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Abstract

The traditional di(usive particle tracking equation provides an updated particle location as a function of its previous location
and molecular di(usion coe cient while maintaining a constant time step. A smaller time step yields an increasingly accurate, yet
more computationally demanding solution. Selection of this time step becomes an important consideration and, depending on the
complexity of the problem, a single optimum value may not exist. The characteristics of the system under consideration may be
such that a constant time step may yield solutions with insu cient accuracy in some portions of the domain and excess computation
time for others. In this work, new particle tracking equations speci%cally designed for the solution of problems associated with
di(usion processes in one, two, and three dimensions are presented. Instead of a constant time step, the proposed equations employ
a constant spatial step. Using a traditional particle tracking algorithm, the travel time necessary for a particle with a di(usion
coe cient inversely proportional to its diameter to achieve a pre-speci%ed distance was determined. Because the size of a particle
a(ects how it di(uses in a quiescent 8uid, it is expected that two di(erently sized particles would require di(erent travel times to
move a given distance. The probability densities of travel times for plumes of monodisperse particles were consistently found to
be log-normal in shape. The parameters describing this log-normal distribution, i.e., mean and standard deviation, are functions of
the distance speci%ed for travel and the di(usion coe cient of the particles. Thus, a random number selected from this distribution
approximates the time required for a given particle to travel a speci%ed distance. The new equations are straightforward and may be
easily incorporated into appropriate particle tracking algorithms. In addition, the new particle tracking equations are as accurate and
often more computationally e cient than the traditional particle tracking equation. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the ever expanding capabilities of computers, par-
ticle tracking solutions to various engineering problems
are becoming increasingly powerful. Although random
walk methods, Monte Carlo simulations, and Fokker–
Planck solutions to di(erential equations have been em-
ployed for many years, the availability of inexpensive
high speed processors and vast memory stores has al-
lowed the application of these solution techniques to
increasingly complex problems (e.g., U nk, 1988; Val-
occhi & Quinodoz, 1989; Yamashita & Kimura, 1990;
Lu, 2000; Liu, Bodvarrson, & Pan, 2000; Michalak &
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Kitanidis, 2000; Tsang & Tsang, 2001). For example,
James and Chrysikopoulos (1999, 2000) have investi-
gated particle tracking schemes that model the transport
of variably sized colloids in both uniform and variable
aperture fractures. James and Chrysikopoulos (2001a)
have also compared a traditional particle tracking algo-
rithm with analytical solutions for the ideal case of poly-
disperse colloid transport in a uniform aperture fracture
and excellent agreement was shown. Also, Grindrod and
Lee (1997) used particle tracking to model the transport
of reactive particles in a single, symmetric fracture with a
sinusoidally varying aperture. However, for more realis-
tic and involved models accounting for a fracture with a
random variable aperture, a distribution of particle sizes,
or particle sorption onto the fracture walls, a traditional
particle tracking algorithm may not be the most e cient
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solution method (Reimus, 1995). There are often cases
when a particle tracking algorithm using a constant time
step may lead to both insu cient prediction accuracy and
excessive computation time.
Common solution methods to colloid transport prob-

lems include analytical solutions, %nite element meth-
ods, %nite di(erence methods, and traditional particle
tracking algorithms; however, each technique has its
short comings. Analytical solutions require extensive
simpli%cations to yield tractable problems (Abdel-Salam
& Chrysikopoulos, 1994). Finite di(erence and %nite
element techniques su(er from numerical dispersion and
cannot account for %nitely sized particles (Abdel-Salam
& Chrysikopoulos, 1995a, b). Although particle tracking
methods can account for %nitely sized particles, an im-
portant case where the traditional particle tracking equa-
tion with a constant time step may be insu cient arises
in the study of polydisperse colloid transport. Consider
the simple example of random di(usion of a plume of
polydisperse colloids in a quiescent 8uid. Particle track-
ing theory suggests that the time step should be chosen
small enough to represent the time that a particle might
take to travel along a certain path before it is forced to
signi%cantly deviate from its course through a molecular
exchange of kinetic energy (U nk, 1988). If a constant
time step that is appropriate for the median colloid size
is applied to all particles in the plume, this constant time
step, when applied to colloid particles at each extreme
of the size distribution, yields undesirable results. Col-
loid diameters and corresponding molecular di(usion
coe cients can span several orders of magnitude, and
as a result, the smallest colloids may travel di(usively
too far during this pre-determined time step to meet the
desired accuracy. The largest colloids may require an
excessive number of time steps to reach the desired time
of solution resulting in increased computational cost.
Another case when the traditional particle tracking

