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Three-dimensional analytical solutions for solute transport in saturated, homogeneous
porous media are developed. The models account for three-dimensional dispersion in
a uniform flow field, first-order decay of aqueous phase and sorbed solutes with
different decay rates, and nonequilibrium solute sorption onto the solid matrix of the
porous formation. The governing solute transport equations are solved analytically by
employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous
media with either semi-infinite or finite thickness are considered. Furthermore,
continuous as well as periodic source loadings from either a point or an elliptic source
geometry are examined. The effect of aquifer boundary conditions as well as the
source geometry on solute transport in subsurface porous formations is investigated.
q 1999 Elsevier Science Ltd. All rights reserved.
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NOMENCLATURE
a semi-axis of the elliptic source parallel to thex-

axis [L]

a1, a2 defined in eqns (22) and (23), respectively

A defined in eqn (5)

b semi-axis of the elliptic source parallel to they-
axis [L]

B defined in eqn (6)

C solute concentration in suspension (liquid
phase) [M L¹3]

C0 source concentration [M L¹3]

C* sorbed solute concentration (solute mass/solids
mass) [M M¹1]

C` steady-state solute concentration in the absence
of decay [M L¹3]

Dx longitudinal hydrodynamic dispersion coeffi-
cient [L2 t¹1]

Dy lateral hydrodynamic dispersion coefficient [L2 t¹1]

Dz vertical hydrodynamic dispersion coefficient
[L 2 t¹1]

erf[x] error function, equal to(2=p1=2)
∫x

0
e¹ z2

dz

E defined in eqn (B2)

E defined in eqn (A2)

f, f0, f1, f2 arbitrary functions

F general functional form of virus source config-
uration [M L¹3 t¹1]
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F¹1 Fourier inverse operator

F fc finite Fourier cosine transform operator

F ¹ 1
fc finite Fourier cosine inverse operator

g defined in eqn (B9)

G source loading function [M t¹1 (point source);
M L ¹2 t¹1 (elliptic source)]

H finite aquifer thickness [L]

H defined in eqn (7)

I 0[·] modified Bessel function of first kind of order
zero

I 1[·] modified Bessel function of first kind of first
order

K0[·] modified Bessel function of second kind of
order zero

l x0,l y0,l z0 x, y andz Cartesian coordinates, respectively, of a
point source or the center of an elliptic source [L]

L¹1 Laplace inverse operator

m integer summation index

p dummy integration variable

P defined in eqn (A27)

q dummy integration variable

Q defined in eqn (A17)

r radius of circular source [L]

r 1 forward rate coefficient [t¹1]

r 2 reverse rate coefficient [t¹1]

s Laplace transform variable with respect to time

S defined in eqn (B7)

t time [t]

U average interstitial velocity [L t¹1]

v dummy integration variable

W source geometry function [L¹3]

x,y,z spatial coordinates [L]

Greek symbols
.
a arbitrary constant

ax longitudinal dispersivity [L]

ay lateral dispersivity [L]

az vertical dispersivity [L]

b, b1, b2 arbitrary constants

g Fourier transform variable with respect to
spatial coordinatex

d(·) Dirac delta function

z dummy integration variable

h defined in eqn (A23)

v porosity (liquid volume/porous medium
volume) [L3 L ¹3]

k, k1, k2 defined in eqns (26a), (24) and (25), respectively

l decay rate of liquid phase solute [t¹1]

l* decay rate of sorbed solute [t¹1]

L1,…,L6 defined in eqns (17a)–(17d), (21) and (30),
respectively

y dummy integration variable

r bulk density of the solid matrix (solids mass/
aquifer volume) [M L¹3]

t dummy integration variable

f Laplace transform variable with respect to
spatial coordinatez

F defined in eqn (A8)

wm finite Fourier cosine transform variable with
respect to spatial coordinatez, defined in eqn
(31)

W defined in eqn (B6)

q Fourier transform variable with respect to
spatial coordinatey

1 INTRODUCTION

Mathematical modeling of contaminant transport in porous
media has increasingly captured the attention of several
environmental engineers and scientists because of the public
concern, and the widespread attention paid to the disposal,
movement and fate of toxic contaminants in natural subsur-
face systems. As the number of contaminated sites
increases, so does the need for understanding the transport
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and fate of contaminants in the subsurface. For well-defined,
ideal aquifers, analytical solute transport models are
frequently employed. Furthermore, analytical models are
often used for verifying the accuracy of numerical solutions
to complex solute transport models.

Multidimensional contaminant transport models have
several advantages over one-dimensional models. For exam-
ple, multidimensional models can account for concentration
gradients and contaminant transport in directions perpendicu-
lar to the groundwater flow. As indicated by Leij and Dane,14

measuring experimentally lateral and vertical dispersion coef-
ficients is not a trivial task. However, multidimensional trans-
port models can provide such parameters by direct fitting of
available experimental data. In addition, multidimensional
models can easily account for a variety of boundary condi-
tions, as well as contaminant source geometries.

Although several multidimensional analytical models for
solute or colloid/virus transport are available in the litera-
ture,1,3–5,8,10,14,15,20,22,23 multidimensional analytical
models that can accommodate a variety of contamination
source configurations in porous media with semi-infinite or
finite thickness are nonexistent.

The present study extends the collection of contaminant
transport models by presenting analytical solutions to multi-
dimensional transport through saturated, homogeneous por-
ous media, accounting for first-order decay of the solute in
the aqueous phase or sorbed onto the solid matrix with
different decay rates. A variety of source configurations,
including continuous as well as periodic source loadings
from either point or elliptic source geometries, are consid-
ered. Generalized analytical solutions applicable to solute as
well as virus transport in aquifers of semi-infinite and finite
thickness are derived.

