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Three-dimensional analytical solutions for solute transport in saturated, homogeneous
porous media are developed. The models account for three-dimensional dispersion in
a uniform flow field, first-order decay of aqueous phase and sorbed solutes with
different decay rates, and nonequilibrium solute sorption onto the solid matrix of the
porous formation. The governing solute transport equations are solved analytically by
employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous
media with either semi-infinite or finite thickness are considered. Furthermore,
continuous as well as periodic source loadings from either a point or an elliptic source
geometry are examined. The effect of aquifer boundary conditions as well as the
source geometry on solute transport in subsurface porous formations is investigated.
© 1999 Elsevier Science Ltd. All rights reserved.

Keywords:solute transport, analytical solution, multidimensional systems, nonequili-
brium sorption, first-order decay.

NOMENCLATURE
a semi-axis of the elliptic source parallel to the C. steady-state solute concentration in the absence
axis [L] of decay [M L9
a,, a, defined in eqns (22) and (23), respectively Dy longitudinal hydrodynamic dispersion coeffi-
cient [L2t™]
a defined in eqn (5)
D, lateral hydrodynamic dispersion coefficient i*]
b semi-axis of the elliptic source parallel to the
axis [L] D, vegtic?l hydrodynamic dispersion coefficient
[Lot™]
B defined in eqn (6) X
erf[x] error function, equal t¢2/z"?) J e ?Zdz
C solute concentration in suspension (liquid 0
phase) [M L] E defined in eqn (B2)
Co source concentration [M ] E defined in eqn (A2)
C* sorbed solute concentration (solute mass/solids f, fq, f1, f, arbitrary functions
mass) [M M|
F general functional form of virus source config-
*Corresponding author. E-mail: costas@eng.uci.edu uration [M L3t
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gt Fourier inverse operator Greek symbols
Fte finite Fourier cosine transform operator o arbitrary constant
Tt finite Fourier cosine inverse operator x longitudinal dispersivity [L]
. . lateral dispersivity [L
defined in eqn (B9) %y P yIH
oy vertical dispersivity [L]
G source loading function [Mt (point source);
ML 2t~ (elliptic source)] B, B1, B2 arbitrary constants
- ; ; Y Fourier transform variable with respect to
H finite aquifer thickness [L] spatial coordinate
H defined in eqn (7) 5(") Dirac delta function
lol-] modified Bessel function of first kind of order ¢ dummy integration variable
zero o
] defined in eqn (A23)
4] modified Bessel function of first kind of first porosity (liquid volume/porous medium
order volume) [L°L 79
Kol'] modified Bessel function of second kind of «, k1, k2 defined in egns (26a), (24) and (25), respectively
order zero

A decay rate of liquid phase solute {f

lxolyolo X yandz Cartesian coordinates, respectively, of a .

‘ > decay rate of sorbed solute ff]
point source or the center of an elliptic source [L]

Aq,....Ag defined in eqns (17a)—(17d), (21) and (30),

! Laplace inverse operator respectively

m integer summation index £ dummy integration variable

) . . 0 bulk density of the solid matrix (solids mass/
p dummy integration variable aquifer volume) [M L9
P defined in eqn (A27) T dummy integration variable
d . . iabl ¢ Laplace transform variable with respect to
q ummy integration variable spatial coordinate
Q defined in eqn (A17) o defined in eqn (A8)
: ; Ym finite Fourier cosine transform variable with
r radius of circular source [L] respect to spatial coordinate defined in egn
. (31)

ry forward rate coefficient [t}]
v defined in eqn (B6)

ro reverse rate coefficient Tt] _ _ _
w Fourier transform variable with respect to

. . . ial i

s Laplace transform variable with respect to time spatial coordinaty

S defined in eqn (B7)

t time [t] 1 INTRODUCTION

U average interstitial velocity [Lt] Mathematical modeling of contaminant transport in porous
media has increasingly captured the attention of several

% dummy integration variable environmental engineers and scientists because of the public
concern, and the widespread attention paid to the disposal,

w source geometry function [%] movement and fate of toxic contaminants in natural subsur-

face systems. As the number of contaminated sites
X,Y,Z spatial coordinates [L] increases, so does the need for understanding the transport
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and fate of contaminants in the subsurface. For well-defined, interstitial velocity;t is time;x, y andz are the spatial coor-
ideal aquifers, analytical solute transport models are dinates in the longitudinal, lateral and vertical directions,
frequently employed. Furthermore, analytical models are respectively;o is the bulk density of the solid matrix, is
often used for verifying the accuracy of numerical solutions the porosity of the porous medium;is the decay rate of
to complex solute transport models. liquid phase solutess* is the decay rate of sorbed solutes;
Multidimensional contaminant transport models have andF is a general form of the source configuration. It should
several advantages over one-dimensional models. For exambe noted that the effective porosity, defined as percentage of
ple, multidimensional models can account for concentration interconnected pore space, may be employed instead of por-
gradients and contaminant transport in directions perpendicu-osity in a porous medium that contains a large number of
lar to the groundwater flow. As indicated by Leij and Dafle, dead-end pores or in a fractured porous formation.
measuring experimentally lateral and vertical dispersion coef- The accumulation of solutes onto the solid matrix is
ficients is not a trivial task. However, multidimensional trans- described by the following nonequilibrium expression:
port models can provide such parameters by direct fitting of

