) liquid phase and (b) adsorbed
viruses on temporal normalized virus distribution simulated by the C model under continuous
virus loading conditions. (Herex = 109 cm,y = z = 100 cm,kc = 0.6 hr−1, kr = 0.005
hr−1, λ = 0.25 d−1, andλ∗ = 0 d−1.)

concentration decreases with increasingλ andλ∗. This result is intuitive because
an increase inλ or λ∗ implies an increase in the inactivation rate of liquid phase or
adsorbed viruses, respectively, and consequently a decrease in the concentration of
suspended viruses.

Two-dimensional snapshots of virus concentration simulated by the C model
under instantaneous virus loading conditions (Equations (20), (30), (31)) at three
successive times are illustrated in Figure 4. As the center of mass moves down-
stream from the source, enhanced spreading is observed in both longitudinal and
lateral directions. However, it is observed that the migration of the virus plume is
significantly retarded and an elongated tail of viruses is trailing behind the center of
mass. This result is consistent with field observations of virus transport where virus
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Figure 4. Concentration contours in thex, y plane obtained by the C model under instanta-
neous loading of viruses undergoing reversible deposition at (a)t = 1.0 d, (b)t = 3.0 d, and
(c) t = 5.0 d. (Herez = 100 cm,kc = 0.001 hr−1, kr = 0.1 hr−1, andλ = λ∗ = 0 d−1.)

plumes undergoing reversible deposition were considerably retarded compared to a
conservative tracer (Baleset al., 1995).

The general behavior of the S model is similar to the C model. For example,
Figure 5 illustrates two-dimensional snapshots of virus concentrations on thex, y

plane, at three successive times as predicted by the S model under continuous but
constant (G = �) virus loading conditions (Equations (24), (27), (28)). For the case
examined here, the virus loading is continuous as opposed to instantaneous loading
considered in Figure 4.

The effect of periodic source loading conditions on the temporal distribution of
virus concentration is illustrated in Figure 6. Breakthrough curves at three differ-
ent locations along thex–axis downstream from the source with fixed coordinates
y = z = 100 cm are simulated by the S model (Equations (24), (27), (28)) under
continuous virus loading from a temporally variable source (dashed curves) and from
a constant source (G = �, solid curves). In the interest of computational simplicity,
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Figure 5. Concentration contours in thex, y plane obtained by the S model under continuous
virus loading conditions at (a)t = 0.1 d, (b)t = 0.2 d, and (c)t = 0.5 d. (Herez = 100 cm,
k = 0.0001 hr−1, andλ = λ∗ = 0 d−1.)

Figure 6. Breakthrough curves predicted by the S model under periodic (dashed curves) and
constant (solid curves) loading conditions. (Herey = z = 100 cm,A� = 1 pfu/d,tp = 0.08
d, k = 0.0001 hr−1, andλ = λ∗ = 0 d−1.)
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the generalized expression for a temporally variable source loading rate (22) is
modified as

G(t) = � + A� sin
[

2πt

tp

]
, (32)

whereA� represents the amplitude of the virus loading fluctuation. It is evident from
Figure 6 that the difference between the virus breakthrough responses simulated
under periodic and constant source loading rates is significant in the vicinity of the
source and gradually diminishes with increasing distance from the source. Therefore,
at a relatively long distance downstream from a source, the effect of temporally
variable source loading on the concentration of suspended viruses is negligible. This
is in agreement with previous parameter sensitivity analysis results indicating that at
large time, model parameter fluctuations have insignificant effects on virus transport
(Sim and Chrysikopoulos, 1996b).

