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Abstract. Taylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the 
macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous 
porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially 
periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular 
parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are 
incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently 
a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing 
the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm 
as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case 
of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term 
that accounts for the effect of averaging the distribution coefficient over the volume of a unit element. 
Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression 
includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute 
spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions 
of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions 
agreed reasonably with the results of numerical computations using particle tracking techniques. 
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t o t a l  l i q u i d - p h a s e  so lu te  mass  w i th in  the  n th  un i t  e l emen t ,  M 

h y d r o d y n a m i c  d i spe r s ion  coeff icient ,  L2/ t  
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c o n s t a n t  

a r b i t r a r y  g l o b a l  o r  loca l  f u n c t i o n  

f u n c t i o n  o f  loca l  c o o r d i n a t e s  
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CONSTANTINOS V. CHRYSIKOPOULOS ET AL. 

imaginary number unit: j = ~ - - 1  
dimensionless partition or distribution coefficients 
forward sorption rate coefficient, t-1 
reverse sorption rate coefficient, t-1 
partition of distribution coefficient (liquid volume/solids mass), L3/M 
characteristic linear dimension of a unit element, L 
basic vectors which define a unit element 
liquid-phase local moments 
continuous and discrete representation of liquid-phase global moments 
outer unit vector normal to O Vo 
origin of a local coordinate system 
order of magnitude, origin of global coordinate system 
solid-phase local moments 
continuous and discrete representation of solid-phase global moments 
local Cartesian coordinates, L 
local position vector within a unit element 
interface of a unit element 
differential volume within a unit element 
global Cartesian coordinates, L 
discrete position vector of a general point 
discrete position vector locating the origin of the nth unit element 
retardation factors defined in Equations (8) and (85), respectively 
faces of the unit element 
infinitesimal area on ~Vo 
solid-phase or sorbed solute concentration (solute mass/liquid volume), 
M / L  3 

total solid-phase solute mass within the n unit element 
time, t 
average interstitial velocity, Lit 
velocity vector 
domain of a unit element 
external surface of a unit element 
mass of solute injected, M 
function of local coordinates 
constant 
Dirac delta function 
Kronecker delta 
porosity (liquid volume/aquifer volume), L3/L 3 
spectrum coefficient 
spectrum coefficients, L 
bulk density of the solid matrix (solids mass/aquifer volume), M / L  3 
summation 
function of local coordinates 
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0 null vector 
E an element of 
Vq vector operator (del): Vq = [O/~qx, ~/Oqy, O/Oqz] r 
def 
= equals by definition 
V for all 
I I magnitude of a vector, Euclidean norm 

~ jump in the value of a function across equivalent points on opposite faces 
of a unit element 

Subscripts 
i , j  direction of principal axes: i , j  -- x, y, z 
m, n integer summation indicies 
n nth unit element: {n} = {nx, r/y, r/Z } 
X, y, Z principal directions of a Cartesian coordinate system 

Superscripts 
T transpose 
* indicates the solid-phase 

effective global coefficient 
<3 indicates the value of a function minus its average over the volume of a unit 

element 
complex conjugate 

�9 local equilibrium sorption 
�9 �9 first-order reversible kinetic sorption 

(overbar) average over the volume of a unit element 

2. Introduction 

Recent solute transport laboratory studies (Durant and Roberts, 1986) and a field 
experiment (Mackay et al., 1986; Roberts et aL, 1986) indicate that in modeling 
sorbing solute transport through natural subsurface systems the retardation factor 
should not be considered as a position-independent constant, but rather as a 
spatially-variable parameter. The problem of how to model the impact of spatially- 
variable retardation on the transport and spreading of sorbing solutes through 
porous media is increasingly capturing the attention of investigators from various 
disciplines. Garabedian (1987) assumed that the log-hydraulic conductivity is 
linearly related to the porosity and the distribution coefficient, and employed 
spectral small-perturbation techniques to show that a negative correlation between 
the log-hydraulic conductivity and the distribution coefficient increases ensemble 
solute dispersion. Similar results were obtained by Valocchi (1989), who used the 
method moments to study the asymptotic behavior of sorbing solute transport in 
perfectly stratified porous media and two-layer aquifers under the assumption that 
pore water velocity, dispersion coefficients, distribution coefficients and sorption 
rate coefficients are vertically-distributed. Dagan (1989, p. 344) assumed a linear 
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correlation between log-hydraulic conductivity and retardation factor to derive 
some preliminary results for the average velocity and macrodispersion coefficients 
of a particle displacement. Van der Zee and van Riemsdijk (1987) employed the 
parallel-column model to derive an expression for the field-averaged profile of 
solid-phase solute concentration, assuming that each homogeneous column differs 
with respect to the fluid velocity, retardation factor, and time period of solute input, 
all of which are treated as lognormally distributed. Chrysikopoulos et  al. (1990) 
derived an analytical small-perturbation solution to the partial difflerential equation 
describing one-dimensional sorbing solute transport through homogeneous porous 
media with spatially-variable retardation factor. 

