
Transport of polydisperse colloid suspensions
in a single fracture

Scott C. James and Constantinos V. Chrysikopoulos
Department of Civil and Environmental Engineering, University of California, Irvine

Abstract. The transport of variably sized colloids (polydisperse) in a fracture with
uniform aperture is investigated by a particle-tracking model that treats colloids as
discrete particles with unique transport properties while accounting for either matrix
diffusion or irreversible colloid deposition. For the special case of a monodisperse colloid
suspension the particle-tracking model is in perfect agreement with predictions based on
an existing analytical solution. It is shown that lognormal colloid size distributions exhibit
greater spreading than monodisperse suspensions. Increasing the fracture porosity of the
solid matrix leads to higher matrix diffusion, which in turn delays particle breakthrough
for both the monodisperse and variably sized colloid suspensions. The smallest particles of
a distribution are more greatly affected by matrix diffusion whereas the largest particles
are transported faster and further along a fracture. Both perfect sink and kinetic colloid
deposition onto fracture surfaces are examined. Kinetic deposition accounts for colloid
surface exclusion by either a linear or nonlinear blocking function. For both cases the
smallest colloid particles tend to preferentially deposit onto the fracture wall. Both matrix
diffusion and surface deposition tend to discretize colloid distributions according to
particle size so that larger particles are least retarded and smaller particles are more
slowly transported. Furthermore, it is shown that the rate of colloid deposition is inversely
proportional to the fracture aperture.

1. Introduction

Groundwater flow and contaminant transport in fractured
media have been the focus of several studies [e.g., Grisak and
Pickens, 1981; Neretnieks et al., 1982; Johns and Roberts, 1991;
Keller et al., 1995; Berkowitz and Scher, 1995; Berkowitz and
Zhou, 1996; Zimmerman and Bodvarsson, 1996] because the
possibility for significant environmental contamination by
harmful radioactive waste, which is often disposed of in frac-
tured geologic repositories, is an area of increasing concern
[Yamashita and Kimura, 1990]. Furthermore, contamination of
fractured subsurface formations by organic as well as inorganic
toxins and the role of colloids in enhancing or diminishing
contaminant transport have increasingly captured the interest
of researchers [Smith and Degueldre, 1993]. For instance, the
Swiss program, Project Gewahr [Statens Karnkraftinspektion
(SKI), Swedish Nuclear Power Inspectorate, 1991], which aimed
to demonstrate the feasibility of deep disposal of radioactive
waste in bedrock, improved current understanding of flow and
transport of both contaminants and colloids in fractured me-
dia. Smith and Degueldre [1993] found that depending on en-
vironmental conditions (e.g., hydrodynamics or contaminant
and colloid sorption characteristics), colloids could both en-
hance and diminish contaminant transport and significantly
affect contaminant migration.

Studies of colloid transport in a single fracture have been
reported by Abdel-Salam and Chrysikopoulos [1995a, b], where
it was demonstrated that the dispersion of colloids and solutes
sorbed onto colloids (cotransport) is enhanced by fracture wall
roughness. The attachment of colloids in parallel plate systems

has been examined by Adamczyk et al. [1983] and in a single
fracture has been examined by Abdel-Salam and Chrysikopou-
los [1994]. Ibaraki and Sudicky [1995] have developed a com-
prehensive model analyzing monodisperse colloid-facilitated
contaminant transport in discretely fractured porous media.
Their two-dimensional numerical model incorporated advec-
tive-dispersive aqueous phase solute transport in the fractures
and the porous matrix, colloid transport in the fractures, and
both equilibrium and kinetic sorption of the contaminant.
Much of the research performed to date on colloid transport is
based on uniform particles (monodisperse colloid suspen-
sions). However, it should be noted that in natural systems,
colloid particles can range over several orders of magnitude in
diameter (polydisperse).

Colloids are very fine particles such as clay minerals, metal
oxides, viruses, bacteria, and organic macromolecules that
range in size from 1023 to 10 mm [Chrysikopoulos and Sim,
1996]. A wide variety of microorganisms, organic, and inor-
ganic colloidal material can be found in groundwater. Colloids
are naturally present in groundwater or artificially introduced
through injection of cementing as well as slurry agents or
during well installation and operation. Colloids, both in the
liquid phase and attached to solid surfaces, have high specific
surface areas per unit mass (;300 m2/g21 [Chung and Lee,
1992]); thus they possess a high sorptive capacity for contam-
inants and are themselves able to sorb onto solid surfaces.
Colloid transport differs from solute transport because of col-
loidal particle interactions (e.g., flocculation), mechanical clog-
ging effects, and surface reactions (e.g., attachment). The ad-
sorption process of colloids onto solid surfaces is often termed
as deposition, attachment, or filtration. Deposition of colloids
is generally affected by Brownian motion, the repulsive electric
double layer, attractive van der Waals forces, and solution
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chemistry [Payatakes et al., 1974]. Particle deposition is also
affected by whether fracture surfaces are clean or whether
deposition occurs onto previously deposited particles. Detach-
ment of colloids is not expected in fractures where flow veloc-
ities are low. Bowen and Epstein [1979] have shown experimen-
tally that the release rate of deposited colloids from a smooth
parallel plate channel is negligible, and in many studies, colloid
deposition is considered irreversible [Elimelech et al., 1995;
Johnson et al., 1996].