2 MODEL DEVELOPMENT

The transport of solutes in saturated, homogeneous porous
media, accounting for three-dimensional hydrodynamic dis-
persion in a uniform flow field, nonequilibrium sorption,
and first-order decay of liquid phase and sorbed solutes
with different decay rates, is governed by the following
partial differential equation:

]C(t,x,y, z)
]t

þ
r

v

]Cp(t, x,y,z)
]t

¹ Dx
]2C(t, x, y,z)

]x2

¹ Dy
]2C(t,x,y,z)

]y2 ¹ Dz
]2C(t,x,y,z)

]z2

þ U
]C(t,x, y, z)

]x
þlC(t,x, y, z)

þ lp r

v
Cp(t,x,y, z) ¼ F(t, x, y,z), ð1Þ

whereC is the liquid phase solute concentration;C* is the
solute concentration sorbed onto the solid matrix;Dx, Dy

and Dz are the longitudinal, lateral and vertical hydrody-
namic dispersion coefficients, respectively;U is the average

interstitial velocity;t is time; x, y andz are the spatial coor-
dinates in the longitudinal, lateral and vertical directions,
respectively;r is the bulk density of the solid matrix;v is
the porosity of the porous medium;l is the decay rate of
liquid phase solutes;l* is the decay rate of sorbed solutes;
andF is a general form of the source configuration. It should
be noted that the effective porosity, defined as percentage of
interconnected pore space, may be employed instead of por-
osity in a porous medium that contains a large number of
dead-end pores or in a fractured porous formation.2,7

The accumulation of solutes onto the solid matrix is
described by the following nonequilibrium expression:

r

v

]Cp(t,x,y, z)
]t

¼ r1C(t,x,y,z) ¹ r2
r

v
Cp(t,x,y,z)

¹ lp r

v
Cp(t,x, y, z), ð2Þ

wherer 1 andr 2 are the forward and reverse rate coefficients.
Assuming that initially there are no sorbed solutes present

in the porous formation, the expression describingC* is
obtained by solving eqn (2) subject to the initial condition
C*(0,x,y,z) ¼ 0 to yield

Cp(t, x,y,z)¼
r1v

r

∫t

0
C(t,x, y, z) exp ¹ r2 þ lp

ÿ �
(t¹t)

� �
dt,

(3)

wheret is a dummy integration variable. In view of eqns
(2) and (3), the governing equation, eqn (1), can be written
as

]C(t,x, y, z)
]t

¹ Dx
]2C(t,x,y, z)

]x2 ¹ Dy
]2C(t,x,y,z)

]y2

¹ Dz
]2C(t, x, y,z)

]z2 þ U
]C(t, x,y,z)

]x

þ AC(t,x, y, z) ¹ B
∫t

0
C(t,x, y, z)e¹ H (t ¹ t) dt

¼ F(t,x,y,z), ð4Þ

where the following substitutions have been employed

A ¼ r1 þl, (5)

B ¼ r1r2, (6)

H ¼ r2 þ lp: (7)

The derived integrodifferential equation, eqn (4), is solved
analytically in the subsequent sections for the cases of
aquifers with semi-infinite and finite thickness.

2.1 Source configuration

The source configuration is represented by the following
general function:

F(t,x,y,z) ¼ G(t)W(x,y,z), (8)

whereG(t) is the solute mass release rate per unit source
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area andW(x,y,z) characterizes the source physical geome-
try. In this work, point as well as two-dimensional source
geometries are considered. Furthermore,G(t) characterizes
the source loading type. Although instantaneous or contin-
uous/temporally periodic source loading types can easily be
employed, the present research efforts focus only on a con-
tinuous/temporally periodic source loading.

2.1.1 Point source geometry
The point source geometry is described mathematically by
the following expression:

W(x,y,z) ¼
1
v
d(x¹ lx0

)d(y¹ ly0
)d(z¹ lz0

), (9)

where lx0
, ly0

, lz0
represent the x,y,z unbounded

( ¹ ` , lx0
, ly0

, lz0
, `) Cartesian coordinates of the point

source, respectively, andd is the Dirac delta function. It
should be noted that hereG represents the solute mass
release from the point source.

2.1.2 Elliptic source geometry
The elliptic source geometry is described mathematically by
the following expression:

W(x,y,z) ¼

d(z¹ lz0
)

v

(x¹ lx0
)2

a2 þ
(y¹ ly0

)2

b2 # 1,

0 otherwise,

8><>:
(10)

where lx0
, ly0

, lz0
are x,y,z Cartesian coordinates, respec-

tively, of the center of the elliptic source geometry, anda
andb represent the semi-axes of the ellipse parallel to thex-
and y-axes, respectively. It should be noted that hereG
signifies the solute mass release rate per unit source area.

2.2 Aquifer with semi-infinite thickness

The appropriate initial and boundary conditions for the case
of an aquifer with infinite longitudinal and lateral directions
and semi-infinite vertical direction (thickness), as illustrated
schematically in Fig. 1(a), are as follows:

C(0,x,y,z) ¼ 0, (11)

C(t, 6 `, y, z) ¼ 0, (12)

C(t,x, 6 `, z) ¼ 0, (13)

]C(t,x,y, 0)
]z

¼ 0, (14)

]C(t,x,y, `)
]z

¼ 0, (15)

where condition (11) corresponds to the situation in which
solutes are initially absent from the three-dimensional por-
ous formation, eqns (12) and (13) indicate that the aquifer
is infinite horizontally and laterally, boundary condition
(14) represents a zero dispersive flux boundary and eqn

(15) preserves concentration continuity for a semi-infinite
vertical aquifer thickness. The vertical levelz ¼ 0 defines
the location of the water table or a confining layer. Eqn (4),
subject to conditions (11)–(15), is solved analytically. It
should be noted thatz increases in the downward direction.