The majority of the mathematical models currently used to simulate transport of 
solutes undergoing sorption or ion exchange assume local equilibrium, neglecting 
rate limitations in the interest of computational simplicity. However, the validity of 
the local equilibrium assumption has been questioned repeatedly in studies of 
sorbing solute transport through laboratory column (James and Rubin, 1979; 
Nkedi-Kizza et  al., 1983; Miller and Weber, 1986) and in field (Pickens et  al., 1981; 
Goltz and Roberts, 1986; Roberts et  al., 1986; Knapp, 1989) systems. In attempting 
to identify conditions for which the assumption of local chemical equilibrium is 
applicable, a variety of techniques have been developed. Valocchi (1985) applied the 
method of mements to obtain criteria for the use of equilibrium models, Parker and 
Valoochi (1986) derived conditions for quantitative evaluation of the equivalence 
between equilibrium and first-order kinetic solute transport models. Bahr and 
Rubin (1987) also presented a procedure for direct comparison between simple 
equilibrium and kinetic transport models. Furthermore, studies in solute transport 
have expanded to account for the important case where multiple species are 
transported simultaneously and interact. Such complex multicomponent transport 
models usually are formulated either by incorporating the chemical reaction equa- 
tions directly into the governing transport equation (Valocchi et  al., 1981; Jennings 
et  al., 1982; Miller and Benson, 1983; Kirkner et  aI., 1984; Angelakis et  al., 1987; 
Mansell et  al., 1988) or by separating the equations describing the chemical 
interactions and solute transport (Cederberg et  al., 1985; Liu and Narasimhan, 
1989). 

The present work focuses on the transport of sorbing but otherwise nonreacting 
solutes under either local equilibrium or first-order kinetically sorbing conditions in 
a three-dimensional hydraulically homogeneous but geochemically spatially-peri- 
odic porous medium. Geochemical periodicity refers to the case where the distribu- 
tion coefficient, and consequently the retardation factor, repeat themselves with a 
certain period in each direction. Generalized Taylor-Aris dispersion theory is 
employed to derive expressions for the apparent or asymptotic coefficients, namely 
the mean velocity vector and dispersion dyadic, governing the macroscopic solute 
transport process. Despite the fact that a three-dimensional porous medium is 
considered, the present analysis is limited to unidirectional flow, but can be 
extended to the more general cases of two- or three-dimensional flow fields 
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(Chrysikopoulos et al., 1991). The assumption of a geochemically spatially-periodic 
porous medium may be criticized, because the geochemical characteristics of field 
formations although recurrent in space are not exactly periodic. It has been 
employed for mathematical convenience because it leads to exact expressions. The 
periodic model is the simplest way to represent spatial repetitiveness and can be 
used as an intermediate step to obtain results for the more general stationary case, 
as illustrated by Kitanidis (1990) for the hydraulic conductivity case. 

3. Problem Formulation 

Consider a three-dimensional porous medium with spatially-periodic geochemical 
parameters in all three directions. Assuming that the variability in each principal 
direction of a Cartesian coordinate system has spatial period lx, ly, and ~, 
respectively, the porous medium may be divided into identical rectangular paral- 
lelepiped elements with edges defined by the vectors lx, ly, and 1= (e.g., 
1)., = (0, ly, 0) r). A vector of spatial coordinates Q may be written as the sum of an 
unbounded global variable Q. and a bounded local variable q (Brenner, 1980b; 
Brenner and Adler, 1982). Explicitly, 

Q = Q n + q ,  (/) 

where 

(q i) Q. = |nyly | ;  q =  , (2a,b) 

\n.(~/ 

n~=O, +1, _+2, ___3,..., ( i = x , y , z ) ,  (3a) 

O~<q~ ~/~ 

0 ~< qj. ~< l, (3b) 

O<~qz<<.l= 

and the subscript n denotes the nth unit element which is defined by the triplet of 
integers: {n} = {n x, ny, n=}. Q, locates the origin of the nth unit element and q 
specifies a local point within the nth unit element (see Figure 1). 

The transport of a sorbing solute through a three-dimensional homogeneous 
porous medium under steady-state uniform flow conditions is governed by the 
following partial differential equation 

OC(t, Q) p OC*(t, Q) 02C(t, Q) 82C(t, Q) 
8t + 0 8t - Dx,= 8Q~ + Dyy 8Q 2 

02C(t, Q) OC(t, Q) 
+ Dzz aQ2z Ux aOu ' (4) 

where C(t, Q), which can also be written as C(t, Q,, q), is the volume-averaged or 
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Fig. 1. Geometric characteristics of a rectangular parallelepiped unit-element (O and o indicate the 
origin of the global and a local coordinate system, respectively). 