algorithm may be insu cient is when the transport of
colloids is signi%cantly a(ected by deposition onto for-
mation surfaces. As a colloid travels through a fracture,
di(usion across streamlines eventually brings the particle
close enough to a fracture wall to have the opportunity
to establish a contact at the liquid–solid matrix interface.
If a time step was speci%ed, rarely would the particle ex-
actly encounter the sorption site on the fracture wall. In-
stead, by determining a random di(usive travel time for
the particle to reach the fracture wall a known distance
away, knowledge of exactly where and when a particle
encounters a sorption site is obtained. In either of the
above mentioned cases, a particle tracking equation with
a pre-determined spatial step yielding a random travel
time would achieve the desired predictive accuracy while
maximizing computational e ciency.
The new particle tracking equation derived in this work

maximizes computational e ciency and solution accu-
racy by specifying a priori a spatial step and determining

the random time a spherical particle of neutral buoyancy
will take to di(usively travel a speci%ed distance. There
may be no advective component in the direction in which
di(usion is of interest (transport by Poiseuille and Couette
8ows are prime examples). This work formally presents
the methodology used to obtain accurate coe cients for
the new particle tracking equation in one dimension and
extends this same procedure to obtain equations in two
and three dimensions. Results based on the new particle
tracking algorithm are validated through comparison with
both an analytical solution and results from the traditional
particle tracking equation. Furthermore, it is shown that
the particle tracking equation derived here is more accu-
rate than the one suggested by Reimus (1995).

2. Model development

2.1. Traditional particle tracking equation

The traditional particle tracking transport equation for
the solution of advection–di(usion problems consists of a
deterministic (or absolute advective) term, and a stochas-
tic (or di(usive) term that is a function of the randommo-
tion of the particle (Thompson, 1993; Kitanidis, 1994).
For the case of particle di(usion in the absence of ad-
vection considered in this work, the advective term is
eliminated and in vector notation the traditional di(usive
particle tracking equation is given by

Xm=Xm−1 + B (Xm−1) ·Z(0; 1)
√
Mt; (1)

where exponent m is the numerical step number;
Xm=(xm; ym; zm)T is a three-dimensional position vector
with xm, ym, and zm representing the Cartesian coordi-
nates of the centroid location of a particle at the numer-
ical step m; B (Xm−1) is a deterministic scaling second
order tensor, evaluated at Xm−1, that is a function of the
spreading of the particle plume; and Z(0; 1) is a vector
of three independent random numbers selected from the
standard normal distribution. When only molecular dif-
fusion is considered, the terms of the diagonal second
order tensor B (Xm−1) are equal to

√
2D (Ahlstrom,

Foote, Arnett, Cole, & Serne, 1977), and the molecular
di(usion coe cient, D, is given by the Stokes–Einstein
equation as

D=
kT
3	
dp

; (2)

where k is Boltzmann’s constant, dp is the particle di-
ameter, 
 is the dynamic viscosity, and T the absolute
temperature of the suspending 8uid. The di(usive parti-
cle tracking vector equation (1) may be represented by
the following directional particle tracking equations:

xm= xm−1 + Z(0; 1)
√
2DMt; (3a)

ym=ym−1 + Z(0; 1)
√
2DMt; (3b)

zm= zm−1 + Z(0; 1)
√
2DMt: (3c)
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Fig. 1. Pathline projected at (a) the x; y-plane; and (b) the x; z-plane of
the Brownian motion for a particle of size dp=1× 10−6 m released
at the origin of a spherical volume of water with radius 5× 10−5 m.