4. Comparison with Experimental Data

The analytical solution derived for a point source geometry under instantaneous
loading conditions (Equation (20)) is employed to simulate data from a bacterio-
phage PRD–1 transport experiment in a sandy aquifer in Borden, Ontario, Canada,
reported by Baleset al. (1997). Bacteriophage PRD–1 is a virus that infects only
certain strains ofSalmonellabacteria. The field experiment was conducted with a
point source geometry under instantaneous loading conditions. The field data used
in this study were collected at monitoring well ML4–6. For simplicity, it is assumed
thatαx/10 = αy = αz, whereαx , αy , andαz are the longitudinal, lateral, and ver-
tical dispersivities, respectively (Di = αiU, i = x, y, z). Given the experimental
parametersM, U , θ , λ, λ∗, andρ listed in Table II, the values forr1, r2, andαx are
estimated by a nonlinear least squares regression method (IMSL, 1991). The estim-
ated parameter values together with the corresponding residual sums of squared error
(sse) are presented in Table II. Figure 7 clearly shows a good agreement between the
simulated concentration history (solid line) and the bacteriophage PRD–1 experi-
mental data (circles). In view of the estimated values forr1 andr2, the corresponding
nonequilibrium sorption parametersk andKd are calculated from (27), (28), whereas
the filtration parameterskc andkr are calculated from (30), (31) and they are also
listed in Table II. It should be noted that the estimated longitudinal dispersivity at
ML4–6 (αx = 27.36 cm) is within the range of values (10–60 cm) obtained by Li
(1993) from electrical conductivity breakthrough curves.

5. Summary and Conclusions

Analytical models for virus transport in saturated, homogeneous porous media were
developed, accounting for three-dimensional hydrodynamic dispersion in a uni-
form flow field, first-order inactivation of liquid phase and deposited viruses with
different inactivation rate coefficients, and virus attachment onto the solid matrix
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Table II. Parameters associated with the bacte-
riophage PRD–1 field experiment.

Experimental parameters (Baleset al., 1997)

M 1.24× 1013 pfu
t0 0 d
U 9 cm/d
x 100.0 cm
θ 0.3
λ = λ∗ 0 d−1

ρ 1.81 g/cm3

Estimated parameters
r1 0.21 hr−1

r2 0.0046 g/cm3 hr
αx 27.36 cm
sse 8.76

Calculated parameters
k 0.21 hr−1

Kd 46.19 cm3/g
kc 0.21 hr−1

kr 0.0008 hr−1

Figure 7. Bacteriophage PRD-1 normalized concentration breakthrough data (open circles)
adopted from Baleset al. (1997) and simulated concentration history (solid curve).

of the porous formation by either nonequilibrium adsorption (S model) or mod-
ified colloid filtration (C model). The governing transport equations were solved
analytically by employing Laplace/Fourier transform techniques. A point source
geometry was examined under instantaneous as well as continuous/periodic loading
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conditions. Results from numerous model simulations indicate that the suspended
virus migration in the subsurface is significantly controlled by virus attachment onto
solid matrix, and the inactivation of liquid phase as well as deposited viruses. The
effect of temporally variable virus loading, as compared to the case of constant rate
loading, is maximum near the source and diminishes with increasing distance from
the source. Therefore, virus concentration predictions corresponding to temporally
variable and constant rate sources are indistinguishable at relatively distant down-
stream locations from the source.

Although the models presented here have advantages due to their analytical nature,
some of the limitations inherent to the models are their inability to account for
(a) aquifer heterogeneities; and (b) time-dependent inactivation rate coefficients.
Nonetheless, these models are excellent means for verifying the accuracy of numeri-
cal approximations to more comprehensive models for virus transport in the subsur-
face.