available experimental data. In addition, multidimensional ‘_’wzrlc(t,x,y, z)—rZBC*(t,x,y, 2
models can easily account for a variety of boundary condi- ot 0
tions, as well as contaminant source geometries. —\ %C*(t' XV, 2), 2)

Although several multidimensional analytical models for
solute or colloid/virus transport are available in the litera- \herer, andr, are the forward and reverse rate coefficients.

1,3-5,8,10,14,15,20,22,23 R H H H . L
ture; multidimensional  analytical Assuming that initially there are no sorbed solutes present

models that can accommodate a variety of contaminationin the porous formation, the expression describitgis
source configurations in porous media with semi-infinite or obtained by solving eqn (2) subject to the initial condition
finite thickness are nonexistent. C*(0,xy,2) = 0 to yield

The present study extends the collection of contaminant .
transport models by presenting analytical solutions to multi- C (t, %Y, Z):@J' Clr,%, Y, 2) exp[—(rz T )\*)(t—r)] dr,
dimensional transport through saturated, homogeneous por- p JO
ous media, accounting for first-order decay of the solute in (3)
the aqueous phase or sorbed onto the solid matrix with
different decay rates. A variety of source configurations,
including continuous as well as periodic source loadings
from either point or elliptic source geometries, are consid- as
ered. Generalized analytical solutions applicable to solute as  3C(t, x, y, 2) azc(t, X, Y, 2) azc(t, XY, 2)
well as virus transport in aquifers of semi-infinite and finite ot —Dx X2 —Dy Y2
thickness are derived.

wherer is a dummy integration variable. In view of egns
(2) and (3), the governing equation, eqn (1), can be written

2
Za C(t,x,y,2) Yy aC(t,x,y,2)
Y ax

t
+4C(t, x,y,2) — B JOC(T, x,y,2)e” "t dr

-D
2 MODEL DEVELOPMENT

The transport of solutes in saturated, homogeneous porous
media, accounting for three-dimensional hydrodynamic dis- =F(t.xy,2), 4

persion in a uniform flow field, nonequilibrium sorption, \yhere the following substitutions have been employed
and first-order decay of liquid phase and sorbed solutes

with different decay rates, is governed by the following A=T1+N, ®)
partial differential equation: Bl ©6)
— 12
aC(t,x,y,2) paC*(t,x,y,2) b 92C(t, X, Y, 2) .
at + 5 ot - X aXZ H= I+ A (7)
a%C(t, X, Y, 2) a2C(t, X, Y, 2) The derived integrodifferential equation, eqn (4), is solved
- Dy ay? - D, 92 analytically in the subsequent sections for the cases of

aquifers with semi-infinite and finite thickness.

BC tl 1 )y
+UM+)\C(t,x,y, 2 . .
X 2.1 Source configuration
APt Xy, ) = F(t %, . ), 1) o _
0 The source configuration is represented by the following
whereC is the liquid phase solute concentrati@r; is the general function:
solute concentration sorbed onto the solid mathy; D, F(t,x,Y,2) = GH)W(X. Y, 2), ®)

and D, are the longitudinal, lateral and vertical hydrody-
namic dispersion coefficients, respectivelyis the average = whereG(t) is the solute mass release rate per unit source
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area andM(x,y,2) characterizes the source physical geome- (15) preserves concentration continuity for a semi-infinite
try. In this work, point as well as two-dimensional source vertical aquifer thickness. The vertical level= 0 defines
geometries are considered. Furtherm@§) characterizes  the location of the water table or a confining layer. Eqn (4),
the source loading type. Although instantaneous or contin- subject to conditions (11)—(15), is solved analytically. It
uous/temporally periodic source loading types can easily be should be noted thatincreases in the downward direction.
employed, the present research efforts focus only on a con- The analytical solution to the governing partial differen-

tinuous/temporally periodic source loading. tial equation, egn (4), can be derived by a variety of meth-
ods, including the conventional method of separation of
2.1.1 Point source geometry variables, as well as integral transform methods. Further-
The point source geometry is described mathematically by more, a solution technique developed by WafRenvol-
the following expression: ving a Green function (fundamental solution) can also be
1 utilized. However, in the present study, integral transform
WX, y,2) = gé(x—lxo)a(y—lyo)é(z—lzo), 9 techniques were employed because the multidimensional