Traditionally, a time step is speci%ed and an up-
dated position vector is marched through time until
the desired solution can be examined. In the limit of
Mt → 0, the particle tracking equation (1) becomes an
exact solution to the di(usion equation (Kinzelbach &
U nk, 1988; Thompson & Gelhar, 1990). However,
the cost of improved accuracy is increased processor
time that is inversely proportional to decreasing Mt.
When choosing an appropriate time step, both the ac-
curacy of the solution and computational cost should be
considered.
A particle suspended in a quiescent volume of 8uid un-

dergoes molecular di(usion in all three dimensions. Fig. 1
shows the (a) x; y-plane and (b) x; z-plane Brownian mo-
tion pathlines for a particle with diameter dp=1×10−6 m
that was released at the origin and allowed to di(use in
water at T =288:15 K according to Eqs. (3a), (3b) and
(3c) with a time step of Mt=0:1 s. The time required
for this particle to exit a spherical volume of water with
radius 5× 10−5 m was∑Mt=3860 s.
Tory (2000) has suggested that the times required

for many particles to di(usively travel a given distance
are log-normally distributed. One might suggest that an

intuitive estimation of the time required for a particle
to travel a speci%ed distance, Mz= zm − zm−1, could be
obtained by rearranging the traditional particle tracking
equation (3c) to solve for Mt as follows:

Mt=
(Mz)2

2D
1

[Z(0; 1)]2
: (4)

The preceding equation indicates that Mt is inversely pro-
portional to the square of a standard normally distributed
random number. Consequently, any time in the range of
0–∞ is feasible for Mt, with large numbers encountered
more often. However, it should be noted that the distri-
bution of numerous times calculated from Eq. (4) is not
log-normal because taking the inverse square of standard
normal deviates does not yield a log-normal probabil-
ity density function. In fact, because the probability den-
sity is highest at Z(0; 1)=0, time steps resulting from
Eq. (4) have a high probability of being very large. Com-
putationally, this equates to a non-converging mean and
standard deviation for the probability distribution of Eq.
(4) as in%nite travel times are returned.

2.2. New particle tracking equation

The goal of this work is to generate new particle track-
ing equations that express a di(usive travel time as a
random function of a particle’s di(usion coe cient as
well as the distance traveled. A detailed description of
the model used to generate one-dimensional results fol-
lows. Because di(usion is an isotropic process, the di(u-
sive particle tracking equation (1) may be studied by any
of the three directional particle tracking equations (3a),
(3b) and (3c). In this analysis, Eq. (3c) will be used,
but similar results may also be obtained from Eq. (3a) or
(3b). The traditional particle tracking equation with an
extremely small time step is used to generate histograms
of times necessary for plumes of uniquely sized monodis-
perse particles to travel a preselected distance |Mz| with
the intent of determining the relationship between the
characteristics of the histograms and the parameters, Mz
and D.
The one-dimensional particle tracking equation (3a) is

employed to simulate the di(usion of a particle plume in
the z-direction initially released in water at T =288:15 K
and at z=0 (the origin). Each particle is allowed to ran-
domly di(use until it moves a distance of Mz= ± 5 ×
10−5 m from the origin. The selected travel distance is
representative of a typical fracture aperture in a frac-
tured rock formation. The numerical time step is cho-
sen to be Mt=1 s, so that a large number of time steps
(∼ 3000 for a particle with diameter dp=1 × 10−6 m)
will be required for any particle to travel the speci%ed
distance, even for the extreme case when the magni-
tudes of all randomly generated numbers are ¿ 1. The
travel time,

∑
Mt, required for a particle to achieve the



6538 S. C. James, C. V. Chrysikopoulos / Chemical Engineering Science 56 (2001) 6535–6543

Fig. 2. Histograms of travel times for monodisperse plumes of 500,000
particles of size (a) dp=1× 10−7 m; (b) dp=1× 10−6 m; and (c)
dp=1× 10−5 m, traveling a distance of Mz=± 5× 10−5 m.