In this work, theoretical investigations based on particle-
tracking simulations are undertaken to gain a better under-
standing of the effect of size distribution on colloidal transport
in a single fracture. Lognormal colloid diameter distributions
are used because they are realistic representations of naturally
occurring colloid suspensions [Ledin et al., 1994]. Results are
compared to an analytical solution available in the literature
for monodisperse particle transport within two infinitely long
parallel plates. The spreading of polydisperse colloid suspen-
sions is compared to that of a monodisperse suspension. Ma-
trix diffusion, which can serve to increase colloid residence
time by back diffusion into the fracture once the bulk of the
colloid cloud has moved downstream, can play an important
role in colloid transport as well. The effect of matrix diffusion
on polydisperse colloid distributions is examined. Further-
more, the effects of particle deposition on the transport of
colloids are investigated by perfect sink and kinetic sorption
models. For the kinetic sorption case both linear and nonlinear
irreversible dynamic blocking functions (DBFs) are employed,
first applied to models of colloid transport in fractures by
Chrysikopoulos and Abdel-Salam [1997]. Finally, the effect of
fracture aperture on polydisperse colloid transport is investi-
gated.

2. Model Development
2.1. Flow and Transport

In order to simplify the development of the particle-tracking
model a single fracture with uniform aperture, as shown in
Figure 1, is considered in this work. Flow in a uniform fracture
can be idealized as Poiseuille flow (i.e., having a parabolic
velocity profile), where particles can be both advected along

the velocity gradient and dispersed because of molecular dif-
fusion [Buckley and Loyalka, 1994]. The magnitude of the
advective force is a function of the distance from the center of
the fracture, the y location. The parabolic velocity profile
within a smooth fracture is given by [Fox and McDonald, 1992,
p. 325]:

Ux~ y! 5 UmaxF 1 2 4S y
bD

2G (1)

where Umax is the maximum velocity occurring along the cen-
terline, and b is the fracture aperture width. Colloids are as-
sumed to be hard spherical particles (i.e., no surface charge)
which are advected and diffused through the aperture and are
allowed to penetrate the surrounding matrix by diffusion or
attach to fracture walls. Although settling rates can affect col-
loid transport in fractures, gravitational effects have been dis-
regarded in the interest of simplicity and in order to explicitly
examine ideal particle transport in a single uniform fracture.
Ledin et al. [1994] reported that colloids found in natural
environments usually follow a lognormal size distribution.
Such a distribution can be mathematically expressed as
[Gelhar, 1993, p. 19]:

1~dp! 5
1o

Î2pzdp
exp F21

2 S ln dp 2 l

z D 2G (2)

where 1(dp) is the number of colloids of a given diameter dp,
1o is the total number of colloids present in the system, l is
the mean of the log-colloid diameter, and z2 is the variance of
the log-colloid diameter. Furthermore, in this work the mean
colloid diameter is represented by m 5 exp [l 1 0.5z2], and the
variance of the colloid diameter is represented by s2 5 m2(ez2

2 1) [Ang and Tang, 1975].
An analytical solution to monodisperse particle transport in

a fracture exists. Assuming that axial advection and transverse
diffusion are the important transport mechanisms and that the
colloids have had sufficient residence time to establish Taylor
dispersion conditions, the advective and diffusive transport
forces can be combined to determine the Taylor dispersion
coefficient in a parallel plate channel [Berkowitz and Zhou,
1996]. The equation relating the spreading of a colloid plume
to the average flow velocity, 2Umax/3, is given by the following
diffusion equation [Buckley and Loyalka, 1994]

n~ x9 , t!
t 5 D*

2n~ x9 , t!
 x92 (3)

where n is the temporally and spatially varying particle number
density, x9 5 x 1 2

3
Umaxt is the distance from the center of

mass of the colloid plume at time t , and D* is the Taylor
dispersion coefficient (which is not a physical constant but
depends on the flow and its properties) defined as [Keller et al.,
1995; Edwards et al., 1991]

D* 5 $ 1
2

945
Umax

2 b2

$
(4)

where $ is the molecular diffusion coefficient of a colloid
particle in the fracture described by the Stokes-Einstein equa-
tion [Bird et al., 1960, p. 514]

$ 5
kT

3phdp
(5)

Figure 1. Schematic illustration of a fracture with uniform
aperture and a migrating plume of colloids undergoing surface
sorption and matrix diffusion. Note that y 5 0 at the center of
the aperture.
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where k is the Boltzmann’s constant, T is the absolute tem-
perature of the solvent, and h is the dynamic viscosity of the
solvent. The analytical solution to the diffusion equation, (3),
subject to no flux conditions both at the fracture walls and at
the centerline, with an instantaneous pulse injection under
smooth interstitial flow, is derived by Taylor [1953],

n~ x , t! 5
no

~4pD*t!1/ 2 exp F2
~ x 2

2
3

Umaxt!2

4pD*t
G (6)

where no is the initial particle number concentration at time
zero. Although the parabolic velocity profile creates fluid shear
in the y direction, the expression for the colloid number con-
centration is independent of y . Under fully developed Taylor
conditions, axial convection and radial diffusion contribute to
the overall dispersion with the net result of having the colloids
travel in an apparent plug flow. The difference between a
parabolic velocity profile and a uniform velocity profile on
particle transport lies in the spreading of the colloids. In plug
flow the diffusion coefficient $ may be orders of magnitude
less than in parabolic flow where the Taylor dispersion coeffi-
cient D* governs the spreading. Figure 2 shows three particle
snapshots created by the particle-tracking model for a fracture

with aperture 100 mm and maximum fluid velocity 1 nm s21.
The very small fluid velocity, 1 nm s21, was chosen in order to
make more prominent the dispersive effects on the line source
of colloids at this scale. It is evident from Figure 2 that the
colloids are, on average, traveling with the mean fluid velocity
(dashed vertical line). Although there is a parabolic velocity
profile within the fracture, the colloids are traveling as if under
plug flow conditions because at fully developed Taylor condi-
tions the dispersive pattern of colloids appears to be similar to
that observed in plug flow.