models developed are an extension of our previous analy-
where I,,l,,l, represent the xy,zz unbounded tical work on virus transport modets;*® where Laplace
(=0 <ly,ly,, 1, <) Cartesian coordinates of the point transform techniques were employed. Similar mathematical
source, respectively, andlis the Dirac delta function. It  techniques were employed for the analytical solutions of
should be noted that her@ represents the solute mass multidimensional solute transport by Toride al?* and

release from the point source. Shan and Javand&t.
Taking Laplace transforms with respect to time variable
2.1.2 Elliptic source geometry and space variable and Fourier transforms with respect to
The elliptic source geometry is described mathematically by space variablesandy of eqn (4), and subsequently employ-
the following expression: ing the transformed initial and boundary conditions,
5 , followed by inverse transformations, yields the desired ana-
8(z—1z) (x—1y) N Y=l _ lytical solution for an aquifer with semi-infinite thickness
W(x,y,2) = 6 a? b? '
0 otherwis
¢ ( a ) y Elliptic Source
(10) by,
where I, 1,1, are xy,z Cartesian coordinates, respec- -
tively, of the center of the elliptic source geometry, and 0 Waer Table | Lo ; X
andb represent the semi-axes of the ellipse parallel tocthe °
and y-axes, respectively. It should be noted that h€re
signifies the solute mass release rate per unit source area.
s o
2.2 Aquifer with semi-infinite thickness LT Point Source
e
The appropriate initial and boundary conditions for the case
of an aquifer with infinite longitudinal and lateral directions Y/
and semi-infinite vertical direction (thickness), as illustrated
schematically in Fig. 1(a), are as follows:
C(O X,y Z) 0 (11) (b) / y Elliptic Source
[RAYID &) =V, I 3
> < -
c(t, = =0 12 ’ e
(t, *=y,2=0, (12) o o .
Water Table | I :
C(t,x, * ©,2)=0, (13) P i
L S—— ¥)
aC(t, XY, 0) 0, (14) l Point Source H
0z Z,
aC(t,x,y,
w =0, (15)
0z
Aquitard
where condition (11) corresponds to the situation in which z

solutes are initially absent from the three-dimensional por- _. . ) . -
formation, eqns (12) and (13) indicate that the aquifer F|g._1. S_chem_atlc |IIust_rat|on of pomt_and elllptlt_: sources of con-
ous » € q tamination with coordinates,ly .1, in an aquifer with semi-

is infinite horizontally and laterally, boundary condition jninite (a) and finite (b) thickness. Note that the positive direction
(14) represents a zero dispersive flux boundary and egn for the vertical coordinate is inverted.
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(see Appendix A): 2.2.2 Elliptic source geometry
1 V2 ot oo pw pw Substituting eqgns (8) and (10) into egn (16) leads to the
= —————— analytical solution for the case of elliptic source geometry:
C(t,x.y,2) (64W3DXDyDZ> JO Jf@ fo JO y e ore’ p g ry
o B 1 J J’ 2G(t—17) N
X F(t—7,0,v,p)A(7) (txy.2)= 647D, D, 0o)a g A0
TA(T 4
X {JO ;3(/2)1\3(5‘, X—0,y —V) [A4($, 2+ ) X { JO AZ;T)AS(g, X— 0, 0)[Ag(, 2+1)
Az(7,X—Q,y—V —
MGz p)l dp 4 AT aY=Y) Ts,zq y=Y) T Ag(5 2~ 1) IAs(s) dg + 23X =90
X [Aq(r, Z+p)+Ay(7, 2— P)] } dp dv dq dr, X [Ag(7, 2415+ Ag(7, Z—IZO)]A5(T)} dq dr,
16
. _ . 19 (20
wherep, g, v and ¢ are dummy integration variables; the \herep,—A, are defined in eqns (17a)— (17d), respectively,
following definitions were employed:
As(t) =erf[ii(t, 0,y)] —erflxa(t, ,Y)], (21)
Aq(t) =exp — #1], (17a)
a =l —a, (22)
B¢\ 12 b
80=(zp) 1[25e-0)", 7)) ay=l, +a, (23)
2 2| V2 2
Ux 1/xX ¥y > b(g—1y) 1
—exp| X _L(X LY k(G Y) =qy — Iy, + | B — —— = .
As(t, %, Y) exp[ 2D, 4t( DX+ Dy> 1 { Y 2 4Dt
U2 (24)
—t<ﬂ_}[+ 4DX>:|, (17C) 2 2 1/2 1/2
ko(t, 0, y)=<y— 1, — b2_w 1
P 2 Yo a2 4Dyt)
A=) 15 . (17e) (25)
and |, is the modified Bessel function of the first kind of €rf[-] is the error function, and the following transformation
first order. and integral relationships were employed:
y—V
= 26a
2.2.1 Point source geometry . (4tDy)v2 (263)
Substituting eqns (8) and (9) into egn (16) yields the analy- Y
tical solution for the case of point source geometry: dk = m (26b)
1 V2 (Gt -7 g
ctrrd=(gampp,) Jo 7 0 g —
et J exd — «°] dk = >—{erf[x] —erfli] ). (27)
™ Ay(7) “

X { Jo ;3,2 A3(X— L, Y —ly,) As noted by Chrysikopouldssolving for an elliptic source
geometry is advantageous because the appropriate solution
for a circular source can easily be obtained by settirgb

X |A4(§ 2+ 1)+ Ay($z—1,) | d . ’ ) .