speci%ed distance, |Mz|=5 × 10−5 m, is recorded. This
particle di(usion process is repeated 500,000 times. Each
stochastic trajectory mimics the actual path of an indi-
vidual particle. Collectively, the trajectories illustrate the
overall behavior of a 500,000 particle plume. It should be
noted that any possible particle–particle interactions are
not accounted for in the present analysis. One hundred
unique particle travel time histograms are prepared for
particle diameters ranging from 1× 10−7 to 1× 10−5 m
in increments of 1 × 10−7 m. In view of Eq. (2), with
k=1:380658 × 10−23 kg m2=s2 K, T =288:15 K, and

=1:003×10−3 kg=m s, the corresponding range of D is
from 4:21×10−14 to 4:21×10−12 m2=s. Fig. 2 presents 3
of the 100 travel time histograms generated by this pro-
cess. Fig. 2a is the histogram generated for the smallest
particles considered in this study (dp=1×10−7 m); Fig.
2b represents the median particle size (dp=1×10−6 m);
and Fig. 2c the largest particles (dp=1 × 10−5 m).
All histograms are normalized by the number of par-
ticles in the plume. Note that the travel times increase

Fig. 3. Probability densities of log-travel times for the same monodis-
perse plumes used to generate Fig. 2. The solid lines are obtained
from the normal pdf with parameters (a) ��=5:588 and ��=0:786;
(b) ��=7:848 and ��=0:787; and (c) ��=10:133 and ��=0:787.

proportionally to the increase in particle diameter (de-
creasing molecular di(usion coe cient).
Taking the log of the travel time for each particle of

the plume, �= ln
∑
Mt, and generating the correspond-

ing histogram, it is observed that the normal probability
density function (pdf) can consistently %t the distribu-
tion of log-travel times obtained by the traditional par-
ticle tracking equation (3c). The normal pdf in terms of
log-travel times is given by (Banks, Carson II, & Nelson,
1996, p. 209),

f(�)=
1

��
√
2	
exp

[
−1
2

(
�− ��
��

)2]
; (5)

where �� and �� are the mean and standard deviation of
log-travel times, respectively.
Fig. 3 presents the three probability densities of

log-travel times corresponding to the same plumes of
500,000 monodisperse particles used to construct Fig. 2
and supports the suggestion by Tory (2000) that di(u-
sive travel times are log-normally distributed. The solid
lines on Fig. 3 represent the normal pdf’s generated by
Eq. (5). The parameters in Eq. (5), �� and ��, are the
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calculated arithmetic mean and standard deviation, re-
spectively, of the log-travel times for all particles of a
plume. Note that in Fig. 3a, ��=5:588 and ��=0:786;
in Fig. 3b ��=7:848 and ��=0:787; and in Fig. 3c
��=10:133 and ��=0:787.
Any normally distributed random number, Z(��; �2�),

can be generated from the standard normal distribution,
Z(0; 1), by employing the following relationship (Banks
et al., 1996):

Z(��; �2�)=�� + ��Z(0; 1): (6)

Because it is evident from Fig. 3 that a normal pdf closely
approximates the log-travel times for a plume of parti-
cles, a random number generated by Eq. (6) can be used
to determine the log-travel time necessary for a particle
with known di(usion coe cient to travel a speci%ed dis-
tance. Assuming that the mean, ��, and standard devia-
tion, ��, of log-travel times may be expressed as functions
of the variables, Mz and D, then taking the inverse log
of a single normally distributed number generated from
Z(��; �2�) is equivalent to selecting a particle travel time
from the histogram of such travel times (see Fig. 2).
As seen in Fig. 3, the mean log-travel time varies with

the particle diameter (i.e., molecular di(usion coe cient)
used in each numerical simulation. For the units of mean
log-travel time to be log-seconds, the relationship for the
mean of the log-travel times must be linear with respect
to ln[(Mz)2=D] and of the form

��= � ln
[
(Mz)2

D

]
+ �; (7)

where � is the slope and � the y-intercept of a linear
least-squares %t. The preceding equation may be rear-
ranged as follows:

��= ln

{[
(Mz)2

D

]�}
+ �: (8)

For the units of the mean log-travel time, ��, to be
consistent in the preceding equation, � must be unity.
Further, the form of the particle tracking equation (3c)
suggests that travel times are proportional to (Mz)2 and
inversely proportional to D (and therefore proportional
to dp). Using a linear least-squares procedure, we %t Eq.
(8) to the 100 numerically determined data points for
��, thereby specifying the 95% con%dence interval for
the y-intercept, �= − 0:978 ± 0:012. Consequently, the
mean of the log-travel times can be expressed as

��= ln
[
(Mz)2

D

]
− 0:978: (9)

Fig. 4 shows the 100 numerically determined values for ��
together with the best linear %t. The correlation coe cient
between the numerical data points and Eq. (9) is R2 ≈ 1,
indicating a near perfect %t.
Simulation results show that the values of the stan-

dard deviation of the log-travel times for each particle

Fig. 4. Variation of the mean log-travel time, ��, as a function of
the log of the ratio (Mz)2=D. The equation for the least-squares %t
(solid line) of the numerically determined values (open circles) and
the corresponding correlation coe cient are shown.

plume are independent of Mz andD. The arithmetic mean
and variance of the standard deviations of the log-travel
times are 0.787 and 0.001, respectively, yielding a 95%
con%dence limit for the standard deviation in log-travel
times of

��=0:787± 0:002: (10)

The standard deviation of log-travel times may be viewed
as a measure of the di(erence between the fastest and
slowest log-travel times for each particle plume, or the
range of log-travel times. While these di(erences are con-
stant on the log scale, the di(erences between the fastest
and slowest actual travel times are inversely proportional
to the molecular di(usion coe cient and proportional to
the particle diameter (see Fig. 2). For example, the range
of travel times for 95% of the particles to travel the spec-
i%ed distance may be derived from properties of the nor-
mal distribution as exp(�� + 1:96��)− exp(�� − 1:96��).
Comparing the range of travel times for the values used
in Fig. 3a and b shows that the ratio of these ranges is
0.101, essentially the ratio of the diameters of the par-
ticles used for these simulations. Larger particles take
a longer time to di(usively travel a speci%ed distance
while having a correspondingly larger range of travel
times.
Substituting Eqs. (9) and (10) into Eq. (6) yields

Z(��; �2�)= ln
[
(Mz)2

D

]
− 0:978 + 0:787Z(0; 1): (11)

Taking the inverse log of the previous equation yields
a log-normally distributed travel time. Consequently, the
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time step necessary for a particle to travel a speci%ed
distance, Mz, may be written as

Mt = exp[Z(��; �2�)]

= exp
{
ln
[
(Mz)2

D

]
− 0:978 + 0:787Z(0; 1)

}
: (12)

A new particle tracking equation is obtained by recasting
the preceding equation to describe the current time of a
particle as a function of its previous time, speci%ed travel
distance, and particle di(usion coe cient as follows:

tm = tm−1 + exp
{
ln
[
(zm − zm−1)2

D

]

−0:978 + 0:787Z(0; 1)} : (13)

Because Z(0; 1) ranges over all real numbers, time steps
can be anywhere from 0 to∞; however, with six signi%-
cant digits, the standard normal distribution can computa-
tionally only have values between±7:25. To %nd the time
for a particle to move a speci%ed distance, Mz= zm−zm−1,
select a single value from the standard normal distribu-
tion and substitute it into Eq. (13). It should be noted that
Reimus (1995) has presented, without proof, the follow-
ing particle tracking equation:

Mt = exp
{
ln
[
(Mz)2

2D

]
− 0:2 + 0:79Z(0; 1)

}

= exp
{
ln
[
(Mz)2

D

]
− 0:89 + 0:79Z(0; 1)

}
: (14)

Although Eqs. (13) and (14) are similar, the coe cients
of Eq. (14) are well outside the con%dence intervals pre-
sented for the coe cients of Eq. (13). For the mean, the
coe cients presented by Reimus (1995) are over 14 stan-
dard deviations from the revised estimate and approxi-
mately three from the revised estimate of the standard
deviation.