Appendix A: Derivation of the Generalized Analytical Solution

The desired analytical solution is obtained by solving the problem described by the
following integrodifferential equation and initial/boundary conditions

∂C(t, x, y, z)

∂t
−

−Dx
∂2C(t, x, y, z)

∂x2 − Dy
∂2C(t, x, y, z)

∂y2 −

−Dz
∂2C(t, x, y, z)

∂z2 + U
∂C(t, x, y, z)

∂x
+ AC(t, x, y, z) −

−B
∫ t

0
C(τ, x, y, z)e−H(t−τ) dτ = F(t, x, y, z), (A1)

C(0, x, y, z) = 0, (A2)

C(t, ±∞, y, z) = 0, (A3)

C(t, x,±∞, z) = 0, (A4)

C(t, x, y,±∞) = 0. (A5)

Taking Laplace transform with respect to time variablet and Fourier transforms with
respect to space variablesx, y, andz of Equation (A1) and subsequently employing
transformed initial condition (A2) yields

˙̃̂̄
C(s, γ, ω, φ) =

˙̃̂̄
F(s, γ, ω, φ)

γ 2Dx + iγU + E
, (A6)
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where

E = ω2Dy + φ2Dz + A+ s − B
s +H , (A7)

and the following properties were employed for the Laplace and Fourier transforma-
tions (Roberts and Kaufman, 1966; Kreyszig, 1993)

˙̃̂̄
C(s, γ, ω, φ) = 1

(2π)3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
C(t, x, y, z) ×

×e−st e−iγ x e−iωy e−iφz dt dx dy dz, (A8)

where the tilde signifies Laplace transform ands is the Laplace domain variable; the
hat, overbar, and overdot signify Fourier transforms with respect to space variables
x, y, andz with corresponding Fourier domain variablesγ , ω, andφ, respectively;
andi = (−1)1/2.

The Fourier inverse transformation of (A6) with respect toγ is

˙̃̄
C(s, x, ω, φ)

=
˙̃̄
F(s, x, ω, φ)

2πDx
∗

∗
∫ ∞

−∞
cosγ x

γ 2 + iγU
Dx

+ E
Dx

dγ +
∫ ∞

−∞
i sinγ x

γ 2 + iγU
Dx

+ E
Dx

dγ

 , (A9)

whereF−1 is the Fourier inverse operator; the asterisk represents convolution with
respect to space variablex; and the following definitions of the Fourier inverse
transform were employed

F−1 {f̂1(γ )
} = 1

(2π)1/2

∫ ∞

−∞
f̂1(γ )eiγ x dγ, (A10)

F−1 {f̂1(γ )f̂2(γ )
} = f1(x) ∗ f2(x)

(2π)1/2

= 1

(2π)1/2

∫ ∞

−∞
f1(x − ξ)f2(ξ) dξ, (A11)

wheref1 andf2 are arbitrary functions ofx; andξ is a dummy integration variable.
It should be noted, however, that Euler’s formula was employed in the derivation
(A9). In view of (A11) and the integral identities found in Gradshteyn and Ryzhik
(1980) (Equations 3.724.1 & 2, p. 407), the expression (A9) is simplified as

˙̃̄
C(s, x, ω, φ) =

˙̃̄
F(s, x, ω, φ)

2πDx
∗
{
9 exp

[
Ux

2Dx

]}
, (A12)
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where

9 = π

(
E

Dx
+ U2

4D2
x

)−1/2
exp

[
−x

(
E

Dx
+ U2

4D2
x

)1/2
]

. (A13)

In view of (A10), (A11), and (A13), the expression (A12) is written as

˙̃̄
C(s, x, ω, φ) =

∫ ∞

−∞
˙̃̄
F(s, q, ω, φ) f (s, x − q, ω, φ) dq, (A14)

where

f (s, x, ω, φ) =
(

1

4DxDy

(
ω2 + S)

)1/2

exp
[

Ux

2Dx

]
×

× exp

[
−x

((
ω2 + S

) Dy

Dx

)1/2
]

, (A15)

S = 1

Dy

(
φ2Dz + A+ s − B

s +H + U2

4Dx

)
, (A16)

andq is a dummy integration variable.
In view of (A10), (A11), and (A15), the Fourier inverse transformation of (A14)

with respect toω is given by

˙̃C(s, x, y, φ)