2.2. Matrix Diffusion

Diffusion within the matrix is typically modeled as a Fickian
process where the concentration gradient is controlling mass
transfer. As a colloid moves between fracture and matrix, a
sharp gradient is encountered both in porosity and diffusivity.
Thompson and Gelhar [1990] note that additional deterministic
velocity terms are necessary to add to the particle-tracking
equations when gradients in diffusivity or porosity exist. The
appropriate mathematical expressions are

U$ 5 ¹ z $ (7)

Uu 5 $~¹ z ln u ! (8)

where U$ and Uu are the deterministic velocities due to dif-
fusivity and porosity gradients, respectively, and u is the local
porosity. If (7) and (8) are not included in the particle-tracking
equations, particles will falsely accumulate in stagnant and
low-porosity zones of the flow system.

2.3. Colloid Deposition

2.3.1. Perfect sink approximation. Colloid deposition
onto fracture surfaces is often considered a relatively fast pro-
cess when compared to the groundwater velocity so that a
sorption relationship like the Smulochowski-Levich approxi-
mation can be assumed valid. The Smulochowski-Levich rela-
tionship is an approximate analytical solution to the perfect
sink model which solves the transport and continuity equations
on the basis of Eulerian theory. With some manipulation it can
be cast in a form similar to a linear local equilibrium deposition
representation. As opposed to Lagrangian methods where the
trajectories of individual particles are calculated (e.g., the par-
ticle-tracking method), Eulerian methods describe particles
collectively in terms of their distribution, or probability density,
in space and time, n( x , t). In any equilibrium analysis the
number of sorbed particles per unit fracture surface area,
n*( x , t), is a function of the number of particles in the bulk
solution; that is,

n*~ x , t! 5 Kdn~ x , t! (9)

where Kd is an approximation to the linear equilibrium sorp-
tion coefficient. In the Smulochowski-Levich sorption relation-
ship, deposition is described in terms of the particle flux onto
sorbent surfaces as a function of the colloid number concen-
tration n , flow velocity Umax, molecular diffusion coefficient $,
fracture aperture b , and distance from the fracture inlet, x .
Because of the lack of detailed information on actual fracture
conditions and questionable validity of available colloidal force
expressions applicable near walls, the attachment process of
colloids is often represented by highly idealized models which,
in Eulerian analysis, are employed as boundary conditions for
the governing transport equations. The Smulochowski-Levich
approximation is a perfect sink model which assumes that the

Figure 2. Taylor dispersion in a fracture with uniform aper-
ture at simulation times of (a) 1 3 109, (b) 2 3 109, and (c) 3 3
109 s (here Umax 5 1 3 1029 m s21). Note that nondimensional
coordinates are used.
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particle wall hydrodynamic repulsive interaction is exactly
counterbalanced by van der Waals attractions between the
particle and the wall and that all other colloidal and external
forces are absent [Elimelech et al., 1995, p. 100]. In view of this
approximation an analytically derived expression for the local
dimensionless mass transfer coefficient, representing colloid
deposition onto the surfaces of a fracture during colloid trans-
port, is defined as [Adamczyk et al., 1983]

Sh 5
Jdp

2n$
(10)

where Sh is the Sherwood number, and J is the normal com-
ponent of the local colloid flux at the wall. van de Ven [1989, p.
273] has presented Sherwood numbers for several flow geom-
etries with surface sorption. Specifically, in the case of a par-
allel plate channel the Sherwood number is given as

Sh 5 0.538 S bPe
x D 1/3

(11)

where the fracture Peclet number Pe for a parallel plate ap-
erture is defined as [Adamczyk and van de Ven, 1980]

Pe 5
Umaxdp

3

2b2$
(12)

Equating (10) and (11) and subsequently employing (12) yields
the following expression for the colloid flux at each surface of
the fracture:

J 5 0.854 S$2Umax

xb D 1/3

n~ x , t! (13)

From the concentration of colloids per unit element of the
fracture it is possible to determine the particle flux at any
location x on the collector surface in particles per square meter
per second because $ , Umax, and b are known constants. As
the particle-tracking code necessitates the use of a discrete
time step, the fraction of colloids in solution that is sorbed at
each time step can be cast in the form of a linear equilibrium
sorption coefficient by relating it to the Smulochowski-Levich
approximation,

Kd 5 0.854 S$2Umax

xb D 1/3

Dt (14)

where Dt is the time step used in the particle-tracking analysis.
The preceding expression is employed in (9).

It should be noted that with the use of the Smulochowski-
Levich assumptions the fracture walls act as perfect sinks and
equilibrium deposition of colloids onto a smooth parallel plate
channel can only be approximated. In this particle-tracking
model the effect of colloid size variations are accounted for by
the flux relationship (13) which is a function of the diffusion
coefficient and, consequently, a function of the colloid diam-
eter.