resident liquid-phase solute concentration, which is defined as the solute mass per 
unite volume of interstitial fluid; C*(t, Q) is the solid-phase or sorbed solute 
concentration defined as the sorbed solute mass per aquifer solids mass; Dxx, Dyy, 
and Dz_. are the principal hydrodynamic dispersion coefficients; Ux is the average 
interstitial fluid velocity; Qx is the spatial coordinate in the direction of flow; t is the 
time; p is the bulk density of the solid matrix; and 0 is the porosity. Note that U~, 
p, O, and Du(i, j = x, y, z) are assumed to be scalar, position-independent constants. 
For  linear, reversible, instantaneous sorption, the equilibrium relationship between 
the solute substance in the aqueous and solid phases is given by 

C*(t, Q) = Kd(q)C(t, Q), (5) 

where Kd(q) is the partition or distribution coefficient, defined as the ratio of solute 
concentration on the adsorbent to solute aqueous concentration at equilibrium. In 
the present analysis, the distribution coefficient and the other geochemical proper- 
ties of the porous formation possess directional periodicities with spatial periods l~, 
(v, and Iz. Consequently, the distribution coefficient varies within each element. 
Alternatively, the equilibrium relationship (5) can be written as 

S*(t, Q) = kd(q)C(t, Q), (6) 

where S*(t, Q) --pC*(t ,  Q)/0 is the solid-phase or sorbed solute concentration with 
units identical to C(t, Q), and kd(q) = pKd(q)/O is the dimensionless partition or 
distribution coefficient. Note that the total mass (in solution and sorbed) in volume 
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V is OV[C + S*]. Combining Equations (4) and (6) leads to 

R(q) aC(t, Q) -D~x -+Dyy + 

(7) 

where the dimensionless variable R(q) is the retardation factor defined as 

R(q) = 1 + k~(q). (8) 

For an unbounded porous medium in which an amount of solute mass W is 

instantaneously injected at t = 0 at the point Q0 = Q.o + q0, the appropriate initial 
and boundary conditions that lead to correct evaluation of resident liquid-phase 

concentrations are (Kreft and Zuber, 1978) 

C(0, Q) = W6(Q - Q0) = w6.no6(q - q0), (9) 

lira C(t, Q) = lira C(t, Q) = 0, (10) 
iQ - Q~ ~ co IQ~ - Q.0l ~ ~o 

where 6n.O is the Kronecker delta for unit elements n and n o (6nnO : C~nxnOC~,5%9~nz,~o); 
and 6 ( q - - q  ~ is a Dirac delta function. Note that C*(0, Q ) = 0  and 
6,no6(q--q ~ = 6 ( Q - Q ~  The first equality in condition (10) holds, because 

I q -  q~ = O(li) (Brenner, 1980b). Furthermore, we impose that the solute concen- 
tration and the dispersive flux are continuous on each interface, •qi, of  a unit 
element (Brenner, 1980b; Shapiro and Brenner, 1988) 

C(t ,Q. ,q )=C( t ,  Qn- l i ,  q+li) , (q E 0qi), (11) 

V q C ( t ,  Q.,  q) = V q C ( / ,  Q. - ll,q + li), (q ~ aqi), (12) 

where Vq = [O/Oq~, O/Oqy, a/Oqz] v is the vector differential operator. The retardation 
factor is modelled as periodic, which means that for any q in the interior or the 
boundary of  the unit element 

R(q) = R(q + li). (13) 

R(q) as well as its derivatives are also continuous at any point on the six faces of 
each parallelepiped unit element 

R(Qn, q) = R(Q.  - 1~, q + li) , (q z c3qi), (14) 

VqR(Qn, q) = VqR(Q. -1~, q + la), (q z 0qi ). (15) 

Note that in Equations Ell), (12), (14), and (15), the vector q is on an interface of 
two consecutive unit elements. For  vectorial representation of the conditions (11) 
through (15) refer to the definition-sketch in Figure 1. 

The solute concentration can also be interpreted as a probability density function 

by setting W = 1: C(t, Q.,  q[Qno, qO) equals to the probability density function of  
the location of  a particle at time t given that at time t = 0 it was located at point 
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(Q.o, qO) (Brenner, 1980a, b). Hereafter, for notational convenience it is assumed 
that Q.o = 0 and q0 = 0, where 0 is the null vector and indicates the origin of the 
unit element defined by {n ~ = {0, O, 0). 

4. Method of Moments 

In order to obtain the expressions for the asymptotic coefficients governing the 
macroscopic solute transport, the generalized approach (Brenner, 1980a, 1982a, b; 
Dill and Brenner, 1982a, b; Frankel and Brenner, 1989) to the original method of 
moments (Taylor, 1953, 1954; Aris, 1956) is employed. In the context of the 
generalized Taylor-Aris-Brenner  dispersion theory, the local spatial moments of 
the liquid-phase solute concentration or probability density function are defined as 

ram(t, q) = ~ QmC(t, Q., q), 
n 

where 

def 

n n x =  c o  t l y ~  - - o o  n z :  - - o o  

(m = 0, 1, 2 . . . .  ), (16) 

(iv) 

Q~ = Q n  Q. (m-times) is an m-adic. Thus: QO = 1; 1 . Q,  = Qn, Q2 is the second- 
order tensor (dyadic) whose i j th  element is the product of the i and j element of 
Q.; and so on. The global moments of the liquid-phase solute concentration are 
defined as 

Mm(t) = ( m m ( t , q ) d ~ q = ~ Q ~ ' C . ( t ) ,  (m =0,  1, 2, . . .), (18) 
dv o n 

where 

Cn({) dcf C . =  C(t, Q,, q)d3q, (19) 
d Y  

o 

V o is the domain of a unit element; d3q is a differential volume within a unit 
element; and C.(t) is the liquid-phase solute mass present within the nth unit 
element. 