2.3. Extension to two and three dimensions

The same procedure that was used to specify the new
particle tracking equation in one dimension may be used
to determine the form of constant spatial step particle
tracking equations appropriate for travel distances in two
and three dimensions. De%ning a spatial step, Mr, the
time required for a plume of colloids, released at the
origin, to exit a disk (two dimensions) or a sphere (three
dimensions) with radius r can be derived. The constant
spatial step particle tracking equation in two dimensions
is

tm = tm−1 + exp
{
ln
[
(rm − rm−1)2

D

]

−1:578 + 0:649Z(0; 1)} ; (15)

and in three dimensions is

tm = tm−1 + exp
{
ln
[
(rm − rm−1)2

D

]

−1:939 + 0:575Z(0; 1)} : (16)

To implement either of the preceding equations in a parti-
cle tracking algorithm, another uniformly distributed ran-
dom number must be selected that describes the angle on
the disk where the particle lands (and one more for the
azimuth on a sphere).

3. Veri�cation

Consider a uniform fracture with aperture b=5 ×
10−5 m that is saturated with water (288:15 K) that is
8owing with a Poiseuille velocity pro%le with maximum
centerline velocity of Umax =1 × 10−6 m=s. A poly-
disperse colloid plume of 10,000 particles with neu-
tral buoyancy and log-normally distributed diameters
with arithmetic mean 1 �m (mean of the log-diameter
is −14:11) and standard deviation 0:9 �m (standard de-
viation of the log-diameters is 0:77) is instantaneously
injected at the fracture inlet at time zero. The times re-
quired for each of the 10,000 particles to travel 8 m are
used to generate a cumulative normalized particle break-
through curve. Three methods are used to obtain these
breakthrough curves: the %rst method employs the tradi-
tional particle tracking algorithm outlined by James and
Chrysikopoulos (1999) with a constant time step, the sec-
ond method utilizes the new particle tracking algorithm
with a constant spatial step derived in this work, while
the third method employs an analytical solution for poly-
disperse particle transport in a water saturated, uniform
aperture fracture (James & Chrysikopoulos, 2001a).
The traditional particle tracking transport equation con-

sists of a non-stochastic or absolute term, the advection,
and a stochastic term representing the random molecular
di(usion (Thompson & Gelhar, 1990; Thompson, 1993;
Kitanidis, 1994). For the case of particles 8owing in a
uniform aperture fracture, the appropriate particle track-
ing equations are

xm = xm−1 +Umax

[
1− 4

(
zm−1

b

)2]
Mt

+Z(0; 1)
√
2DMt; (17a)

zm= zm−1 + Z(0; 1)
√
2DMt: (17b)

The preceding particle tracking model assumes that
every particle undergoes an incremental movement
during each time step. As a particle di(uses across
streamlines it samples di(erent portions of the parabolic
velocity pro%le and thus is subject to di(erent velocities
at tm−1 and tm. Implicit to the particle tracking theory is
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the assumption that over a single time step a particle trav-
els with the velocity with which it began and that changes
in the velocity %eld over a time step do not compromise
the accuracy of the solution. The colloids are introduced
at the inlet side of the fracture 8ow domain (x=0) and
distributed according to the local volumetric 8ow rate
(Reimus, 1995; James & Chrysikopoulos, 2000). When
a particle encounters a wall, it is re8ected back as in a
mirror image. That is, the %nal x-location remains un-
changed, whereas the %nal z-coordinate is set a distance
away from the wall equal to the distance that the particle
would have obtained if it had penetrated the rock ma-
trix plus the particle diameter. For example, if a particle
of dp=5 × 10−7 m initially di(uses to a z-location of
2:53×10−5 m (2:5×10−5 m being the location of the frac-
ture wall), its re8ected z value would be 2:42× 10−5 m.
A large number of particles is used in an e(ort to reduce
random noise. A time step of Mt=0:9 s was selected for
use in the traditional particle tracking equation because,
according to the new particle tracking equation (13), the
mean di(usive travel time necessary for the smallest par-
ticle of the polydisperse plume (dp=1×10−8 m) to move
a distance equal to one-fourth of the aperture is 0:9 s. It
should be noted that if Eqs. (17a) and (17b) are used
with a time step of larger than about 5 s, then the small-
est particles of the plume may di(use distances so great
as to compromise the accuracy of the solution (i.e., an
adequate sampling of all velocities within the fracture
may not be taken before the particle exits the fracture). A
cumulative normalized breakthrough curve is generated
by tracking the number of particles that exit the fracture
at 8 m.
Another particle breakthrough curve was also gener-