2.3.2. Kinetic relationship. A kinetic sorption approach
accounting for the surface exclusion effects of previously de-
posited colloids of different sizes is also examined in this study.
As a colloid travels through the fracture, the transport mech-
anisms (advection and diffusion) may eventually bring the par-
ticle close enough to the aperture surface to have the oppor-
tunity to establish a fracture wall contact resulting from local
interaction forces between the colloid and the liquid-solid ma-
trix interface. The probability of the particle being placed

(sticking probability) per wall collision is calculated by the
Boltzmann law [Adamczyk et al., 1991]

p 5 exp F2f

kT G (15)

where f is the repulsive energy of interaction of the particle
with the fracture surface (f . 10kT) [Adamczyk et al., 1997].
The Boltzmann law assumes that if a particle comes into con-
tact with a fracture wall it is either adsorbed with probability p
or reflected. In this work a probabilistic sorption model is
adopted to simulate the kinetic sorption of colloids [Hinrichsen
et al., 1990]. In general, the probabilistic sorption model de-
scribing the time dependent concentration of the particles ad-
sorbed onto the fracture surface is given by [Adamczyk et al.,
1992a, Chrysikopoulos and Abdel-Salam, 1997]

n*
t 5 rf

n
b 2 rrn* (16)

where rf and rr are the forward and reverse colloid deposition
rate constants, respectively. Particles accumulated on the sur-
face of the fracture influence the transport and adsorption of
other particles moving in their vicinity because of a geometric
volume exclusion effect. Commonly, rr is assumed to be neg-
ligible [Bowen and Epstein, 1979], whereas rf can be expressed
as

rf 5
2
3

UmaxpkF~n*! (17)

where k is the colloid deposition coefficient, and F(n*) is the
DBF which takes into account the effect of previously depos-
ited particles per unit fracture surface area on subsequent
colloid deposition by specifying the portion of the fracture
surface area that remains available for deposition.

Through the use of a random number generator the Boltz-
mann law (15) can incorporate the microscopic probability of
attachment, p , into a macroscopic adsorption constant rf. For
example, if f 5 10kT , then according to (15), p 5 4.54 3
1025. Thus roughly 2 particles per every 104 wall collisions will
sorb onto a surface free of previously deposited colloids. The
effect of deposited colloids can be taken into account through
the use of a DBF, which ranges between one (for a fracture
free of colloids) and zero (for a fracture surface completely
covered by deposited colloids). When interstitial fluid and sor-
bent surface chemical conditions favor the attachment of sta-
ble colloid particles onto sorbent surfaces, colloid deposition is
essentially irreversible and restricted to monolayer coverage
[Johnson et al., 1996]. For the case of irreversible sorption the
linear DBF (the area that remains available for a colloid to
deposit onto the fracture wall) is given by [Song and Elimelech,
1994; Chrysikopoulos and Abdel-Salam, 1997]

F~n*! 5
«max 2 «

«max
(18)

where

«~t , x! 5 Apn*~t , x! (19)

«max 5
1
b

(20)

and Ap 5 pdp
2/4 is the cross-sectional area of a colloidal

particle and b is a factor accounting for blocked area not
directly covered by the colloid (excluded area) [Rajagopalan
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and Chu, 1981]. Because of electrostatic repulsive forces, a
sorbed colloid should effectively block more area than simply
the space it physically occupies. For comparison, the following
nonlinear DBF is also investigated in this study [Adamczyk et
al., 1992b]:

F~n*! 5 1 2 2.184S «

«max
D1 0.986S «

«max
D2

1 0.29S «

«max
D3

(21)

The linear DBF is valid for spherical uncharged particles de-
positing onto a flat surface. At higher surface coverage (« $
«max/10), (21) is a better estimate of the area blocked by the
colloids and is valid for coverage up to 0.8«max [Adamczyk et
al., 1992a; Chrysikopoulos and Abdel-Salam, 1997].

2.4. Particle Tracking

Particle-tracking algorithms can provide stochastic solutions
to linear partial differential equations like the advection-
diffusion equation. Although the particle-tracking technique
does not provide a direct numerical solution to a differential
equation, it does not suffer from numerical dispersion as do
the finite element and finite difference methods [Thompson
and Gelhar, 1990]. It should be noted that particle tracking is
the only method which can facilitate the use of variably sized
colloids. Each particle is individually considered (i.e., stored in
a memory location), and as such, it can retain its own unique
characteristics including, for example, size and sorption status.
The size of each colloid particle implicitly dictates its diffusion
coefficient according to (5).

Particle-tracking techniques have been applied in numerous
investigations of contaminant transport in porous and frac-
tured media [Ahlstrom et al., 1977; Smith and Schwartz, 1980;
Kinzelbach and Uffink, 1988; Chrysikopoulos et al., 1992;
Thompson et al., 1996]. Particle tracking does not require an
effective dispersion coefficient, such as (4) employed in the
Taylor dispersion analysis, because the algorithm itself ac-
counts for advective and diffusive transport in all directions
(not just axial advection and longitudinal diffusion). The gen-
eral particle-tracking transport equation consists of a nonsto-
chastic or absolute term, the advection, and a stochastic term
representing the random molecular diffusion [Thompson,
1993; Kitanidis, 1994]. In vector notation the particle-tracking
equations are [Thompson and Gelhar, 1990]

Xm 5 Xm21 1 A~Xm21!Dt 1 B~Xm21! z Z ÎDt (22)

where m is the numerical step number, Xm is the three-
dimensional position vector at time level mDt , A(Xm21) is the
deterministic forcing vector (e.g., the velocity profile and/or
deterministic velocities) evaluated at Xm21, B(Xm21) is a
deterministic scaling second-order tensor evaluated at Xm21

(e.g., a function of the molecular diffusion coefficient), and Z
is a vector of three independent random numbers with zero
mean and unit variance. The second-order tensor B(Xm21)
has nonzero terms, =2$, along the diagonal [Ahlstrom et al.,
1977]. In view of (22) the particle-tracking transport equations
for the problem examined in this work without deterministic
velocities or gravitational terms can be written as

xm 5 xm21 1 UmaxF 1 2 4S ym21

b D 2GDt 1 Z1Î2$Dt

(23)

ym 5 ym21 1 Z2Î2$Dt (24)

Because it is simplest to work with nondimensional variables,
(23) and (24) are nondimensionalized as follows:

x̂m 5 x̂m21 1 û@1 2 4~ ŷm21!2# 1 Z1Î2D̂ (25)