The zeroth global moment (Mo) is a scalar and represents the total mass in 
solution; the first moment (M1) is a vector and M1/Mo indicates the position of the 
center of mass; the second moment (M2) is a dyadic and M z / M  0 measures  the mean 
square displacement of the plume, after averaging the solute concentration within 
each element, about the origin of the n~ unit element where solute was introduced 
instantaneously as a point source. 

Similarly, the local moments for the solid-phase or sorbed solute concentration 
are defined as 

pro(t, q) = ~ QmS*(t, Qn, q), (m = 0, 1, 2 . . . .  ), (20) 
n 
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and the global moments are defined as 

-- t pro(t, q)d3q = ~ QmS*(t), (m = 0, l, 2 . . . .  ), (21) Pro(t) 
JV o n 

where 

~ def= fv, S*(t, Qn, q)d3q (22) 

is the mass of the solute sorbed within the nth unit element. 
The rate of change of the local moments of the liquid-phase solute concentration 

is obtained by rewriting the parabolic partial differential equation (7) in terms of  
local coordinates, multiplying the resulting equation by Q~ and then summing over 
all unit elements. Explicitly, 

v Q~'~a(q) OC(t, Q.,  q) D~x 02C(t' Qn, q) Dy~ 02C(t' Qn, q) 
o t  - - 

--D.~ 8q 2 + u~ 8C(t'Q"'q)}=O.~q~ (23) 

Since U~ as well as Dq (i, j = x, y, z) are constants, and R(q) is independent of n, 
Equation (23) may be written as 

"~2 m m 0 m m 0 2m m 
= - -+Dvy-~a2 + D . z - - -  R ( q ) ~  Dxx ?q2 qy 

or in matrix/vector notation as 

0mm 
R(q) 0-~- = Vq" {O- Vqm m - Um m }, 

where 

0 Dx~ 

02mm U Ore_., (24a) 
0q~ x @x ' 

(24b) 

(25a,b) 

are the dispersion coefficient tensor and velocity vector, respectively. 
In addition to Equation (24), the local moments satisfy certain boundary 

conditions imposed at the unit-element surfaces. These conditions are derived from 
Equations (11), (12), and (16) and are expressed in terms of 'local jumps' as follows 
(Brenner, 1980b; Brenner and Adler, 1982; Dill and Brenner, 1982, 1983; Shapiro 
and Brenner, 1988): 

~mo~ = 0, ~Vqmo~ = 0; (26a,b) 

~ml ~ = -- [[qmo~, ~Vqm, ~ = - ~V.(qmo)~; (27a,b) 

L mo I k k mo / 2  
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The local-jump term [FF~ indicates the difference between the values of the function 
F at equivalent points on opposite faces of a unit element, i.e., 

~F~ = F(q + li) - V(q), (q ~ 0qi), (29) 

where F is an arbitrary function of local coordinates. 
The local moments for the solid-phase solute concentration are obtained in a 

similar fashion by rewriting the equilibrium relationship (6) in terms of local 
coordinates, multiplying the resulting equation by Qm and then summing over all 
unit elements. Explicitly, 

Pm= kd(q)mm (30) 

is the linear relationship between the local moments for the liquid- and solid-phase 
solute concentration. 

Integrating both sides of Equation (24b) over the domain of a unit element and 
applying the divergence theorem leads to 

fv~ ~mm 3 f { D V q m m - U m m } n = d s ,  (31) R ( q ) ~ s d  q =  vo " 

where ~ Vo is the external surface area of a unit element, n= is the outward unit 
vector normal to ~Vo, and ds is an infinitesimal surface area on O Vo. Since each 
rectangular parallelepiped unit-element consists of six faces, 

def 
OVo= ~ (s+iOs_i), (i=x,y,z), (32) 

i 

where s+i denotes the faces of the unit element, while the plus or minus sign permits 
identification of equivalent but opposite faces. For example, S+x is the downstream 
face of a unit element on the qy - q= plane, and s_x is the opposite face. Because the 
unit element is a parallelepiped, s+ /=  s~ .  A surface integral over the area of a unit 
element can also be written in terms of local jumps as (Brenner, 1980b) 

f~ F . n = d s = ~ / f  ~F~.n=ds (i=x,y,z). (33) 
V o  " + i 

Substitution of the preceding identity into Equation (31) yields 

fOVo R Omm (q) ~ -  d3q : ~ ~+i {D'  ~Vqmm?- U~mm~} "n=ds (34) 