The analytical solution to the governing partial differen-
tial equation, eqn (4), can be derived by a variety of meth-
ods, including the conventional method of separation of
variables, as well as integral transform methods. Further-
more, a solution technique developed by Walker24 invol-
ving a Green function (fundamental solution) can also be
utilized. However, in the present study, integral transform
techniques were employed because the multidimensional
models developed are an extension of our previous analy-
tical work on virus transport models,19,20 where Laplace
transform techniques were employed. Similar mathematical
techniques were employed for the analytical solutions of
multidimensional solute transport by Torideet al.21 and
Shan and Javandel.18

Taking Laplace transforms with respect to time variablet
and space variablez, and Fourier transforms with respect to
space variablesx andy of eqn (4), and subsequently employ-
ing the transformed initial and boundary conditions,
followed by inverse transformations, yields the desired ana-
lytical solution for an aquifer with semi-infinite thickness

Fig. 1. Schematic illustration of point and elliptic sources of con-
tamination with coordinateslx0

, ly0
, lz0

in an aquifer with semi-
infinite (a) and finite (b) thickness. Note that the positive direction

for the vertical coordinate is inverted.
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(see Appendix A):

C(t,x,y,z) ¼
1

64p3DxDyDz

� �1=2 ∫t

0

∫`

¹ `

∫`

¹ `

∫`

0

3 F(t ¹ t,q, v, p)L1(t)

3
∫t

0

L2(t)
z3=2 L3(z,x¹ q, y¹ v) L4(z,zþ p)

��
þ L4(z,z¹ p)ÿ dz þ

L3(t,x¹ q, y¹ v)
t3=2

3 L4(t, zþp)þL4(t,z¹ p)
� ��

dp dv dq dt,

ð16Þ

wherep, q, v and z are dummy integration variables; the
following definitions were employed:

L1(t) ¼ exp ¹ H t½ ÿ, (17a)

L2(t) ¼
Bz

t ¹ z

� �1=2

I1 2 Bz(t ¹ z)
ÿ �1=2

h i
, (17b)

L3(t,x,y) ¼ exp
Ux
2Dx

¹
1
4t

x2

Dx
þ

y2

Dy

� ��

¹ t A ¹ H þ
U2

4Dx

� ��
, ð17cÞ

L4(t,z) ¼ exp
¹ z2

4Dzt

� �
, (17d)

and I 1 is the modified Bessel function of the first kind of
first order.

2.2.1 Point source geometry
Substituting eqns (8) and (9) into eqn (16) yields the analy-
tical solution for the case of point source geometry:

C(t,x,y,z) ¼
1

64p3DxDyDz

� �1=2 ∫t

0

G(t ¹ t)
v

L1(t)

3
∫t

0

L2(t)
z3=2 L3(z,x¹ lx0

,y¹ ly0
)

�
3

�
L4(z,zþ lz0

) þ L4(z, z¹ lz0
)
�

dz

þ
L3(t,x¹ lx0

, y¹ ly0
)

t3=2

3 L4(t,zþ lz0
) þL4(t,z¹ lz0

)
� ��

dt, ð18Þ

where L1–L4 are defined in eqns (17a)– (17d), respec-
tively, and the following property of the Dirac delta func-
tion was employed:∫b

a
f0(t)d(t ¹ t0) dt ¼ f0(t0), a # t0 # b, (19)

wherea andb are arbitrary constants, andf0 is an arbitrary
function.

2.2.2 Elliptic source geometry
Substituting eqns (8) and (10) into eqn (16) leads to the
analytical solution for the case of elliptic source geometry:

C(t,x,y, z) ¼
1

64p2DxDz

� �1=2 ∫t

0

∫a2

a1

G(t ¹ t)
v

L1(t)

3
∫t

0

L2(t)
z

L3(z, x¹ q,0) L4(z, zþ lz0
)

��
þL4(z, z¹ lz0

)ÿL5(z) dz þ
L3(t,x¹ q,0)

t

3 L4(t, zþ lz0
)þL4(t,z¹ lz0

)
� �

L5(t)
�

dq dt,

ð20Þ

whereL1–L4 are defined in eqns (17a)– (17d), respectively,

L5(t) ¼ erf k1(t,q,y)
� �

¹ erf k2(t,q,y)
� �

, (21)

a1 ¼ lx0
¹ a, (22)

a2 ¼ lx0
þ a, (23)

k1(t,q,y) ¼ y¹ ly0
þ b2 ¹

b2(q¹ lx0
)2

a2

" #1=2( )
1

4Dyt

� �1=2

,

(24)

k2(t,q,y)¼ y¹ ly0
¹ b2 ¹

b2(q¹ lx0
)2

a2

" #1=2( )
1

4Dyt

� �1=2

,

(25)

erf[·] is the error function, and the following transformation
and integral relationships were employed:

k ¼
y¹ v

(4tDy)1=2 (26a)

dk ¼
¹ dv

(4tDy)1=2, (26b)

∫k2

k1

exp[ ¹ k2] dk ¼
¹p1=2

2
erf k1

� �
¹ erf k2

� �� 	
: (27)

As noted by Chrysikopoulos,4 solving for an elliptic source
geometry is advantageous because the appropriate solution
for a circular source can easily be obtained by settinga ¼ b
¼ r in eqns (22)–(25), wherer is the radius of the circular
source.