{ iz 1)+ AdlS Z")} £ = rin eqgns (22)—(25), whereis the radius of the circular
A3(T, X — |><o' y— |y0) source.
+ 7_3/2

2.3 Aquifer with finite thickness
X [Ag(r,z415) + Ag(7,2— )] } dr, (18
The desired analytical solution for the case of an aquifer
where A;—A, are defined in egns (17a)— (17d), respec- with finite thickness, as illustrated schematically in Fig.
tively, and the following property of the Dirac delta func- 1(b), is obtained by solving eqn (4) subject to conditions

tion was employed: (11)-(14) and the following finite vertical, lower boundary
B8 condition;
Lfo(t)5(t —to) dt ="fy(to), a=ty=4g, (19) IC(t, %, Y, H) 0 (28)
wherea andg are arbitrary constants, afiglis an arbitrary 0z '

function. whereH is the aquifer thickness. The boundary condition
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(28) implies that the aquifer is confined by an impermeable whereA;—A3; and A are defined in eqns (17a)—(17c) and
layer at deptlz = H. Taking the Laplace transform with  (30), respectively.

respect to the time variablg Fourier transforms with

respect to space variablesandy, and the finite Fourier =~ 2.3.2 Elliptic source geometry

cosine transform with respect to the space varialigeqgn In view of eqn (10), the finite Fourier cosine transform of
(4), and subsequently employing the transformed initial and eqn (8) with respect tais given by

boundary conditions, followed by inverse transformations

2 2
yields (see Appendix B): ) G(t) (x=1)™  (y=1ly,)
1" Jt J ) J °° Etx,y, gm)=0 o COWmlz) 2 T @ b
C(t,x,y,2) = (WDXDy) o) o) _ A 0 otherwise
. 4
% J 820 . x—ay—v) o
0o ¢ ' ’ Substituting eqn (34) into eqn (29), the desired analytical
" " solution for the case of elliptic source geometry is as
X Ag(8 E(t—7,q,v,0), E(t— 7,0V, ¥m)) rollowe: P g y
+ MAG(ﬂﬁ(t—T,q,v,O), 1\ (' (2G(t-7)
T C(t,x,y,2 = 16:D 0o 0 Aq(7)
X F(t—7,q,V, 1//m))} dv dq dr, (29) X
" Ay(7)
whereA;—A; are defined in eqns (17a)—(17c), respectively, X { ,[o ;1/2 A3(§,x— 0, 0)As(¢)
fi 2« ’
Ag(t,f,f)= =+ — f, exp| — YD, t|co Z), Az(7,x—q,0
6( 1 2) H H mgl 2 p[ ‘pm z] S(‘;Lm ) % Ag(g',l,COS(l//m|zo)) d§_+ 3(7' i q )
30
M (30) X As(1)Ae (7,1, cos(\bmlzo))} dgdr, (35
Kbm: W" (31)

m is the integer summation inde¥(t, x,y, ¥,) represents ~ wherea; anda, are defined in eqns (22) and (23), respec-
the finite Fourier cosine transform B{t,x,y,2) with respect  tively, and A;—Aj3, As and A¢ are defined in egns (17a)—
to space variable with corresponding finite Fourier cosine  (17c), (21) and (30), respectively.

transform variable) ., andf, andf, are arbitrary functions.

The desired analytical solution for the case of point source

geometry is obtained by substituting the corresponding Model simulations are performed for two different source
expression foiE(t, X, Y, ¥,) into eqn (29). Substituting eqn ~ configurations, and aquifers with either semi-infinite or
(9) into eqn (8) and subsequently taking the finite Fourier finite thickness. The integrals present in the analytical solu-
cosine transform (defined in eqn (B3)) with respect to space tions (18), (20), (33) and (35) are evaluated numerically by

variablez of the resulting expression yields the integration routines Q1DA and QDAG, which utilize
B H G(t) globally adaptive quadrature algorithiiis™® The infinite
F(t XY, ¥m) = JO —p 0= 1oy —1y,)o(z— 1) series part of the solution for the case of an aquifer with
finite thickness (eqgn (30)) is evaluated by considering up to
X COqYm2) dz= @5()(_ 1y, )8(y — 1y,) 1000 termsrh = 1000). The number of termsy, is selected
Y so that additional terms do not alter the summation more
X COgYmly,), 32 than 0.001%.