5. Asymptotic Behavior 

5.1. ZERO-ORDER MOMENTS 

For m = 0 the steady-state solution to Equation (24) subject to jump boundary 
conditions (26a, b) is by inspection deduced to be 

m0 = const. (35) 

The conservation of mass law requires that the sum of the zero-order global 
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moments for liquid-phase and sorbed solute concentration is at all time equal to the 
mass injected 

Mo + Po = W. (36) 

Employing the definitions of the global moments and Equation (30), the conserva- 
tion of  mass relationship may be rewritten as 

vo[mo + m o k d ( q ) ] d 3 q  = W.  (37) 

Since at large-time m0 is a position-independent constant (see Equation (35)), in 
view of  Equation (8) the zero-order local moment for the liquid-phase solute 
concentration is given by 

W 
m0 - L U ~ ,  (38) 

where the dimensionless variable 

def 1 ; /o 
- l~lyl~ R(q)d~q = const., (39) 

is the retardation factor averaged over the volume of a unit element. Substitution 
of  (38) into (18) yields the liquid-phase zero-order global moment 

W 
M0 = -~. (40) 

5.2. FIRST-ORDER MOMENTS 

For  m = 1, Equation (34) can be written as 

Oral d 3_ R(q) ~ t 1 = . U~qrn0~ - n, ds = Vq" {Uqm0}d3q, (41) 
+i o 

where the local boundary conditions (27a,b), Equation (33) and the divergence 
theorem have been employed. 

Let us now determine the first local moment. Since the velocity vector U has 
only one nonzero entry (element), it is evident that rn1(~),ml(z)  ultimately 
become independent of  time. One can verify that rnl(y ) = [ - q y  +~,,]mo and 
m~(z)-=[-qz+~z]rn0,  where ~y and ~z are constants and mo is given from 
Equation (38), are the solutions. Note that the subscripts in parentheses, (i), 
indicate the appropriate elements of  the corresponding vector m~. Inspection of 
boundary conditions (27a, b) suggests for large times a trial solution for the ml(x) 
element of  the first local moment vector of the form 

W 
m~(x) = [Ft - qx + q)x(q)] l x l y l z l~ ,  (42) 

where F is a constant and (I)x(q) is a function of the local coordinates with 
symmetric values on the boundary of the unit element. That is, 

@~(q) = (l)~(q + 1~), (q ~ 8q~), (43) 

VqCb~(q) = Vqqb~(q + ii), (q ~ 8q~). (44) 
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Note that the Equation (42) satisfies the conditions (27a, b). For the mr(x) element, 
Equation (41) can be written as follows 

v aml(x) ~'3 U~molxlyl~ U~ W (45) R(q) ~ } - -  a q = - /~ 
o 

Substituting (42) into (45) yields 

U~ (46) 
R 

Combining Equations (46) and (42), the general trial solution for any element 
m~( o is given by 

I rnw)= - q * + ~ * ( q )  l~lyl~K' ( i = x , y , z ) .  (47) 

Employing Equations (18) and (47) yields the expression for the elements of the 
first global moment 

2~_~ ; 4  J] ~'W (i = x, y, z), (48) Ml(o = [~,.t 
where 

def 1 IV 
~i -- lflyl~ o 

dp~ (q)d3q = const. (49) 

To complete the description of the first-order local moments, qb~(q) must be 
determined. Substituting (47) (for i =  x) into (24a) and (27a, b) leads to the 
following set of partial differential equation and local jump conditions 

G (R(q)  - ~)  ~ = z ) x x - -  

~gP~(q)~ = O, 

~Vq@~(q)~ = O. 

6~2(I)x(q) 0 2 q ) x ( q )  a2dOx(q) Ux aqbx(q) (50) 
~q~ +Dyy aq~-~--y +Dzz ~q~ aqx ' 

Since 

(51a) 

(51b) 

R(q) is periodic in all three directions, it can be expanded in a Fourier series 

R(q) =/~ + ~ )v(b) exp[j27zq �9 I~], (52) 
b b ~ 0  

where 2(b) are known coefficients (the discrete spectrum of R(q)), b is a three 
dimensional vector of wavenumbers, 1~ = (/~,,/~y,/~z) r = (bx/lx, by/ly, bz/lz) r and 
j = x / ~ i .  The solution of (50) which satisfies (51a, b) is a series of the form 

Ox(q) = ~x + ~ #(b) exp[j2rtq- I~], (53) 
b b=/=0 

where p(b) is a spectrum to be obtained by introducing (52) and (53) into the 
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partial differential equation (50). Hence it follows that 

U~ ;~(b) 
#(b) = - ~  [4r~2(/;2D~x +/~Dyy +/~2D~:) +j2n/;x Ux] ' 
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(b # 0). (54) 