2.3 Aquifer with finite thickness

The desired analytical solution for the case of an aquifer
with finite thickness, as illustrated schematically in Fig.
1(b), is obtained by solving eqn (4) subject to conditions
(11)–(14) and the following finite vertical, lower boundary
condition:

]C(t,x, y, H)
]z

¼ 0, (28)

whereH is the aquifer thickness. The boundary condition
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(28) implies that the aquifer is confined by an impermeable
layer at depthz ¼ H. Taking the Laplace transform with
respect to the time variablet, Fourier transforms with
respect to space variablesx and y, and the finite Fourier
cosine transform with respect to the space variablez of eqn
(4), and subsequently employing the transformed initial and
boundary conditions, followed by inverse transformations
yields (see Appendix B):

C(t,x,y, z) ¼
1

16p2DxDy

� �1=2 ∫t

0

∫`

¹ `

∫`

¹ `
L1(t)

3
∫t

0

L2(t)
z

L3(z, x¹ q,y¹ v)
�

3 L6 z, F̈(t ¹ t,q,v,0), F̈(t ¹ t, q,v,wm)
ÿ �

dz

þ
L3(t,x¹ q, y¹ v)

t
L6 t, F̈(t¹t,q,v,0),
ÿ

3 F̈(t ¹ t,q, v,wm)Þ
�

dv dq dt, ð29Þ

whereL1–L3 are defined in eqns (17a)–(17c), respectively,

L6(t, f1, f2) ¼
f1
H

þ
2
H

∑̀
m¼ 1

f2 exp ¹ w2
mDzt

� �
cos wmz
ÿ �

,

(30)

wm ¼
mp

H
, (31)

m is the integer summation index,F̈(t,x, y,wm) represents
the finite Fourier cosine transform ofF(t,x,y,z) with respect
to space variablez with corresponding finite Fourier cosine
transform variablewm, andf1 andf2 are arbitrary functions.

2.3.1 Point source geometry
The desired analytical solution for the case of point source
geometry is obtained by substituting the corresponding
expression for̈F(t,x, y,wm) into eqn (29). Substituting eqn
(9) into eqn (8) and subsequently taking the finite Fourier
cosine transform (defined in eqn (B3)) with respect to space
variablez of the resulting expression yields

F̈(t, x,y,wm) ¼

∫H

0

G(t)
v

d(x¹ lx0
)d(y¹ ly0

)d(z¹ lz0
)

3 cos(wmz) dz¼
G(t)
v

d(x¹ lx0
)d(y¹ ly0

)

3 cos(wmlz0
), ð32Þ

where the latter formulation in eqn (32) is a consequence of
employing eqn (19). In view of eqns (19) and (32), the
general solution, eqn (29), reduces to the following form:

C(t,x,y,z) ¼
1

16p2DxDy

� �1=2 ∫t

0

G(t ¹ t)
v

L1(t)

3
∫t

0

L2(t)
z

L3(z,x¹ lx0
,y¹ ly0

)
�

3 L6 z,1, cos wmlz0

ÿ �ÿ �
dz

þ
L3(t,x¹ lx0

, y¹ ly0
)

t

3 L6 t, 1,cos wmlz0

ÿ �ÿ ��
dt, ð33Þ

whereL1–L3 andL6 are defined in eqns (17a)–(17c) and
(30), respectively.

2.3.2 Elliptic source geometry
In view of eqn (10), the finite Fourier cosine transform of
eqn (8) with respect toz is given by

F̈(t,x,y,wm)¼
G(t)
v

cos(wmlz0
)

(x¹ lx0
)2

a2 þ
(y¹ ly0

)2

b2 #1,

0 otherwise:

8><>:
(34)

Substituting eqn (34) into eqn (29), the desired analytical
solution for the case of elliptic source geometry is as
follows:

C(t,x,y, z) ¼
1

16pDx

� �1=2 ∫t

0

∫a2

a1

G(t ¹ t)
v

L1(t)

3
∫t

0

L2(t)
z1=2 L3(z, x¹ q,0)L5(z)

�
3 L6 z, 1,cos wmlz0

ÿ �ÿ �
dzþ

L3(t, x¹ q,0)
t1=2

3 L5(t)L6 t,1,cos wmlz0

ÿ �ÿ ��
dq dt, ð35Þ

wherea1 anda2 are defined in eqns (22) and (23), respec-
tively, andL1–L3, L5 and L6 are defined in eqns (17a)–
(17c), (21) and (30), respectively.

3 MODEL SIMULATIONS AND DISCUSSION

Model simulations are performed for two different source
configurations, and aquifers with either semi-infinite or
finite thickness. The integrals present in the analytical solu-
tions (18), (20), (33) and (35) are evaluated numerically by
the integration routines Q1DA and QDAG, which utilize
globally adaptive quadrature algorithms.11,12 The infinite
series part of the solution for the case of an aquifer with
finite thickness (eqn (30)) is evaluated by considering up to
1000 terms (m¼ 1000). The number of terms,m, is selected
so that additional terms do not alter the summation more
than 0.001%.

The groundwater table and the bottom of the finite thick-
ness aquifer are assumed to be located atz¼ 0 cm andz¼ H
¼ 100 cm, respectively. Although all analytical solutions
derived here are general enough to account for temporally

Table 1. Model parameters for simulations

Parameter Value Reference

Dx 1331.25 cm2 h¹1 Batu1

Dy ¼ Dz 268.75 cm2 h¹1 Batu1

U 0.625 cm h¹1 Batu1

l ¼ l* 0 days —
r 1.5 g cm¹3 Yates and Ouyang25

v 0.25 Parket al.16
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Fig. 2. Comparison between the analytical solution derived in this work for a point source geometry with constant mass release rate (solid
curve) and the corresponding solution of the one-dimensional model presented by Sim and Chrysikopoulos19 (circles). Here,Dy ¼ Dz .