=
(

1

16π2DxDy

)1/2 ∫ ∞

−∞
exp

[
U(x − q)

2Dx

]
× (A17)

×
{

˙̃F(s, q, y, φ) ∗
[∫ ∞

−∞
8 cos(ωy) dω +

∫ ∞

−∞
i8 sin(ωy)dω

]}
dq,

where

8 =
(

1

ω2 + S

)1/2
exp

[
−(x − q)

((
ω2 + S

) Dy

Dx

)1/2
]

, (A18)

and Euler’s formula was employed in the derivation of (A17). It should be noted that
8 as well as cos(ωy) are even functions ofω, whereas sin(ωy) is an odd function of
ω. Therefore, the trigonometric integrals are evaluated as follows∫ ∞

−∞
8 cos(ωy) dω = 2

∫ ∞

0
8 cos(ωy) dω

= 2K0

S1/2

(
y2 + (x − q)2Dy

Dx

)1/2
 , (A19)
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−∞
i8 sin(ωy) dω = 0, (A20)

whereK0 is the modified Bessel function of the second kind of zeroth order; and the
integral identity found in Gradshteyn and Ryzhik (1980) (Equation 3.961.2, p. 498)
was utilized in (A19). In view of (A19), (A20) and application of the convolution
theorem, (A17) reduces to

˙̃C(s, x, y, φ) =
∫ ∞

−∞

∫ ∞

−∞
˙̃F(s, q, v, φ) g(s, x − q, y − v, φ) dv dq, (A21)

where

g(s, x, y, φ) =
(

1

4π2DxDy

)1/2
exp

[
Ux

2Dx

]
K0

[
S1/2

(
y2 + x2Dy

Dx

)1/2
]

, (A22)

andv is a dummy integration variable.
In view of (A10), (A11), (A16) and (A22), the Fourier inverse transformation of

(A21) with respect toφ is given by

C̃(s, x, y, z)

=
(

1

16π4DxDy

)1/2 ∫ ∞

−∞

∫ ∞

−∞
exp

[
U(x − q)

2Dx

]
×

×
{
F̃ (s, q, v, z) ∗

[∫ ∞

−∞
K0[N (s, x − q, y − v, φ)] cos(φz) dφ +

+
∫ ∞

−∞
K0[N (s, x − q, y − v, φ)]i sin(φz) dφ

]}
dv dq, (A23)

where the following substitutions were employed

N (s, x, y, φ) = [φ2 +N1(s)]
1/2N2(x, y), (A24)

N1(s) = 1

Dz

(
A+ s − B

s +H + U2

4Dx

)
, (A25)

N2(x, y) =
(

y2Dz

Dy
+ x2Dz

Dx

)1/2

. (A26)
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It should be noted thatN and cos(φz) are even functions ofφ, whereas sin(φz)

is an odd function ofφ. Therefore,∫ ∞

−∞
K0[N (s, x, y, φ)] cos(φz) dφ

= 2
∫ ∞

0
K0[N (s, x, y, φ)] cos(φz) dφ

=
(

π2

N 2
2 + z2

)1/2

exp
[−N 1/2

1

(N 2
2 + z2)1/2]

, (A27)

∫ ∞

−∞
iK0[N (s, x, y, φ)] sin(φz) dφ = 0, (A28)

where the integral identity found in Gradshteyn and Ryzhik (1980) (Equation 6.677.5,
p. 736) was employed in (A27). In view of (A27), (A28), and application of the
convolution theorem, (A23) reduces to

C̃(s, x, y, z) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F̃ (s, q, v, p) ×

×h(s, x − q, y − v, z − p) dp dv dq, (A29)

where

h(s, x, y, z) = h1(s, x, y, z) h2(x, y, z), (A30)

h1(s, x, y, z) = exp[−N 1/2
1 (N 2

2 + z2)1/2], (A31)

h2(x, y, z) =
[

1

16π2DxDy

(N 2
2 + z2

)]1/2

exp
[

Ux

2Dx

]
. (A32)