5.3. SECOND-ORDER MOMENTS 

For m = 2, Equation (34) can be written as 

0m 2 
;~,R(q)~-d3q=~f+i{D'IVq(mlm~-uWmlml~)'nsds'" U_ k mo / j  II mo _U) (55) 

where the local unit-element jump boundary conditions (28a, b) have been used. 
For the element mz(xx), where the double subscripts in parentheses, (i j), indicate the 
corresponding element of the dyadic ma, Equation (55) can be written as 

= - -  Dx~ U~m2(~) dqydqz. (56) 
R ( q ) ~ a q  mo ~qx 

Substitution of (8) and (47) (for i = x) into (56) followed by integral evaluations 
yields 

[ l + k d ( q ) ] - ~  - d 3 q =  " 2 +Ux6Px+Dxx R " (57) 
o 

Similar expressions can be derived for all other diagonal elements of m2. In view of 
(18), (21), and (30) Equation (57) can be written as 

dM2(xx) dP2(xx)=(U~t UxIx ) 2 ~  
dt + dt - ~ - +  U x ~  +D~x . (58) 

To determine the second global moment of the liquid-phase solute concentration, 
adopt a trial solution for the m2(xx) entry of the dyadic m2 of the form (Brenner, 
1980a, b) 

W 
mz(x~) = [E~t a + Z~(q)t  + Hx~(q)] l~lyl:R' (59) 

where E~.~. is a constant and Z~(q),  H~(q)  are functions of the local coordinates. 
As will be shown in the next section, evaluation of the term H~x(q ) is not necessary 
for the determination of the dispersion dyadic that governs the macroscopic solute 
transport process. Also, combining (30) and (59) yields the second local moment of 
the solid-phase solute concentration for the local equilibrium sorption model 

W 
P2(~x~ = kd(q)[E~x t2 + Z~x(q)t + H.~x(q)]/flyL~" (60) 

Integrating Equations (59) and (60) over the volume of a unit element, the trial 
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second global moments of the liquid- and solid-phase solute concentrations are 

W 
M2(xx) = (Exxt 2 + Zx~t + Hxx) 3 '  (61) 

W 
P2(~) = (E~Fd t2 + Z~xkdt + H~kd) 3 "  (62) 

Substitution of (61) and (62) into (58) followed by some manipulations yields 

E~x - K2. (63) 

Substitution of (38) and (47) (for i = x) into the local unit-element jump boundary 
condition (28a) leads to 

2 1 
= + _ ~ _ { r  2 W 

Comparison of (59) and (64) suggests that 

2u~ 2D~ 2g~ 
Z~(q)  = ~ -  [qb(q) -- qz] + ~ - -  + ~ -  [q~ -- qb(q)] <R(q) <, (65) 

where the term F < indicates the value of the function F minus its average over the 
volume of a unit element (F < = F - F), and the expression for the volume-averaged 
term is derived in the Appendix. Since all the necessary terms of the second global 
moment for the liquid-phase solute concentration are evaluated, Equation (61) can 
be written as 

[ U ~  2 Ufl~t 2U~6~t 2D~xt  2U~t 
= ~ + - ~ - +  x M ~ )  L ~ R + R --~- 

x [q~ -- q)~(q)] <R(q) < + / 1 ~  3 "  (66a) 

In a similar fashion are derived the expressions for the other two diagonal elements 
of the dyadic M2 

i/Dyy t'~ m 
M2(yy ) = 2 ~ - ~ - )  3 '  (66b) 

M2(zz ) = 2 3 "  (66c) 

6. Effective Macroscopic Coefficients 

The mean or effective macroscopic velocity vector U ~ and the mean macroscopic 
dispersion dyadic D ~ of a Brownian particle are defined by (Brenner, 1980a, b) 

U ~  lim dQn (67) 
t~oo dt ' 
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D< > = 21 limoo~ d(Qndt- 0 n ) 2  ' (68) 

where for this study Q. is the ensemble average of the displacement vector Q. 
normalized with respect to the zeroth global moment, and it is given by 

On : ~0  ~ QnCrl(l), (69) 

and (Qn - Qn) 2 is the dyadic ensemble mean-square macroscopic displacement Q, 
from Q. at time t normalized with respect to the zeroth global moment, and it is 
given by 

1 
(Q" - O")2 = Moo ~. (Q" - Q")2Cn(t)" (70) 

Combining Equations (18) (for m = 1) and (69) yields 

Q. =--M1. (71) 
Mo 

Furthermore, Equations (18) (for m = 1), (70) and (71) lead to 

1 = (72) (Q _On)2 ~o~[(Q.Q_Q.Q_Q.Q.+Q.Q.)~.(t) ] M~ M~M~ 
= Mo M ~ '  

It should be noted that the normalization with respect to Mo could be avoided if 
injection of a conservative solute having unit mass (34o = 1, Vt ~> 0) or equivalently 
if a single Brownian particle, is considered. Using Equations (71) and (72), the 
definitions of U ~ and D ~ can be rewritten as follows 

d ( M 1 )  (73) 
U<~:tlim~& Moo ' 