0 cm2 h¹1, lx0
¼ 200 cm, ly0

¼ 0 cm, lz0
¼ 50 cm,r 1 ¼ 0.03 h¹1, r 2 ¼ 0.017 h¹1, t ¼ 1 day,y¼ 0:1cm andz¼ 50 cm.

Fig. 3. Concentration contours in thex–z plane obtained for a point source within an aquifer of semi-infinite thickness att ¼ 50 days (a),t
¼ 100 days (b) andt ¼ 300 days (c). Here,lx0

¼ 200 cm, ly0
¼ 0 cm, lz0

¼ 50 cm,r 1 ¼ 0.1 h¹1, r 2 ¼ 0.0008 h¹1 andy ¼ 0 cm.
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periodic source loading, for simplicity, the model simula-
tions presented are based on a constant solute mass release
rate and the value ofG is set to unity. Unless otherwise
specified, the fixed parameter values used in the simulations
are those listed in Table 1.

For the case whereDy ¼ Dz . 0 cm2 h¹1, the analytical
solution derived in this work for a point source geometry
with constant solute mass release rate is equivalent to the
one-dimensional analytical solution for virus transport with
constant concentration boundary conditions presented by
Sim and Chrysikopoulos19 (eqn (31)). For this special
case, model simulations are compared in Fig. 2 against the
one-dimensional model derived by Sim and Chrysikopou-
los.19 It should be noted, however, that in Fig. 2 the con-
centrations simulated by the one-dimensional transport
model (circles) are normalized with the source concentra-
tion (C0), whereas concentrations generated by solutions
derived in this work (solid curves) are normalized with
the steady-state concentration (C`) evaluated at t ¼

400 days, as suggested by Hunt.10 Fig. 2 clearly indicates

that the model simulations compared are virtually
identical.

Fig. 3 illustrates two-dimensional snapshots of solute
concentration at three successive times simulated for an
aquifer with semi-infinite thickness (eqn (18)). A point
source is assumed to be located inside the aquifer at
lx0

¼ 200 cm, ly0
¼ 0 cm andlz0

¼ 50 cm. It is observed
that as the solute plume spreads with increasing time,
solute spreading is restricted at the groundwater table (z ¼

0 cm), with a consequent zero gradient of solute concentra-
tion distribution, whereas a continuous solute spreading
occurs anywhere else below the water table because the
aquifer extends to infinity without a boundary (eqn (15)).
Consequently, the observed solute plume is asymmetric
with respect to the flow direction along the plume center-
line. In contrast, Fig. 4 illustrates symmetric solute plumes
at three successive times, for an aquifer with finite thickness
and point source geometry (eqn (33)). This is due to the
presence of a fixed impermeable lower boundary (eqn
(28),z¼ H ¼ 100 cm) in addition to the upper groundwater

Fig. 4. Concentration contours in thex–z plane obtained for a point source within an aquifer of finite thickness att ¼ 50 days (a),t ¼
100 days (b) andt ¼ 300 days (c). Here,lx0

¼ 200 cm, ly0
¼ 0 cm, lz0

¼ 50 cm,r 1 ¼ 0.03 h¹1, r 2 ¼ 0.017 h¹1 andy ¼ 0 cm.
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table boundary (z ¼ 0 cm). Comparing Figs 3 and 4, it is
clear that the vertical migration of solutes is hindered by the
two fixed boundaries. Furthermore, the presence of these
boundaries contributes to the enhancement of solute trans-
port downstream from the source in the direction of ground-
water flow.

The effect of the lower impermeable boundary condition
is also demonstrated for the case of an elliptic source geometry.
Two-dimensional snapshots of solute concentrations att ¼

300 days are predicted for the case of an elliptic source
geometry for an aquifer with semi-infinite thickness (eqn
(20), Fig. 5(a)), as well as for an aquifer with finite thickness
(eqn (35), Fig. 5(b)). Similarly to the case of point source
geometry, the presence of a shallow impermeable aquitard
significantly constricts the vertical spreading of solutes,
which consequently leads to an enhanced solute migration
in the direction of groundwater flow.

The analytical solutions derived in this work can be read-
ily employed to simulate transport of a variety of contami-
nants, including biocolloids such as viruses and bacteria.
The applicability of these models to field investigations is
limited to subsurface formations, where it may not be pos-
sible to account for physicochemically heterogeneous por-
ous media. However, it should be noted that
multidimensional contaminant transport models are more
advantageous than one-dimensional models where a homo-
geneous porous medium assumption is valid, because they
can account for concentration gradients and contaminant
transport in directions perpendicular to the groundwater
flow. Furthermore, multidimensional models can easily

account for a variety of boundary conditions, as well as
contaminant source geometries.

4 SUMMARY

Three-dimensional analytical solutions for solute transport
in saturated, homogeneous porous media were developed,
accounting for three-dimensional hydrodynamic disper-
sion in a uniform flow field, first-order decay of aqueous
phase and sorbed solutes with different decay rates, and
nonequilibrium solute sorption onto the solid matrix of the
porous formation. The governing transport equations were
solved analytically by employing Laplace, Fourier and
finite Fourier cosine transform techniques. Aquifers with
either semi-infinite or finite thickness are considered. The
derived analytical solutions are general enough to accom-
modate a variety of source loadings and source geome-
tries. However, the simulations presented in this study are
based on a continuous source loading from either point
source or elliptic source geometry. It was shown that
solute transport in subsurface porous media is signifi-
cantly influenced by the aquifer boundary conditions.
For an aquifer confined by a shallow impermeable
aquitard, solute migration in the vertical direction is
restricted, whereas solute transport in the direction of
groundwater flow is enhanced, compared with the case
of a relatively thick aquifer. The analytical solutions
developed here are particularly useful for preliminary
estimation of solute migration, characterization of