ŷm 5 ŷm21 1 Z2Î2D̂ (26)

where

x̂ 5
x
b (27)

ŷ 5
y
b (28)

û 5
UmaxDt

b (29)

D̂ 5
$Dt

b2 (30)

2.5. Numerical Procedures

2.5.1. Transport. The particle-tracking model developed
in this work assumes that every individual particle undergoes
an incremental movement during each time step. Initially, all
particles are randomly distributed along the y axis at x 5 0;
they are contained within the fracture without any particle-wall
overlap. Particle-particle interactions are not accounted for. A
large number of particles, of the order of 150,000, is used in an
effort to reduce random noise [Valocchi and Quinodoz, 1989].
Although by increasing the number of particles more compu-
tation time is required, a large number of particles leads to
smoother results by averaging out the effect of individual par-
ticles. As in any averaging process, the larger the sample size,
the less the contribution of a single component and the more
smooth and regular the results. At each time level a new
particle position is determined from (25) and (26). The time
step is specified so that the maximum distance a particle can
travel by diffusion during a time step Dt is less than the frac-
ture aperture b . Consequently, a particle reflected from one
side of the aperture may not end up in the rock matrix at the
other side. For the case where the solid matrix is impermeable
(zero porosity) all particles are reflected from the wall as in a
mirror image without loss of energy. That is, the final x coor-
dinate position remains unchanged, whereas the final y coor-
dinate is set a distance away from the wall equal to the distance
that the particle would have obtained if it had penetrated the
rock matrix.

2.5.2. Matrix diffusion. For permeable solid matrices
each time a particle reaches a fracture surface, its probability
of penetrating the matrix is proportional to the matrix porosity.
For example, when a colloid contacts a solid matrix with po-
rosity 0.01, it has a 1% chance of encountering a void space of
that solid matrix. A random number between 0 and 1 (uni-
formly distributed) is generated every time a particle encoun-
ters a wall, and if this number is less than the porosity, the
colloid is assumed to enter the matrix. It is assumed that a
particle entering a solid matrix continues to migrate within the
pore as it was in the fracture only for the remaining portion of
the time step because when a particle enters a pore, it still
experiences an effective porosity of 1.0, and its diffusivity is not
altered from that in the fracture. Although the probability of
penetrating the matrix is independent of particle size, once in
the matrix, particle diameter affects how a particle is trans-
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ported according to its diffusion coefficient (which is also
present in both (7) and (8)). As the rock matrix interferes with
colloid diffusion, the diffusion coefficient is also proportional
to the solid matrix porosity (i.e., the value of the particle
diffusion coefficient within a solid matrix with porosity 0.1 is
assumed to be $/10) [Buckley and Loyalka, 1993]. Although
wall effects on diffusion and velocity are well known, no mod-
ification to diffusivity or particle velocity in the fracture near
the walls is performed as the time step used in this analysis is
too large to account for such corrections.

In order to incorporate (7) and (8) into the particle-tracking
equation a transition zone just inside the solid matrix was
defined. The gradients of diffusivity and porosity were assumed
to vary linearly over this zone which was chosen to be one half
of the fracture width. Thus the differences between matrix and
fracture diffusivities and log porosities were calculated and
then divided by the transition zone thickness to determine
gradients in the transition zone. Thus (7) and (8) are expressed as

U$ 5
2$~u 2 1!

b (31)

Uu 5
2$ ln u

b (32)

If a particle is within the matrix and less than a distance of b/ 2
from the fracture wall, U$ and Uu are multiplied by Dt and
added to the particle-tracking equation in the y direction

ym 5 ym21 1 Z2Î2$Dt 1 U$Dt 1 UuDt (33)

Ultimately, a particle is allowed to diffuse back into the frac-
ture, and the inclusion of U$ and Uu serves to avoid the
uncharacteristic buildup of particles in stagnation or low-
porosity zones. Any colloid size distribution (e.g., lognormal,
Gaussian, or uniform) could be used in this particle-tracking
transport model.

2.5.3. Deposition. For the case of perfect sink attachment
(employing the Smulochowski-Levich approximation to deter-
mine Kd) the fracture walls and channel aperture are dis-
cretized into length elements. Each element comprises a seg-
ment of the fracture walls, both top and bottom, along the x
direction. A triply nested sorting algorithm was developed to
arrange the colloids first according to x location, then size, and
finally, y location. At the beginning of every time step the
number of colloids contained within each length element of the
fracture is calculated. Within each length element the colloids
are subdivided into 10 equally sized “bins” according to diam-
eter. The size of each bin is set equal to the difference between
the largest and smallest colloid diameters of the particles
present within each element divided by 10. Subsequently, the
flux of particles onto the surface within each element of each
bin is determined according to (13). The flux J multiplied by
the time step Dt (rounded to the nearest integer) indicates how
many particles sorb onto each length element of the fracture
from each bin during each time step. The particles nearest the
wall (greatest y location) are assumed to attach. An exact
particle balance is maintained by tagging each adsorbed par-
ticle with an integer associated with its length element. That is,
the number of attached particles is plotted against their asso-
ciated length element. This process is repeated for each time
step. Desorption is based on the number of sorbed particles,
n*. Because colloids are assumed to sorb irreversibly, the
desorption rate is assigned a small enough value to be consid-
ered as negligible.

When particles undergo kinetic sorption, the fracture wall is
also discretized into length elements. Each time a particle
comes in contact with the wall, its chance of sorbing is based on
the number of previously sorbed colloids, n*, and the particle-
wall repulsive energy f. After each time step the number of
sorbed colloids in each element of fracture wall is determined
in order to recalculate the sorption probability of a colloid onto
that element according to relationship (18) or (21). As the
number of sorbed colloids increases, the probability of future
sorption decreases. The fracture surface area that remains
available for deposition depends on the size of the sorbed
colloids.