1 lim ~ d (M2 M1M,~ (74) 
D < > : 2  ~ dt M~o Mg ]" 

The effective parameters governing the macroscopic solute transport under local 
equilibrium conditions and the prescribed flow field can now be obtained formally. 
In view of (40), (48), and (73) the effective velocity vector is 

(75) 

Also, from (40), (48), (66), and (74) it follows that the macrodispersion dyadic is 

D o = I  /D~ex \ 0 0 O )  
2 { 0  Dyy 0 , (76) 

0 Dz~ 
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where 

D e  : Dxx + ~ [qx - gPx(q)] <R(q) < (77) 

The second term on the right hand side of the preceding equation is the effecvt of 
averaging the spatially-periodic distribution coefficient over the volume of a unit 
element. This contribution to the longitudinal macrodispersion coefficient is com- 
monly referred to as the Taylor dispersion coefficient (Horn, 1971; Valocchi, 1989). 

7. Rate-Limited Sorbing Solute Transport 

In this section the effective velocity vector and macrodispersion dyadic are derived 
for the case where sorbing solute transport is no longer under local chemical 
equilibrium conditions but it is governed by the following first-order reversible 
sorption kinetic relationship (Valocchi, 1989) 

aS*(t, Q) 
8t - ky(q)C(t, Q) - k,(q)S*(t, Q) 

= kr(q)[k~ Q) - S*(t, Q)], (78) 

where ks(q) and kr(q) are the forward and reverse sorption rate coefficients, and 

kO(q) _ kf(q) (79) 
kr(q) 

is the dimensionless partition or distribution coefficient. The sorption rate co- 
efficients and consequently k~ are assumed to possess directional periodicities 
with spatial periods lx, ly, and l:. 

Employing the previously described Taylor-Aris-Brenner method of moments 
in Equation (4) and (78), leads to 

Ore,. Opm 
0t + O;-  = Vq. {D. Vqm m - U m  m }, (80) 

~Pm 
0t = kr(q)[k~ -- Pro], (81) 

where the latter equation is a first-order linear relationship between the local 
moments for the liquid- and solid-phase concentration. 

Following the procedure outlined in Sections 5 and 6, the large-time velocity 
vector and macrodispersion dyadic become 

u~ ) ~ 0 , (82) 
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./D''O00) (83) 

R 0 
\ 0 0 Dzz / 

where 

vx U~ (k~ (84) D~x" = Dxx - ~ [qx - @x(q)] <R~ < + 
U / 

R~ = 1 + kg(q). (85) 

The first two terms on the right had side of the preceding equation are the 
longitudinal hydrodynamic and Taylor dispersion coefficients. However, the third 
term which is not present in the case of local equilibrium sorption (Equation 77), 
represents the effect of the first-order reversible kinetic sorption. 

It should be noted that, at the limit/~r--" oo which represents local equilibrium 
conditions at fixed/~o (Jennings and Kirkner, 1984; Valocchi, 1989), the contribu- 
tion to longitudinal dispersion from the first-order sorption rate vanishes. There- 
fore, the kinetic sorption relationship becomes identical to the chemical reversible 
sorption isotherm, and D~x e = D~x. 

Equation (84) is similar to the result for a perfectly stratified aquifer derived by 
Valocchi (1989). However, Valocchi's Taylor dispersion and reversible kinetic 
sorption terms of the longitudinal effective macrodispersion coefficient are averaged 
over the aquifer depth, while the terms in (84) are averaged over the volume of a 
unit element. The effective macroscopic coefficients derived in this work are more 
general, since three-dimensional spatially-periodic sorption is considered. 

8. Simulation by Particle Tracking 

In order to verify the analytical expressions for the effective or large-time co- 
efficients governing macroscopic solute transport under local equilibrium condi- 
tions, the random walk method is employed. The random walk technique has been 
applied in numerous solute transport studies (e.g., Ahlstrom et al., 1977; Smith and 
Schwartz, 1980; Kinzelbach, 1988; Black, 1988). The method is as follows. A large 
group of particles representing solute mass is displaced by superimposing on the 
advective movement a random dispersive shift. The magnitude and direction of the 
dispersive displacements for each individual time step are generated independently 
from an appropriate probability distribution. According to the central limit theo- 
rem, the cumulative outcome of a large number of consecutive runs with an 
arbitrary probability distribution approximates a Gaussian distribution. Therefore, 
the precise form of the probability distribution is not important, as long as it yields 
equivalent variance and mean. For computational simplicity, the uniform distribu- 
tion is most frequently employed. In the limit of infinitely many particles, their 
spatial distribution becomes equal to the solute concentration which satisfies the 
advection-dispersion equation. 