Fig. 5. Concentration contours in thex–z plane obtained for an elliptic source geometry, and an aquifer with semi-infinite (a) and finite (b)
thickness. Here,a ¼ b ¼ 25 cm, lx0

¼ 200 cm, ly0
¼ lz0

¼ 0 cm, r 1 ¼ 0.1 h¹1, r 2 ¼ 0.0008 h¹1, t ¼ 300 days andy ¼ 0 cm.
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contamination sources, examination of possible aquifer
boundary conditions, validation of numerical solutions
and determination of solute transport parameters from
laboratory or well-defined field experiments.
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APPENDIX A DERIVATION OF THE ANALYTICAL
SOLUTION FOR AN AQUIFER WITH SEMI-
INFINITE THICKNESS

The analytical solution for the case of semi-infinite thick-
ness is obtained by solving eqn (4) subject to conditions
(11)–(15). Taking Laplace transforms with respect to time
variablet and space variablez, and Fourier transforms with
respect to space variablesx and y of eqn (4) and subse-
quently employing eqn (11) and transformed boundary
condition (14) yields

C̃(s,g,q,f) ¼
f

¯̂̃
C(s,g,q, 0)

(f þ E)(f ¹ E)
¹

˙̂̄
F̃(s,g,q,f)

Dz(f þ E)(f ¹ E)
,

(A1)

where

E ¼
1

D1=2
z

sþ g2Dx þ igU þ q2Dy þ A ¹
B

sþ H

� �1=2

,

(A2)

and the following properties were employed for the Laplace
and Fourier transformations:13,17

C̃(s,x,y,z) ¼

∫`

0
C(t,x,y,z)e¹ st dt, (A3)

ˆ̃C(s,g, y, z) ¼
1

(2p)1=2

∫`

¹ `
C̃(s,x,y,z)e¹ igx dx, (A4)
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¯̂̃
C(s,g,q,z) ¼

1
(2p)1=2

∫`

¹ `

ˆ̃C(s,g, y, z)e¹ iqy dy, (A5)

˙̂̄
C̃(s,g,q,f) ¼

∫`

0

¯̂̃
C(s,g,q, z)e¹fz dz, (A6)

where the tilde and overdot signify Laplace transform with
respect to time and space variablest and z, respectively,
and s and f are the corresponding Laplace domain vari-
ables; the hat and overbar signify Fourier transforms with
respect to space variablesx and y with corresponding
Fourier domain variablesg and q, respectively; and
i ¼ ( ¹ 1)1/2.

Taking the Laplace inverse transformation of eqn (A1)
with respect tof, applying boundary condition (15) and

subsequently evaluating
¯̂̃
C(s,g,q,0) at the limit z → `,

yields

¯̂̃
C(s,g,q,z) ¼

1
2Dz

∫`

0

¯̂̃
F(s,g,q,p) F(s,g,q,zþ p)

��
þ F(s,g,q,p¹ z)ÿ dpþ

∫z

0

¯̂̃
F(s,g,q,p)

3 F(s,g,q,z¹ p) ¹ F(s,g,q,p¹ z)
� �

dp

�
,

ðA7Þwhere

F(s,g,q, z) ¼
e¹ Ez

E
, (A8)

and the following Laplace inversion identities were uti-
lized:17

L ¹ 1 f̃ 1(p)f̃ 2(p)
� 	

¼

∫z

0
f1(z¹ p)f2(p) dp, (A9)

L ¹ 1 f

(f þ a)(f þ b)

� �
¼

ae¹ az

a ¹ b
þ

be¹ bz

b¹ a
, (A10)

L ¹ 1 1
(f þ a)(f þ b)

� �
¼

e¹ az ¹ e¹bz

b¹ a
, (A11)

whereL¹1 is the Laplace inverse operator, anda andb are
arbitrary constants.

Furthermore, for mathematical convenience, let

F ¼
HF

sþ H
þ

sF
sþ H

: (A12)

The inverse Laplace transformation of eqn (A12) with
respect tos can be found by employing the following
relationship:19

L ¹ 1 1
sþ H

f̃ 0 sþ H ¹
a

sþ H

� �� �
¼ e¹ H t

∫t

0
I0 2 az(t ¹ z)

ÿ �1=2
h i

f0(z) dz, ðA13Þ

where f̃ 0(s) is the Laplace transform of the arbitrary func-
tion f0(t) anda is an arbitrary constant. Following the pro-
cedures provided in Sim and Chrysikopoulos,19 the inverse

Laplace transform of eqn (A12) is obtained as

L¹ 1 HF(s,g,q, z)
sþ H

þ
sF

sþ H

� �

¼ H ¯̂P(t,g,q,z) þ
] ¯̂P(t,g,q, z)

]t
, ðA14Þ

where

¯̂P(t,g,q,z) ¼ e¹ H t
∫t

0
I0 2 Bz(t ¹ z)

ÿ �1=2
h i Dz

pz

� �1=2

3 exp ¹
z2

4Dzz
¹ q2Dy þ A ¹ H
ÿ �

z

� �
Q (g, z) dz,

ðA15Þ

] ¯̂P(t,g,q,z)
]t

¼ e¹ H t
∫t

0

Bz

t ¹ z

� �1=2

I1 2 Bz(t ¹ z)
ÿ �1=2

h i�
¹ H I0 2 Bz(t ¹ z)

ÿ �1=2
h i

g 3
Dz

pz

� �1=2

3 exp ¹
z2

4Dzz
¹ q2Dy þ A ¹ H
ÿ �

z

� �
3 Q (g, z) dz þ e¹ H t Dz

pt

� �1=2

3 exp ¹
z2

4Dzt
¹ q2DyþA¹H
ÿ �

t

� �
Q (g, t),

ðA16Þ

Q (g, t) ¼ exp ¹ Dxt g2 þ
iU
Dx

g

� �� �
: (A17)