3. Simulations and Discussion
3.1. Model Parameters

Particle-tracking simulations of 150,000 particles were con-
ducted following the previously described procedures. The di-
ameter of each particle, dp, was assigned a discrete quantized
value accurate to one hundredth of a micrometer. The three
lognormal colloid size distributions with mean m 5 1 3 1026m
and variances of s2 5 0.3, 0.6, and 0.9 mm2 used in this study
are shown in Figure 3. Unless otherwise specified, the simula-
tions presented in this work are obtained with Umax 5 1 3
1026m s21 and b 5 1 3 1024m. Table 1 summarizes all
model parameters.

3.2. Comparison With an Analytical Solution

In order to check the accuracy of the particle-tracking mod-
eling technique described in this work a distribution curve
generated with the analytical solution for the ideal case of
monodisperse particle transport in a parallel plate system, (6),
is compared to appropriate particle-tracking results. It is worth
discussing how the particle number concentration is deter-
mined and how the results are presented. The particle-tracking
simulation only returns the two-dimensional x and y coordi-
nates of each colloid, yet from this data a concentration is to be
determined. First, the maximum and minimum x coordinates
of all particles are found in order to calculate the range of
values. This range is then divided into equal length subsections
or bins and the number of particles that fall into each bin is

Figure 3. Illustration of three lognormal distributions of col-
loid diameters with m 5 1 3 1026m and s2 5 0.3, 0.6, 0.9 mm2.
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determined (as would be done with a histogram). Since the
length of the bin is known, as is the aperture width, the number
of colloids within this area can be determined and presented as
an areal concentration (particles per cm22). Similarly, for a
three-dimensional fracture the corresponding volume concen-
trations should be expressed in (particles per cm3). Figure 4
shows an excellent agreement between the analytical solution
and the particle-tracking simulation. The introduction of ran-
dom noise, ubiquitous in random walk methods, is evident as
the particle-tracking distribution is not completely smooth
[Uffink, 1988]. It should be noted that the Taylor analysis
makes the simplifying assumption that the effect of longitudi-
nal diffusion is small enough to be neglected. This assumption
is not employed by the particle-tracking model.

3.3. Effects on Spreading

Model simulations of variably sized colloid transport in a
fracture are compared to the case of a monodisperse colloid
suspension. Figure 5 shows how three lognormally distributed
colloid plumes (s2 5 0.3, 0.6, and 0.9 mm2) compare to a
monodisperse colloid suspension at a distance of 12 m down-
stream from the fracture inlet (injection point). The larger the
range of colloid sizes (large s2), the greater the observed
spreading. Thus, by adding an extra degree of heterogeneity to

the system (i.e., the variable colloid size distribution) the
spreading of the colloid plume was enhanced. This is analo-
gous to the case of virus transport in porous media (viruses are
considered as colloid particles) where increased spreading is
predicted with increased sorption variations caused by fluctu-
ating external conditions [Chrysikopoulos and Sim, 1996].

To examine the effect of colloid size on spreading, at the end
of 5000 hours of simulation time, each of the three lognormal
diameter size distributions was divided into three groups with
equal numbers of particles (50,000 particles). Histograms of
colloid diameter for each of the three groups and each stan-
dard deviation examined are presented in Figure 6. The first
group is indicated in Figure 6 with open circles and represents
the slowest colloids, i.e., the colloids located nearest to the
fracture inlet at the end of the simulation. The second group is
indicated by the solid circles and represents the portion of the
particles which are located in the middle of the cloud. The
third group is indicated by squares and represents the particles
that have traveled farthest within the fracture. Although the
distribution of each group retains a lognormal shape, it is clear
that a separation of colloids based on size is occurring. The
larger colloids travel farther and faster than the smaller col-
loids. Several researchers [e.g., Grindrod, 1993; Ryan and Elim-
elech, 1996] have hypothesized that a colloid’s finite dimen-

Table 1. Model Parameters for Simulations

Parameter Value Reference

b 1 3 1024 m Reimus [1995]
rr ;0 s21

Umax 1 3 1026 m s21 Reimus [1995]
b 15 Chrysikopoulos and Abdel-Salam [1997]
Dt 150 s
u 0 2 0.1 Buckley and Loyalka [1994]
m 1 3 1026 m Ledin et al. [1994]
s2 0.3, 0.6, 0.9 mm2

f 4.04 3 10219 J per colloid Adamczyk et al. [1997]

Figure 4. Comparison of an analytical solution based on
Taylor’s assumptions (solid line) and the particle-tracking sim-
ulation for a monodisperse (dp 5 1 3 1026m) colloid sus-
pension (circles) at 208 days after the introduction of the
colloid pulse in a fracture with uniform aperture. Because of
the two-dimensional nature of the fracture considered, areal
colloid concentrations are presented.

Figure 5. Comparison of the analytical solution (solid line)
and the particle-tracking simulations for colloid plumes having
lognormal diameter distributions with m 5 1 3 1026m and s2

5 0.3 (open circles), s2 5 0.6 (solid circles), and s2 5 0.9 mm2

(squares). Because of the two-dimensional nature of the frac-
ture considered, areal colloid concentrations are presented
(here t 5 208 days).
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sions prohibit it from contacting the slowest moving fluid near
the fracture boundaries and thus force it to be advected at a
velocity slightly faster than the average fluid velocity. Clearly,
Figure 6 shows that on average the largest colloid particles are
advected faster than the smaller particles.