ated using the new particle tracking algorithm with a
constant spatial step equal to one-fourth of the aperture
(Mz=1:25 × 10−5 m). Colloids are again placed in the
fracture as a function of the 8ow rate. Note that for the
case considered here molecular di(usion is the only trans-
port mechanism in the z-direction; consequently, a con-
stant spatial step in z may be used to determine the time
step. In the x-direction, the particle tracking equation
(17a) is used to simulate particle motion; however, the
spatial step in the z-direction is speci%ed and the corre-
sponding time step, to be used in Eq. (17a), is calculated
from Eq. (13). The appropriate particle tracking equation
in the z-direction is given by

zm= zm−1 ±Mz; (18)

where the direction of the displacement, ±Mz, is deter-
mined from the sign of a standard normally distributed
random number, Z(0; 1). Fracture walls are treated as re-
8ective boundaries, that is, when a particle encounters
a wall, it is re8ected back as in a mirror image. A cu-
mulative normalized breakthrough curve is generated by
tracking the number of particles that exit the fracture
at 8 m.

A cumulative normalized particle breakthrough curve
at x=8 m is also generated from the following analytical
solution (James & Chrysikopoulos, 2001a):

Undp(x; t)=
∫ ∞

0

npdf
(4	De( t)1=2

exp
[
− (x −Ue( t)

2

4De( t

]
ddp;

(19)

where Undp(x; t) is the average concentration of polydis-
perse particles at any x-location along the fracture, and
npdf is the particle size log-normal pdf for the polydisperse
particles instantaneously injected as a plane source at the
fracture inlet, Ue( is the e(ective velocity of the particle
plume de%ned as (James & Chrysikopoulos, 2001b)

Ue( =
2
3
Umax

[
1 +

dp
b

− 1
2

(
dp
b

)2]
(20)

andDe( is the e(ective dispersion coe cient of the plume
expressed by (James & Chrysikopoulos, 2001b)

De( =D+
2
945

U 2maxb
2

D

(
1− dp

b

)6
: (21)

The cumulative particle breakthrough curves deter-
mined from each solution method considered are in-
distinguishable and therefore not shown. However, the
computational time required to produce each solution is
quite di(erent. Using a PC with an 866 MHz Pentium III
processor, the traditional particle tracking model (Eqs.
(17a) and (17b)) required 32; 071 s of CPU time to gen-
erate a solution while the new particle tracking scheme
(Eqs. (13), (17a) and (18)) required 3100 s, an order of
magnitude faster. Even with the maximum Mt=5 s, the
traditional particle tracking equation is still less e cient
than the new one by approximately a factor of two. It is
apparent that the new particle tracking scheme is compu-
tationally e cient and su(ers no serious loss of accuracy.
Fig. 5 compares the cumulative normalized break-

through curves for the constant spatial step particle
tracking algorithms using the new particle tracking equa-
tion (13) and Eq. (14) presented by Reimus (1995). It
is shown that the new particle tracking equation may
improve accuracy. Eq. (14) has an upwardly biased time
step owing to the constant −0:89 as opposed to −0:978
in Eq. (13). For larger selections of the spatial step, the
larger time step obtained from Eq. (14) will not allow
all colloids to sample all portions of the velocity pro-
%le before exiting the fracture, thereby a(ecting particle
breakthrough times. If a smaller constant spatial step is
used in the equation suggested by Reimus (1995), the
cumulative breakthrough curves coincide; however, the
computation cost increases.