180 C O N S T A N T I N O S  V. C H R Y S I K O P O U L O S  ET AL. 

We have employed the particle tracking technique for the case where the 
retardation factor is spatially-periodic only in the x-direction, and can be described 
by 

R(q) = R + A cos(2Tcqx/lx), (86) 

where A is the amplitude of oscillation of the retardation factor. In view of the 
selected functional relation of the retardation factor, it is evident that Equation (77) 
reduces to 

D ~  = Dxx + -8rc2D2 x/l~ + 2U 2 " (87) 

For one thousand particles distributed initially uniformly over the volume of a 
unit element with lx = ly = lz = lm, we have obtained the rate of change of the first 
global moment (Figure 2), as well as the rate of change of second-central global 
moment (Figure 3) for the liquid-phase solute concentration. The parameter values 
employed in the particle-tracking numerical simulations are Ux = 5, Uy = Uz = 0 
m/d;  Dxx = 0.06, Dyy = 0.03, Dz~ = 0.02 m2/d ; /~  = 29; and A = 28. Together with 
the numerical data we have plotted the theoretical results (solid-lines). The agree- 
ment between the numerical and theoretical predictions is good, as seen in Figures 
2 and 3. It is apparent that a spatially-variable retardation factor increases the 
solute spreading significantly. This phenomenon has been explored further by 
Chrysikopoulos et al. (1990), and it is also demonstrated through the particle- 
tracking simulations shown in Figure 4. For the particular conditions employed in 
this simulation, the rate of change of the second-central moment for spatially- 
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periodic retardation factor is approximately 50% larger than the case of invariant 
retardation factor, /~. 

9. Summary and Conclusions 

Expressions for the macroscopic velocity vector and dispersion dyadic were derived 
with the generalized method of Taylor-Aris dispersion. A three-dimensional homo- 
geneous porous medium under the ideal condition of unidirectional flow was 
considered, mainly to improve our conceptual understanding of the effects of spatial 
sorption. However, in a similar fashion, the more general problem of spatially-vari- 
able flow can be solved without too much additional effort. A chemical equilibrium 
isotherm as well as a first-order reversible sorption relationship were employed in 
the present analysis. Under the assumption of local equilibrium sorption it was 
shown that asymptotically the solute plume is transported with a velocity equal to 
the unidirectional fluid velocity divided by the average retardation factor. The 
longitudinal element of the dispersion dyadic was shown to consist of two terms. 
The first term is the hydrodynamic longitudinal dispersion coefficient divided by the 
averagte retardation factor, while the second term is the contribution of averaging 
the locally variable partition coefficient. The other two elements of the dispersion 
dyadic are just the corresponding principal hydrodynamic dispersion coefficients 
divided by the average retardation factor. For the case of first-order reversible 
kinetic sorption, similar results were derived for both the effective velocity vector 
and dispersion dyadic. However, the longitudinal element of the dispersion dyadic 
was shown to have a third term expressing the effect of the first-order sorption rate. 
Therefore, the asymptotic spreading of a sorbing solute plume is critically affected 
by the spatial variability of the sorption coefficient or retardation factor, as well as 
by the sorption rate of the solute if local chemical equilibrium conditions are not 
applicable. Good agreement was shown between the theoretical predictions ob- 
tained for the local chemical equilibrium conditions and the particle tracking 
numerical experimentations. 

10. Appendix: Derivation of the Volume-averaged Term in the Taylor 
Dispersion Coefficient 

In this appendix, we develop the expression for the volume-averaged term that 
appears in the Taylor dispersion coefficient. By definition 

[qx - ~x(q)]<R(q) < de~ 1 
l x l ,  lz j v  [q~ - *x(q)] <R(q) <d3q, (A1) 

o 

where 

q~ = q x -  qx, (A2) 
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R(q) < =  ~ 2(b)exp[j2~zq.i~], 
b 

b e 0  

qax(q) < Ux 2(b) exp[j2rcq. I~] 
= - - ~  b~ 4 2 " 2  "2 +t~2D,~)+j2=<U" rc (bxDx~ + b y D y y  _ ~ 

b # 0  
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(A3) 

(A4) 

Combining Equations (A1) through (A4) and assuming that integrations and 
summations are interchangeable leads to 

[qx - @~(q)] <R(q) < = bZ 2(b) (q," -- ~]x) exp[j27rq �9 bJd3q + 
g - 0  o 

4re 2(/~D~x -2 -2 + b  y D y y  +b~D~) -j2~b~_ U x d3q " 
(A5) 

Note that )~(b) and 2t(b) are complex conjugates. The integral of the first term on 
the right-hand side of Equation (A5) is: 

f v (q~  - glx) exp[j2=q �9 = (A6) 6]d3q O. 
o 

Substituting Equation (A6) into (A5) and evaluating the integral of the second term 
on the right-hand side of Equation (A5), yields the following expression 

Ux2(b))v+(b) (A7) 
[q~--@x(q)] <R(q) < = [4/.c2(~2 / ) + t~2Dyy + t~2_D_z) _j2=t~ x Ux]~. 

b ~ 0 �9 v ~  x - - x x  ~ 
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