3.4. Effects of Matrix Diffusion

The effect of matrix diffusion on colloid breakthrough
curves at a distance of 5 m from the fracture inlet for the
monodisperse and the three different lognormal colloid size
distributions is illustrated in Figure 7. Clearly, different colloid
size distributions lead to distinct breakthrough patterns. The
higher the standard deviation of the colloid size distribution,
the more pronounced is the retardation of the colloid plume.
In particular, the plume with the largest colloid size standard
deviation contains the largest number of small colloids. These
smaller particles are transported the slowest not only because
they can sample the slowest moving portion of the parabolic
velocity profile (nearest to the wall) but because smaller col-
loids preferentially diffuse into the rock matrix.

The probability for diffusion into the fracture wall is depen-
dent on the matrix porosity alone. However, the number of
times that a colloid contacts the wall is a function of its diffu-
sion coefficient. Because of their large diffusion coefficient
(large diffusive travel distance per time step), smaller particles
are more likely to come into contact with the fracture wall.

Each time a particle contacts the wall there is a certain prob-
ability that it will diffuse into it. The more times a particle
encounters a wall, the higher the overall probability that it will
diffuse into the solid matrix. The deterministic velocities added
to the particle-tracking equations serve to account for back
diffusion into the fracture once the bulk of the colloid cloud
has passed. Although some particles are effectively lost from
the system by diffusing well into the rock matrix (past the
transition zone), many are pushed back into the fracture by the
concentration gradient remaining when few colloids are left in
the fracture. Smaller colloids are more likely to diffuse into
(and be transported out of) the matrix. This effectively in-
creases the residence time of small colloids and retards the
breakthrough of large variance colloid plumes with many small
colloid constituents.

3.5. Colloid Deposition

3.5.1. Perfect sink. Figure 8 presents the sorbed colloid
concentrations n* after ;208 days of simulation time for each
of the three colloid suspensions considered in this study (s2 5
0.3, 0.6, and 0.9 mm2). The results for the two-dimensional
fracture considered here are presented in units of particles per
cm; however, for a fully three-dimensional fracture the corre-

Figure 6. Number of colloids with a given diameter for
plumes of colloids with lognormal diameter distributions with
m 5 1 3 1026m and (a) s2 5 0.3, (b) s2 5 0.6 and (c) s2 5 0.9
mm2 (here t 5 208 days). The colloids have been divided into
thirds on the basis of their distances from injection. The
squares represent the fastest third; the solid circles represent
the middle third; and the open circles represent the slowest
third (closest to the inlet). Figure 7. Normalized breakthrough curves for plumes of

colloids having different lognormal distributions of particle
diameters in a fracture with uniform aperture and (a) 1% and
(b) 10% solid matrix porosity (here x 5 5 m).
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sponding units are particles per cm2. The colloids are divided
into three groups of 50,000 particles according to size. It is
evident from Figure 8 that the smallest colloids show the high-
est sorbed concentration. Therefore preferential sorption of
small colloids occurs. Also, the number of deposited colloids as
a function of fracture length follows an x21/3 dependence as
indicated by the flux relationship (13). The concentration of
colloids in the liquid phase decreases as more colloids sorb
onto the fracture surface.

3.5.2. Kinetic. Figure 9 shows snapshots of the sorbed
colloid concentrations n* under linear kinetic sorption condi-
tions for each of the three lognormal colloid distributions con-
sidered in this study (s2 5 0.3, 0.6, and 0.9 mm2). Because of
their larger diffusion coefficients, preferential sorption of small
colloids over larger colloids is expected as they will contact the
wall more frequently than larger colloids. This is clearly illus-
trated in Figure 9 where the colloid suspension with the largest
variance, s2 5 0.9 mm2, (and thus the largest number of small
colloids) exhibits the greatest sorption near the entrance to the
fracture. Figure 10 presents the colloids divided into three
groups of 50,000 particles arranged according to diameter in
order to reveal any possible trend of preferential sorption. The
group with the largest colloids exhibits the least sorption, while
the group with the smallest colloids yields the highest concen-

tration of colloids sorbed. As smallest particles have the largest
Brownian diffusion rate, they come into contact with the frac-
ture wall more often than the larger particles and, conse-
quently, have a higher sorption rate as is illustrated in Figure
10.

Figure 11 compares the effect of linear and nonlinear DBFs
on sorbed colloid concentrations. The results are comparable
for all three distributions with the nonlinear DBF leading to
slightly lower sorbed colloid concentrations than the linear
case. In view of (21) this is an expected result because for a
small number of sorbed particles, the nonlinear DBF behaves
like the linear DBF. Only for a relatively large number (« $
«max/10) of sorbed particles per length element does the non-
linear case substantially deviate from the linear DBF in the
form of a reduced sorption probability.

3.6. Effect of Fracture Aperture

In order to examine the effect of fracture aperture on colloid
deposition onto fracture walls, particle-tracking simulations
were conducted for fractures with varying aperture widths
while keeping all other transport parameters constant. A
monodisperse colloid suspension is employed. Furthermore, it
was assumed that colloids follow a linear kinetic sorption re-
lationship. The results presented in Figure 12 indicate that the
sorbed colloid concentration is inversely proportional to the
aperture width. The number of kinetically sorbed colloids from
a monodisperse suspension decreases with increasing fracture
aperture. As the aperture is increased, it is less likely that a
colloid will contact the wall. This is in agreement with the
proposed expression for the mass flux of colloids onto fracture
surfaces presented by Abdel-Salam and Chrysikopoulos [1994,
1995a, b].