Furthermore, for mathematical convenience, let

h1 = Hh1

s +H + sh1

s +H . (A33)

The inverse Laplace transform of (A29) with respect tos can be found by employing
the following relationship

L−1
{

1

s +H f̃0

(
s +H− a

s +H

)}

= e−Ht
∫ t

0
I0
[
2
(
aζ(t − ζ )

)1/2]
f0(ζ ) dζ, (A34)

whereL−1 is the Laplace inverse operator;̃f0(s) is the Laplace transform of the
arbitrary functionf0(t); anda is an arbitrary constant. Equation (A34) was obtained
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from the inverse Laplace transform pair reported by Lapidus and Amundson (1952)
modified by direct application of the Bessel function relationshipI0[η] = J0[iη],
whereJ0 is the Bessel function of the first kind of zeroth order, andη is an arbitrary
argument (Abramowitz and Stegun, 1972, Equation 9.6.3, p. 375). In view of (A25),
(A26), and (A31),f̃0(s) is assumed to be of the following form

f̃0(s) = exp
[
−a1(s + a2)

1/2
]
, (A35)

wherea1 anda2 are arbitrary constants. Furthermore, the inverse Laplace transform
of f̃0(s) is (Roberts and Kaufman, 1966)

f0(t) = L−1
{

exp
[
−a1(s + a2)

1/2
] }

= a1

(4πt3)1/2 exp
[−a2

1

4t
− a2t

]
. (A36)

Equation (A35) can also be used to expressh1 as

h1 = f̃0

(
s +H− a

s +H

)

= exp
[
− a1

(s +H)1/2 {s2 + s(2H+ a2) +H(H+ a2) − a}1/2
]

. (A37)

Substitution of (A25) into (A31) yields

h1 = exp

−
(
N 2

2 + z2

Dz(s +H)

)1/2

×

×
{
s2 + s

(
H+ A+ U2

4Dx

)
+H

(
A+ U2

4Dx

)
− B

}1/2
. (A38)

The unknown constantsa, a1, anda2 are obtained by simple comparison of (A37)
and (A38)

a = B, (A39)

a1 =
(
N 2

2 + z2

Dz

)1/2

, (A40)

a2 = A+ U2

4Dx
−H. (A41)

In view of (A34), (A36), and (A39)–(A41), the following inverse Laplace transform
is derived

L−1
{

h1

s +H

}
= P(t, x, y, z), (A42)
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where

P(t, x, y, z) = e−Ht
∫ t

0
I0

[
2
(Bζ(t − ζ )

)1/2
](N 2

2 + z2

4πDzζ 3

)1/2

×

× exp

[
−N

2
2 + z2

4Dzζ
− ζ

(
A+ U2

4Dx
−H

)]
dζ. (A43)

Furthermore, the Laplace transform of a first-order derivative found in Kreyszig
(1993) (Equation 6.2, p. 317), together withP(0, x, y, z) = 0 suggests that

L−1
{

sh1

s +H

}
= L−1

{
sP̃(s, x, y, z)

}
= ∂P(t, x, y, z)

∂t
. (A44)

In view of (A33), (A42) and (A44), the inverse Laplace transformation of (A29) is
given by

C(t, x, y, z)

=
∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F(t − τ, q, v, p) h2(x − q, y − v, z − p) ×

×
[
HP(τ, x − q, y − v, z − p) +

+dP(τ, x − q, y − v, z − p)

dτ

]
dp dv dq dτ, (A45)

where the following inverse Laplace transform relationship was employed

L−1
{
f̃1(s)f̃2(s)

}
= f1(t) ∗ f2(t) =

∫ t

0
f1(t − τ)f2(τ ) dτ. (A46)

Backsubstituting (A26), (A32) and (A43) into (A45) yields the desired generalized
analytical solution (12)–(14).
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