where the latter formulation in eqn (32) is a consequence of ~ The groundwater table and the bottom of the finite thick-
employing eqgn (19). In view of egns (19) and (32), the nessaquifer are assumed to be locatexa0 cm andz=H

general solution, eqn (29), reduces to the following form: = 100 cm, respectively. Although all analytical solutions
1 V2 Jt G(t—17) derived here are general enough to account for temporally
C(t1 XY, Z) < 16’71'2 Dny> 0 0 Al(T)
, Table 1. Model parameters for simulations
X J Aoy ex—1y—1.)
o ¢ 3\ xY ~ly Parameter Value Reference
D, 1331.25cMh™* Batu
X As(§: 1, coq¥mly,) ) d§ D, = D, 268.75cnih™'  Batu
Ag(r,x— e, y—1y,) U 0.625cmh*  Batt
+ ; N=\* 0 days —
P 1.5gcm? Yates and Ouyarfg
X Ag(7, 1, COS(\bm'zo))} dr, (33 0 0.25 Parket al®




Solute transport in saturated porous media 513

10 @ T T T T T
=
S o8t -
g
=
[
S 06 - g
S
Q
3
N 04 -
E
S 02 Ff -
00 1 1 1 1
200 300 400 500 600 700 800

X (cm)

Fig. 2. Comparison between the analytical solution derived in this work for a point source geometry with constant mass release rate (solid
curve) and the corresponding solution of the one-dimensional model presented by Sim and Chrysikofmitdtes). HereDy, =D, =
ocm’h™, I, =200cm Iy, =0cm, |, =50cm,r; = 0.03h*, r, = 0.017 b, t = 1 day,y=0.1cm andz=50 cm.
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Fig. 3. Concentration contours in the-z plane obtained for a point source within an aquifer of semi-infinite thicknelss-&0 days (a)t
= 100 days (b) and = 300 days (c). Herd,, =200 cm I, =0cm, |, =50 cm,r; = 0.1h™%, r, = 0.0008 '* andy = 0 cm.
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Fig. 4. Concentration contours in the-z plane obtained for a point source within an aquifer of finite thickneds=a60 days (a)f =
100 days (b) and = 300 days (c). Herd,, =200 cm |, =0cm, I, =50 cm,r; = 0.03h™*, r, = 0.017 i andy = 0 cm.

periodic source loading, for simplicity, the model simula- that the model simulations compared are virtually
tions presented are based on a constant solute mass releaséentical.

rate and the value of is set to unity. Unless otherwise Fig. 3 illustrates two-dimensional snapshots of solute
specified, the fixed parameter values used in the simulationsconcentration at three successive times simulated for an
are those listed in Table 1. aquifer with semi-infinite thickness (egn (18)). A point

For the case whe®, =D, =0 cm?*h™?, the analytical source is assumed to be located inside the aquifer at
solution derived in this work for a point source geometry I, =200cm |, =0cm andl, =50cm. It is observed
with constant solute mass release rate is equivalent to thethat as the solute plume spreads with increasing time,
one-dimensional analytical solution for virus transport with solute spreading is restricted at the groundwater tabte (
constant concentration boundary conditions presented by0 cm), with a consequent zero gradient of solute concentra-
Sim and Chrysikopould$ (eqn (31)). For this special tion distribution, whereas a continuous solute spreading
case, model simulations are compared in Fig. 2 against theoccurs anywhere else below the water table because the
one-dimensional model derived by Sim and Chrysikopou- aquifer extends to infinity without a boundary (egn (15)).
los® It should be noted, however, that in Fig. 2 the con- Consequently, the observed solute plume is asymmetric
centrations simulated by the one-dimensional transport with respect to the flow direction along the plume center-
model (circles) are normalized with the source concentra- line. In contrast, Fig. 4 illustrates symmetric solute plumes
tion (Cy), whereas concentrations generated by solutions at three successive times, for an aquifer with finite thickness
derived in this work (solid curves) are normalized with and point source geometry (egn (33)). This is due to the
the steady-state concentratiolC.j evaluated att = presence of a fixed impermeable lower boundary (eqn
400 days, as suggested by Hiffig. 2 clearly indicates  (28),z=H = 100 cm) in addition to the upper groundwater
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Fig. 5. Concentration contours in the-z plane obtained for an elliptic source geometry, and an aquifer with semi-infinite (a) and finite (b)
thickness. Herea = b = 25 cm,ly, =200 cm Iy, =1, =0cm,r; = 0.1 h™*, r, = 0.0008 ™", t = 300 days ang/ = 0 cm.

table boundaryZ= 0 cm). Comparing Figs 3 and 4, it is account for a variety of boundary conditions, as well as
clear that the vertical migration of solutes is hindered by the contaminant source geometries.

two fixed boundaries. Furthermore, the presence of these

boundaries contributes to the enhancement of solute trans-

port downstream from the source in the direction of ground- 4 SUMMARY

water flow.