In view of eqns (A12) and (A14), and application of the
convolution theorem, the inverse Laplace transformation of
eqn (A7) with respect tos is given by

¯̂C(t,g,q,z) ¼
1

2Dz

∫t

0

∫`

0

¯̂F(t ¹ t,g,q,p)
�
H ¯̂P(t,g,q, zþp)

þ
] ¯̂P(t,g,q,zþ p)

]t
þ H ¯̂P(t,g,q, p¹ z)

þ
] ¯̂P(t,g,q,p¹ z)

]t

�
dp dt: ðA18Þ

The inverse Fourier transformation of eqn (A18) with
respect tog is

C̄(t,x,q,z) ¼
1

8pD2
z

� �1=2 ∫t

0

∫`

¹ `

∫`

0
F̄(t ¹ t,q,q,p)

3

�
H P̄(t, x¹ q,q, zþ p)

þ
]P̄(t,x¹ q,q,zþ p)

]t

þ HP̄(t,x¹ q,q,p¹ z)

þ
]P̄(t,x¹ q,q,p¹ z)

]t

�
dp dq dt, ðA19Þ
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where the following definitions of the Fourier inverse
transform were employed:

F ¹ 1 f̂ 1(g)
� 	

¼
1

(2p)1=2

∫`

¹ `
f̂ 1(g)eigx dg, (A20)

F ¹ 1 f̂ 1(g)f̂ 2(g)
� 	

¼
1

(2p)1=2

∫`

¹ `
f1(x¹ y)f2(y) dy,

(A21)
whereF¹1 is the Fourier inverse operator andy is a dummy
integration variable.

In order to obtain the inverse Fourier transformation of
eqn (A15) with respect tog, only the termQ(g,t) defined in
eqn (A17) requires inversion, and is obtained as follows:

F ¹ 1 Q (g, t)
� 	

¼
1

(2p)1=2

∫`

¹ `
exp ¹ Dxt g2 þ

iU
Dx

g

� �� �
3 eigx dg¼

1
2Dxt

� �1=2

h(x, t), ðA22Þ

where

h(x, t) ¼ exp ¹
1

Dx

U2t
4

þ
x2

4t
¹

Ux
2

� �� �
, (A23)

and the latter expression in eqn (A22) is a consequence of
employing Euler’s formula (eigx ¼ cos(gx) þ isin(gx)) and
the integral identities found in Gradshteyn and Ryzhik9

(eqn 3.923.1 and 2, p. 485) were utilized. Therefore, in
view of eqn (A22), the inverse Fourier transformation of
eqn (A15) is

P̄(t, x,q,z) ¼ e¹ H t
∫t

0
I0 2 Bz(t ¹ z)

ÿ �1=2
h i Dz

2pDxz
2

� �1=2

3 exp ¹
z2

4Dzz
¹ q2Dy þ A ¹ H
ÿ �

z

��
3 h(x, z) dz: ðA24Þ

The inverse Fourier transformation of eqn (A19) with
respect toq is

C(t,x,y,z) ¼
1

4pDz

∫t

0

∫`

¹ `

∫`

¹ `

∫`

0
F(t ¹ t, q,v,p)

3

�
HP(t,x¹ q, y¹ v, zþ p)

þ
]P(t,x¹ q, y¹ v,zþ p)

]t

þ H P(t, x¹ q,y¹ v,p¹ z)

þ
]P(t,x¹ q, y¹ v,p¹ z)

]t

�
dp dv dq dt:

ðA25Þ

In view of the following inverse Fourier transform relation-
ship (see Kreryszig,13 eqn 9, p. 621):

F ¹ 1 exp ¹ q2Dyz
� �� 	

¼
1

2Dyz

� �1=2

exp ¹
y2

4Dyz

� �
,

(A26)

the inverse Fourier transformation of eqn (A24) is

P(t,x,y,z) ¼ e¹ H t
∫t

0
I0 2 Bz(t ¹ z)

ÿ �1=2
h i Dz

4pDxDyz
3

� �1=2

3 exp ¹
z2

4Dzz
¹

y2

4Dyz
¹ A ¹ Hð Þz

� �
3 h(x, z) dz: ðA27Þ

Furthermore, in order to complete the description of eqn
(A25), the derivative ofP(t,x,y,z) with respect to t is
obtained as follows:

]P(t,x,y,z)
]t

¼ e¹ H t
∫t

0

Bz

t ¹ z

� �1=2

I1 2 Bz(t ¹ z)
ÿ �1=2

h i�
¹ H I0 2 Bz(t ¹ z)

ÿ �1=2
h io

3
Dz

4pDxDyz
3

� �1=2

3 exp ¹
z2

4Dzz
¹

y2

4Dyz
¹ A ¹ Hð Þz

� �

3 h(x, z) dz þ e¹ H t Dz

4pDxDyt3

� �1=2

3 exp ¹
z2

4Dzt
¹

y2

4Dyt
¹ A ¹ Hð Þt

� �
h(x, t):

ðA28Þ

Substituting eqn (A23) into eqns (A27) and (A28) and sub-
sequently substituting the resulting expressions into eqn
(A25) yields the desired generalized analytical solution,
eqns (16), (17a)– (17d).