4. Summary and Conclusions
In this study the transport of polydisperse colloid plumes in

a fully saturated fracture with a uniform aperture was modeled

Figure 8. Sorbed colloid concentrations under perfect sink
conditions as a function of fracture length for colloid plumes
having lognormal diameter distribution with m 5 1 3 1026m
and (a) s2 5 0.3, (b) s2 5 0.6, and (c) s2 5 0.9 mm2. The
colloids have been divided into thirds on the basis of their
diameter size. The open circles represent the smallest third;
the solid circles represent the middle third; and the squares
represent the largest third (here t 5 208 days).

Figure 9. Overall sorbed colloid concentrations under linear
kinetic sorption conditions as a function of fracture length for
colloid plumes with different colloid diameter distributions
and m 5 1 3 1026m (here t 5 208 days and f 5 10kT).
Because of the two-dimensional nature of the fracture consid-
ered, sorbed colloid concentrations per unit length are pre-
sented.
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by particle-tracking techniques. Both the effects of matrix dif-
fusion and surface sorption were investigated. Simulation re-
sults show that polydisperse colloid suspensions exhibit differ-
ent transport characteristics than monodisperse suspensions.
The observed spreading of polydisperse colloid plumes is pro-
portional to the variance of the colloid diameter distribution.
Small colloids have a large molecular diffusion coefficient,
while large colloids have a large Taylor dispersion coefficient.
Therefore large colloids have an earlier first arrival time be-
cause of greater dispersion leading to an increased spreading
of the plume. Breakthrough curves of polydisperse colloid sus-
pensions in fractures with different matrix porosities indicate
that a plume with larger variance in colloid diameter becomes
progressively more retarded owing to the increased number of
small colloids which are more often trapped in the solid matrix.
It can be concluded that the increased retardation for colloid
plumes with higher variance of the colloid diameter distribu-
tion is due to both the slower average velocity of the smallest
particles and their preferential diffusion into the solid matrix.
Colloid sorption is shown to be affected by particle size with
the smallest particles preferentially sorbing onto the fracture
walls. The linear and nonlinear kinetic sorption models exam-
ined in this work may lead to substantially different sorbed
colloid distributions when the fracture surface area covered by
the sorbed colloids is relatively large. Furthermore, it was dem-

onstrated that particle sorption is inversely proportional to the
fracture aperture. This investigation lays the groundwork for
future studies of more realistic situations including transport in
variable aperture fractures and in fracture networks.

Figure 10. Sorbed colloid concentrations under linear ki-
netic sorption conditions as a function of fracture length for
colloid plumes having lognormal diameter distribution with m
5 1 3 1026m and (a) s2 5 0.3, (b) s2 5 0.6, and (c) s2 5 0.9
mm2. The colloids have been divided into thirds on the basis of
their diameter size (here t 5 208 days and f 5 10kT).

Figure 11. Effect of linear (open diamonds) and nonlinear
(solid diamonds) kinetic dynamic blocking functions (DBFs)
on sorbed colloid concentrations along the fracture for colloid
plumes having lognormal diameter distributions with m 5 1 3
1026m and (a) s2 5 0.3, (b) s2 5 0.6, and (c) s2 5 0.9 mm2.

Figure 12. Total number of sorbed colloids from a monodis-
perse suspension (dp 5 1 3 1026m) as a function of time for
several different fracture aperture widths.
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Notation
Ap projected (cross-sectional) area of a colloidal

particle: pdp
2/4 (L2).

A deterministic forcing vector (Lt21).
b fracture aperture width (L).
B deterministic scaling tensor (Lt21/ 2).

dp diameter of a colloidal particle (L).
D* Taylor dispersion coefficient (L2t21).
D̂ non-dimensional diffusion coefficient.
$ molecular diffusion coefficient in the fracture

(L2t21).
F(n*) dynamic blocking function.

J particle number flux at the fracture surface
(M22t21).

k Boltzmann’s constant (ML2t22T21).
Kd partition coefficient for colloid deposition onto

fracture surfaces (L).
m time step number.
n number concentration of colloids per unit volume

of liquid (L23).
no initial number concentration of colloids per unit

volume of liquid (L23).
n* colloid number concentration deposited per unit

fracture surface area (L22).
n unit normal vector (L).

1(dp) number of colloids of a given diameter, dp.
1o total number of colloids introduced into the

fracture.
p probability of sorption from Boltzmann law.

Pe Peclet number.
rf forward colloid deposition rate coefficient

(L2t21).
rr reverse colloid deposition rate coefficient (t21).

Sh Sherwood number.
t time (t).

T absolute temperature of the solvent (T).
û nondimensional velocity.

U$ deterministic velocity due to diffusivity gradient
(Lt21).

Umax maximum velocity along the centerline in the x
direction (Lt21).

Uu deterministic velocity due to porosity gradient
(Lt21).

Ux fracture flow velocity in the x direction (Lt21).
x coordinate along the fracture length (L).

x9 distance from the center of mass of the colloid
plume (L).

x̂ nondimensional coordinate along the fracture
length.

X three-dimensional position vector (L).
y coordinate along the fracture width (L).
ŷ nondimensional coordinate along the fracture

width.
Z1, Z2 randomly generated numbers with zero mean and

unit variance.
Z randomly generated three-dimensional vector with

zero mean and unit variance.
b scaling factor for fracture surface area blocked by

a deposited colloid particle.
« fraction of a fracture surface area covered

(blocked) by deposited colloids.

«max fraction of a fracture surface area covered
(blocked) by deposited colloids when n* reaches
its maximum.

z2 variance of the log-colloid diameter distribution.
h dynamic viscosity of the interstitial fluid

(ML21t21).
u matrix porosity.
k colloid deposition coefficient (L).
l mean of the log-colloid diameter.
m mean of the colloid diameter (L).

s2 variance of the colloid diameter distribution (L2).
f particle wall repulsive energy (ML2t22).
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