The effect of the lower impermeable boundary condition Three-dimensional analytical solutions for solute transport
is also demonstrated for the case of an elliptic source geometryin saturated, homogeneous porous media were developed,
Two-dimensional snapshots of solute concentrations-at accounting for three-dimensional hydrodynamic disper-
300 days are predicted for the case of an elliptic source sion in a uniform flow field, first-order decay of aqueous
geometry for an aquifer with semi-infinite thickness (eqn phase and sorbed solutes with different decay rates, and
(20), Fig. 5(a)), as well as for an aquifer with finite thickness nonequilibrium solute sorption onto the solid matrix of the
(eqgn (35), Fig. 5(b)). Similarly to the case of point source porous formation. The governing transport equations were
geometry, the presence of a shallow impermeable aquitardsolved analytically by employing Laplace, Fourier and
significantly constricts the vertical spreading of solutes, finite Fourier cosine transform techniques. Aquifers with
which consequently leads to an enhanced solute migrationeither semi-infinite or finite thickness are considered. The
in the direction of groundwater flow. derived analytical solutions are general enough to accom-

The analytical solutions derived in this work can be read- modate a variety of source loadings and source geome-
ily employed to simulate transport of a variety of contami- tries. However, the simulations presented in this study are
nants, including biocolloids such as viruses and bacteria. based on a continuous source loading from either point
The applicability of these models to field investigations is source or elliptic source geometry. It was shown that
limited to subsurface formations, where it may not be pos- solute transport in subsurface porous media is signifi-
sible to account for physicochemically heterogeneous por- cantly influenced by the aquifer boundary conditions.
ous media. However, it should be noted that For an aquifer confined by a shallow impermeable
multidimensional contaminant transport models are more aquitard, solute migration in the vertical direction is
advantageous than one-dimensional models where a homorestricted, whereas solute transport in the direction of
geneous porous medium assumption is valid, because theygroundwater flow is enhanced, compared with the case
can account for concentration gradients and contaminantof a relatively thick aquifer. The analytical solutions
transport in directions perpendicular to the groundwater developed here are particularly useful for preliminary
flow. Furthermore, multidimensional models can easily estimation of solute migration, characterization of
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contamination sources, examination of possible aquifer

boundary conditions, validation of numerical solutions

and determination of solute transport parameters from

laboratory or well-defined field experiments.
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6867.0.0  Fs7.0.9)
(+E)NP—E) DAo+E)P—E)
(A1)

C(sv,w,0)=

where

1 o ) 3 \ Y2
EZW S+’y Dx+|’YU+OJ Dy+/q_s—{——_’]-[ f

(A2)
and the following properties were employed for the Laplace

and Fourier transformations:*”

C(sx,y,2 = J:C(t,x, y,2)e” Stdt, (A3)

)

_ Clsxy,2e”™dx,  (Ad)

é(sa'yay! Z) = # J
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00

CEI(S,'y,w,Z): ﬁ J_mé(sa'yay! Z)e_iwy dy! (A5)

E(s v, 0, 8) = Joé(s, v o, 26" dz, (A6)

where the tilde and overdot signify Laplace transform with

respect to time and space variabteand z, respectively,

and s and ¢ are the corresponding Laplace domain vari-
ables; the hat and overbar signify Fourier transforms with

respect to space variables and y with corresponding
Fourier domain variablesy and w, respectively; and
i=(-1"

Taking the Laplace inverse transformation of eqn (Al)

with respect top, applying boundary condition (15) and

subsequently evaluating(s,y, w,0) at the limit z — o,
yields

E(sm 2= %{ | Fsvapsrozn

+&(s,v,w,p—2)] dp+ Joﬁ(s, ¥, @, P)

X [®(s,y, @, 2—p) — (S, 7,0, p— z)]dp},

where (A7)

e—’EZ

@ ¢ H 1 == H
(5v,0,2 7

and the following Laplace inversion identities were uti-
lized:1”

(A8)

L Hf(pfap)} = Jofl(z— p)f,(p) dp, (A9)
—1 o] _ae ™ Be F?