APPENDIX B DERIVATION OF THE ANALYTICAL
SOLUTION FOR AN AQUIFER WITH FINITE
THICKNESS

The analytical solution for the case of an aquifer with finite
thickness is obtained by solving eqn (4) subject to eqns
(11)–(14) and (28). Taking the Laplace transform with
respect to the time variablet, Fourier transforms with
respect to space variablesx and y, and the finite Fourier
cosine transform with respect to space variablez of eqn
(4) and subsequently employing transformed initial condi-
tion (11) yields

¨̄̂
C̃(s,g,q,wm) ¼

¨̄̂
F̃(s,g,q,wm)

g2Dx þ igU þ E
, (B1)

where

E¼q2Dy þ w2
mDz þ A þ s¹

B
sþ H

, (B2)

the Laplace and Fourier transformation properties (A3)–(A5),
and the following finite Fourier cosine transformation and
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operational property were employed (see Churchill,6 p. 294):

¨̄̂
C̃(s,g,q,wm) ¼

∫H

0

¯̂̃
C(s,g,q,z)cos(wmz) dz, (B3)

F fc
d2f (z)
dz2

� �
¼ w2

mf̈ (w2
m) ¹

df (0)
dz

þ ( ¹ 1)m df̈ (H)
dz

(m¼ 0,1,2…), ðB4Þ

where the double over-dot signifies finite Fourier cosine
transform with respect to space variablez, with
corresponding finite Fourier cosine transform variablewm

¼ mp/H, F fc is the finite Fourier cosine transform operator
and f is an arbitrary function.

The Fourier inverse transformation of eqn (B1) with
respect tog is obtained by employing the Fourier inverse
transforms (A20) and (A21), Euler’s formula, integral
identities found in Gradshteyn and Ryzhik9 (eqns 3.724.1
and 2, p. 407), eqn (B2) and application of the convolution
theorem as follows:

¨̄̃
C(s,x,q,wm) ¼

∫`

¹ `

¨̄̃
F(s, q,q,wm)W(s,x¹ q,q,wm) dq,

(B5)
where

W(s, x,q,wm) ¼
1

4DxDy q2 þ S
ÿ � !1=2

exp
Ux
2Dx

� �

3 exp ¹ x q2 þ S
ÿ �Dy

Dx

� �1=2� �
, ðB6Þ

S ¼
1

Dy
w2

mDz þ A þ s¹
B

sþ H
þ

U2

4Dx

� �
: (B7)

In view of eqns (A20), (A21) and (B6), Euler’s formula, the
integral identity found in Gradshteyn and Ryzhik9 (eqn
3.961.2, p. 498), and application of the convolution
theorem, the inverse Fourier transformation of eqn (B5)
with respect toq is given by

¨̃C(s,x,y,wm)¼
∫`

¹ `

∫`

¹ `

¨̃F(s, q,v,wm)g(s,x¹q,y¹v,wm)dv dq,

(B8)

where

g(s,x,y,wm) ¼
1

4p2DxDy

� �1=2

exp
Ux
2Dx

� �

3 K0 S1=2 y2 þ x2 Dy

Dx

� �1=2� �
: ðB9Þ

In view of eqns (B7) and (B9), the inverse Laplace trans-
form (see Roberts and Kaufman,17 eqn 3, p. 169 and
eqn 13.2.1, p. 304):

f0(t) ¼ L ¹ 1 K0 b1 sþ b2

ÿ �1=2
h in o

¼
1
2t

exp
¹b2

1

4t
¹ b2t

� �
,

(B10)

and by following the procedures outlined in Appendix A,
the inverse Laplace transformation of eqn (B8) with respect
to s is given by

C̈(t,x,y,wm) ¼
1

16p2DxDy

� �1=2 ∫t

0

∫`

¹ `

∫`

¹ `

3 exp
U(x¹ q)

2Dx

� �
e¹ HtF̈(t ¹ t,q, v,wm)

3
∫t

0

B
z(t ¹ z)

� �1=2

I1 2 Bz(t ¹ z)
ÿ �1=2

h i�
3 exp ¹ z w2

mDz þ A þ
U2

4Dx
¹ H

� �� �
3 exp ¹

1
4z

(x¹ q)2

Dx
þ

(y¹ v)2

Dy

� �� �
dz

þ
1
t

exp ¹ t w2
mDz þ A þ

U2

4Dx
¹ H

� �� �
3 exp ¹

1
4t

(x¹ q)2

Dx
þ

(y¹ v)2

Dy

� �� ��
3 dv dq dt: ðB11Þ

The inverse Fourier cosine transformation of eqn (B11)
with respect towm is given by

C(t,x,y, z) ¼
1

16p2DxDy

� �1=2 ∫t

0

∫`

¹ `

∫`

¹ `

3 exp
U(x¹ q)

2Dx

� �
e¹ Ht

3
∫t

0

B
z(t ¹ z)

� �1=2

I1 2 Bz(t ¹ z)
ÿ �1=2

h i�
3 exp ¹

1
4z

(x¹ q)2

Dx
þ

(y¹ v)2

Dy

� �� �
3 exp ¹ z A þ

U2

4Dx
¹ H

� �� �
3 F ¹ 1

fc F̈(t ¹ t,q, v,wm)exp ¹ w2
mDzz

� �� 	
dz

þ
1
t
exp ¹

1
4t

(x¹ q)2

Dx
þ

(y¹ v)2

Dy

� �� �
3 exp ¹ t A þ

U2

4Dx
¹ H

� �� �
3 F ¹ 1

fc F̈(t ¹ t,q, v,wm)exp ¹ w2
mDzt

� �� 	�
3 dv dq dt, ðB12Þ

where F ¹ 1
fc is the inverse finite Fourier cosine operator,

defined as

F ¹ 1
fc f̈ (wm)
� 	

¼
f̈ (0)
H

þ
2
H

∑̀
m¼ 1

f̈ (wm)cos(wmz), 0 # z# H:

(B13)
In view of eqn (B13), eqn (B12) is simplified to the form of
the generalized analytical solution, eqns (29)–(31).
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