4. Summary

Particle tracking methods are able to solve increas-
ingly complex contaminant transport problems with the
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Fig. 5. Comparison of cumulative normalized particle breakthrough
curves determined by the new particle tracking equation, Eq. (13),
developed in this work and Eq. (14) suggested by Reimus (1995)
for Mz=1:25× 10−5 m.

rapid advances in computing power. In cases where a
constant time step is inappropriate (e.g., polydisperse par-
ticle plumes or reactive particles), it may be necessary
to determine the (random) time a particle takes to di(u-
sively travel a speci%ed distance. However, it is not pos-
sible to simply retrieve the time step directly from the
traditional particle tracking equation. Because the size of
a particle a(ects how it di(uses in a quiescent 8uid, dif-
ferently sized particles require di(erent times to travel a
given distance. Histograms of travel times for plumes of
monodisperse particles were consistently log-normal in
shape. Thus, probability densities of the log-travel times
are normally distributed. The parameters describing these
normal distributions (i.e., mean and standard deviation of
the log-travel times), are functions of the distance speci-
%ed for travel and the di(usion coe cient of the particles.
A constant standard deviation of log-travel times was
found in each numerical simulation regardless of the pa-
rameter values, Mz and D. Using a least-squares method,
a linear relationship was found between the mean of the
log-travel times and ln[(Mz)2=D]. Employing the expres-
sions obtained for the mean and standard deviation of the
log-travel times, a new one-dimensional particle track-
ing equation with speci%ed spatial step was determined.
Appropriate particle tracking equation with speci%ed spa-
tial step applicable to two and three dimensions are also
presented. Using both the traditional and the new par-
ticle tracking algorithms to model polydisperse colloid
transport in a fracture, a comparison of computational
times proves that the new particle tracking scheme de-
rived here is more e cient than the traditional particle
tracking method. Cumulative normalized particle break-

through curves from both constant spatial step and con-
stant time step particle tracking compare favorably with
an available analytical solution. The new particle track-
ing scheme is quite robust and may be applicable to par-
ticle tracking techniques where it is more appropriate to
specify a spatial step than a temporal step.

Notation

b fracture aperture (L)
B deterministic scaling tensor (Lt−1=2)
dp particle diameter (L)
De( e(ective dispersion coe cient for a particle

plume (L2t−1)
D molecular di(usion coe cient (L2t−1)
f(�) normal probability density function (dimen-

sionless)
k Boltzmann’s constant (ML2t−2T−1)
m time=spatial step number (dimensionless)
Undp number concentration of polydisperse particles

averaged across the fracture (L−3)
npdf probability density function of polydisperse

particles (L−4)
r radius of the disk or sphere used to generate

the new particle tracking equations in two and
three dimensions (L)

Mr speci%ed two or three dimensional spatial step
(L)

R2 correlation coe cient (dimensionless)
t time (t)
Mt time step, equal to tm − tm−1 (t)
T absolute temperature of the suspending 8uid

(T)
Ue( e(ective velocity of a particle plume (Lt−1)
Umax maximum interstitial 8uid velocity along the

fracture centerline in the x-direction (Lt−1)
x coordinate location (L)
X three-dimensional position vector (L)
y coordinate location (L)
z coordinate location (L)
Mz speci%ed spatial step, equal to zm − zm−1 (L)
Z(0; 1) standard normally distributed random number

(dimensionless)
Z(�; �2) normally distributed random number with

mean � and variance �2 (dimensionless)
Z(0; 1) three-dimensional vector of standard

normally distributed random numbers
(dimensionless)

Greek letters

� slope of the least-squares %t (dimensionless)
� y-intercept of the least-squares %t (dimension-

less)

 dynamic viscosity of the solvent (ML−1t−1)
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�� mean of the log-travel times (dimensionless)
�� standard deviation of the log-travel times

(dimensionless)
� log-travel time for a particle, equal to ln

∑
Mt

(dimensionless)
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