- {(¢+a)(¢+5)}—a_5+6_a, (A10)
_1 1 _ e %% _ e_BZ

- {(¢+a)(¢+ﬁ)}— -« (A11)

whereZz ' is the Laplace inverse operator, andndg are
arbitrary constants.
Furthermore, for mathematical convenience, let

_ H®P sb

s+ H  s+H
The inverse Laplace transformation of eqn (Al2) with
respect tos can be found by employing the following
relationship'®

1 . ol
-1 =
- {S+ﬂ{ f°<s+g{ s+}[)}
t
e | to[2(att— 09)7]1o(c) o,
wheref(s) is the Laplace transform of the arbitrary func-

tion fo(t) and« is an arbitrary constant. Following the pro-
cedures provided in Sim and Chrysikopoul8she inverse

(A12)

(Al13)
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Laplace transform of eqn (A12) is obtained as
1 [ HP(S,v,w,2) sd
1
- { S+H + s+y{}
Zﬂfﬁ(t,%%z) + w, (A1)
where
7 gt t 72 DZ 1/2
Py, 0,)=¢ JOIO[Z(Bg“(t— 0) } (71'_{)

Z
X exp[— m— (szy+ﬂ—7’[)§.:|Q(% ) dg,

(A15)

. t 2
et () oo

— 7| 2(55(t - )] ) X (S_;)m

X exp{— D7 (w2Dy+ﬂ—ﬂ{)§}

12
X Qv §) di+e " ( —DZ>
7t

X exp{— 4§t —(wZDy—i—ﬁl—}[)t]Q('y, 1),
(A16)

iU
Qy,t) = exp{ — Dyt (72 + Dv)} . (A17)
X
In view of egns (A12) and (Al4), and application of the
convolution theorem, the inverse Laplace transformation of
eqgn (A7) with respect t@ is given by

1 (= 5
,[0 Jo Ft—17,7,@,p) |:.’7‘[T(T, ¥, w, Z+P)

C(t,'y, ,2) =35
z

ais v [ ,Z
| 0 r02+p)
a7

R g,
a7

The inverse Fourier transformation of egn (A18) with
respect toy is

C(t,x,w,2) = (WlD%)M J; J'Oioc J:If(t—r, g,w,p)

X

+Hf’(’r, Y, 0, P—2)

(A18)

HP(r,X—q,w,Z+P)

n IP(7,X—Q,w,Z+P)
T

+HP(1,X—q,w,Pp—2)

IP(1,X—Q,w,p—2)
T

dpdgdr, (A19)
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where the following definitions of the Fourier inverse the inverse Fourier transformation of eqn (A24) is

transform were employed:

t D 2
‘ e ptxyd=e " | lo|2(55(t— )" <7>
ffl{fl(’)/)} = ﬁ Jriocfl('y)e'“YX dy, (A20) JO 0[ } 47TDny§‘3
) ¢
) ) % Xexp[— - —(ﬂ—ﬂ{)g“]
FHEO} = o |- 90 ¢ D0 a8
X (X, §) df. (A27)

(A21)
where7 ! is the Fourier inverse operator afids a dummy
integration variable.

In order to obtain the inverse Fourier transformation of
egn (A15) with respect tg, only the termQ(v,t) defined in
egn (Al7) requires inversion, and is obtained as follows:

1 * iu
?71{Q(%t)} = @n”2 J_weXp[— Dyt (’YZ+ ID—’Y>]
Iy 1 12
where
1/U% x2 U
n(x,t):exp[—D—<T+%—7x)}, (A23)

and the latter expression in eqn (A22) is a consequence of

employing Euler's formula (& = cosfx) + isin(yx)) and
the integral identities found in Gradshteyn and RyZhik
(eqn 3.923.1 and 2, p. 485) were utilized. Therefore, in
view of eqn (A22), the inverse Fourier transformation of
egn (Al15) is

Pt X, w,) =e " ﬁ)lo[Z(ﬂs«t - )" (ZT[;ZX §2> i

4D, ¢
X q(x, §) di. (A24)

The inverse Fourier transformation of eqn (A19) with
respect taw is

AN
C(t,X,y1Z)_FDZ 0J) - ) —x OF(t_T,q,V,p)

X

X exp[ (szy—l—ﬂl—ﬂ{)(}

HP(r,X—,Y—V,Z+ D)

IP(r,X—q,y—V,Z+p)
+
T

+HP(r,Xx—Q,y—V,p—2)

n IP(r,Xx—Qq,y—V,p—2)

} dp dv dq dr.
oT

(A25)

In view of the following inverse Fourier transform relation-
ship (see Kreryszid® eqn 9, p. 621):

4 {exp[ — Dy§] } B (ZDyf) exp[ - 4Dy§l '
(A26)

Furthermore, in order to complete the description of egn
(A25), the derivative ofP(t,xy,2) with respect tot is
obtained as follows:

et J;{ ( g) i fetsee- )]
—aﬂo[z(za;(t— ;))”2}}

>< P S—
47D,D, 3

IP(t, XY, 2)
at

¥
X exp[— D m—(ﬂl—ﬂ)s“]
X (X, ) d§‘+e_m(47rD—Bt3)
xDy
v

Y @ —y{)t} (%, 1).

% eXp{ - 4Dt
y

4Dt
(A28)

Substituting eqn (A23) into egns (A27) and (A28) and sub-
sequently substituting the resulting expressions into eqn
(A25) yields the desired generalized analytical solution,
eqgns (16), (17a)— (17d).

APPENDIX B DERIVATION OF THE ANALYTICAL
SOLUTION FOR AN AQUIFER WITH FINITE
THICKNESS

The analytical solution for the case of an aquifer with finite
thickness is obtained by solving eqn (4) subject to eqns
(11)—(14) and (28). Taking the Laplace transform with
respect to the time variable Fourier transforms with
respect to space variablesandy, and the finite Fourier
cosine transform with respect to space variablef egn

(4) and subsequently employing transformed initial condi-
tion (11) yields

F S 7.0 ¥

és, , W, = Bl
Svodm=—p e (B1)
where

E=w’Dy+yaD,+A+5— —— (B2)

s+’

the Laplace and Fourier transformation properties (A3)—(A5),
and the following finite Fourier cosine transformation and



Solute transport in saturated porous media

operational property were employed (see Chur€tpll,294):
u H -

(s v, 0, Yin) = JO (s 7, @, oY) dz. (B3)
F@\  2p,,2, dF(0)
e (L
m df (H) _
+(-)"S m=012.), B4

where the double over-dot signifies finite Fourier cosine
transform with respect to space variablge with
corresponding finite Fourier cosine transform variablg

= mm/H, F¢ is the finite Fourier cosine transform operator
andf is an arbitrary function.

The Fourier inverse transformation of eqn (B1) with
respect toy is obtained by employing the Fourier inverse
transforms (A20) and (A21), Euler's formula, integral
identities found in Gradshteyn and Ryzhifegns 3.724.1
and 2, p. 407), egn (B2) and application of the convolution
theorem as follows:

é(sr X, w, ¢m) = J,wl::—:(s’ g, w, 1//m)‘1’(5, X—0Q,w, lpm) dQ1
(BS)
where

1/2
1 Ux
\I’(S, X, w, Hbm) = <W> exp[sz]

D 2
X exp{—x((werS) D—y> } (B6)

1 u?
" Dy st 4DX>'
In view of egns (A20), (A21) and (B6), Euler’'s formula, the
integral identity found in Gradshteyn and Ryzhikeqgn
3.961.2, p. 498), and application of the convolution
theorem, the inverse Fourier transformation of eqn (B5)
with respect taw is given by

S <¢r2nDZ+JZl +s— (B7)

é(S, XY, ¢m):J _ OCJ _ E(Sv q,Vv, ¢m)g(31 X—q,y—-V, l)bm) dv dq,

(B8)
where
1 vz Ux
as Xy, ¥m = (47T2—Dny) eXp{ZDX]
D 1/2
X Ko [5”2 <y2+x2 D—y) } (B9)

In view of eqns (B7) and (B9), the inverse Laplace trans-
form (see Roberts and Kaufmah,eqn 3, p. 169 and

egn 13.2.1, p. 304):
1 -8
2 exp{ at —th},
(B10)

fo(t) =L_1{K0 {51(34' :32)112} } =
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and by following the procedures outlined in Appendix A,
the inverse Laplace transformation of eqn (B8) with respect
to sis given by

Clt. XY, ¥m) = (LG;rZTZ)XD) " J; J:O J'ic

X exp{u(;(D_xq)} e E(t—7,q,V, ¥m)
N

U2
X exp{—{(t//ranz—i-ﬂl—i- E-f]‘[)]
1
_4§<

2
n (y—v) ﬂ d¢
1 2
+ - exp[— r(¢mDZ+ﬂl+

Dy
U 2
4D, %) ]
1
47
X dv dq dr.

(x—a)°
D,

X exp{

(x—q)°
Dy

5]

(B11)

The inverse Fourier cosine transformation of eqn (B11)
with respect to), is given by

l 12 rt © ©
C(t'x'y'z)=<m) Jod ]

X exp{—

< eXp|:U(X_q):| efi{‘r
T B 1/2
{L7e=s) lose-0)
2 Ry Y
Xexp{_:?((x[)q) +(yDV))]
X y
U2
><exp{—g“(ﬂl+4D —ﬂ{ﬂ
Xffgl{F(t_ 7,Q,V, l//m)exp[_ ll/ﬁ]ng‘:l} dg‘
1 1/(x=0?® (y-v?
*?ex"[‘a( D, ' D, )]

2
X exp{— r<ﬂ+ %—ﬂ{ﬂ
o R T ¢m>exp[—¢%ozf]}}

X dv dg dr, (B12

1 is the inverse finite Fourier cosine operator,

where Fi.
defined as

)

> f(m)cogymd), 0=z=H.

Hm:l

i fo) 2
Fie {fgm)=" ¢
(B13)
In view of eqn (B13), eqn (B12) is simplified to the form of
the generalized analytical solution, egns (29)—(31).



