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Abstract

Channel geometry often is described by a set of longitudinally varying parameters measured at a set of survey stations. To sup-

port flow modeling at arbitrary resolution, three methods of parameter interpolation are described including piece-wise linear inter-

polation, monotone piece-wise-cubic Hermitian interpolation, and universal kriging. The latter gives parameter estimates that

minimize the mean square error of the interpolator, and therefore can be used as a standard against which the accuracy of polyno-

mial methods can be assessed. Based on the application of these methods to a dataset describing cross-sectional properties at 283

stations, piece-wise linear interpolation gives parameter estimates that closely track universal kriging estimates and therefore this

method is recommended for routine modeling purposes. Piece-wise-cubic interpolation gives parameter estimates that do not track

as well. Differences between cubic and kriging estimates were found to be 2–10 times larger than differences between linear and kri-

ging parameter estimates. In the context of one-dimensional flow modeling, the sensitivity of steady state water level predictions to

the channel bed interpolator is comparable to a 5% change in the Manning coefficient.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Topographic data describing the geometry of chan-

nels are required for all types of channel flow modeling

including one-dimensional (cross-sectionally integrated),

two-dimensional (vertically or laterally integrated), and

three-dimensional approaches. These data are typically

obtained by surveying transverse profiles, or cross-

sections, at a series of stations distributed in the longi-

tudinal direction [7], although relatively new vessel
mounted, geo-referenced profiling technologies have al-

lowed bed elevation to be recorded along a more general

two-dimensional trajectory. Widely used river modeling
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software such as HEC-RAS [2] and UNET [18], devel-

oped by the US Army Corps of Engineers, directly use
cross-sectional survey data to characterize geometric

properties of the channel such as the top width, cross-

sectional area, and conveyance. Data from digital eleva-

tion maps (DEMs) available from the Earth Resource

Observation Systems (EROS) Data Center of the US

Geologic Survey, which resolve topography on a carte-

sian grid at resolutions as fine as 30m, are useful for

mapping floodplain topography and making overland
flow predictions, but not for channel topography be-

cause EROS DEMs do not resolve flooded topography

and are too coarse to resolve channel topography at the

resolution necessary for flow predictions.

When survey data consist of transverse profiles,

measurements can be written as zo(xi,yj) where xi repre-

sents the position of the ith survey station in the longi-

tudinal direction (where i = 1, . . .,n and n is the
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Nomenclature

A wetted cross-sectional area, defined in (32),

L2

A matrix (n + p · n + p) of the kriging system,

defined in (15)

b vector (n + p) of the kriging system, defined

in (17)

CP autocovariance function

E[ ] expectation operator

f known trial or base spatially dependent

functions
Fr Froude number

g gravitational acceleration constant, L/t2

L Lagrangian, defined in (11)

MSE mean square error of kriging estimator,

defined in (18)

m number of survey points in transects

n number of available observations

nm Manning coefficient
np number of parameters used to characterize

cross-sectional geometry

p number of drift coefficients

P spatially dependent stochastic variable

Pw wetted perimeter, L

Q volumetric discharge, L3/t

r separation distance between measurements, L

Sf friction slope, defined in (33)

T bank to bank width of the channel at the free

surface, L
V cross-sectionally averaged fluid velocity, L/t

wb bottom width of the channel, L

wt bank width, L

x spatial coordinate in the direction of flow, L

zb bottom elevation of the channel, L

zt bank elevation, L

x vector (n + p) of unknowns of the kriging sys-

tem, defined in (16)

Greek Letters

b deterministic but unknown drift coefficients

c semi-variogram

e zero-mean stochastic process or residual

f exponential semi-variogram model parame-

ter, L

g free surface elevation, L
k1, . . .,kn deterministic weight coefficients

le mean or expected value of e(t)
m1, . . .,mp 1/2 Lagrange multipliers

n Gaussian semi-variogram model parameter,

L

r2 variance of the exponential semi-variogram

model
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number of survey stations), yj represents position of the

jth survey point in the transverse direction (where

j = 1, . . .,m(i) and m(i) is the number of survey points

at each survey station). The spacing of survey stations

is usually not consistent with the needs of computer

models which may require many computational ele-

ments between neighboring survey stations [2]. There-

fore, interpolation is needed to estimate geometric
properties at intermediate stations. Fig. 1a provides a

conceptual illustration of how channel geometry is de-

scribed by a combination of surveyed and interpolated

transects. To describe the longitudinal variability of

cross-sectional geometry, it is assumed that section

geometry can be characterized by a set of np longitudi-

nally varying parameters, Pk(xi) where k = 1, . . .,np
and i = 1, . . .,n. These parameters could simply represent
bed elevation at a regular set of points across the chan-

nel, although this alternative would be useful primarily

for multi-dimensional river modeling. To support one-

dimensional modeling, cross-sections can fitted by a par-

ticular shape such as a rectangle, trapezoid, or parabola,

then coefficients that scale the particular geometry can

be interpolated. For example, Chow [4] notes that many

small and medium-sized natural channels can be
approximated by a parabola, and more recent studies

have adopted power-law expressions to characterize

cross-sectional channel geometries [3,20]. For models

that use ‘‘look-up tables’’ which characterize hydraulic

properties of the channel, i.e., top width, cross-sectional

area, and conveyance versus water level, another alter-

native is to fit polynomial, exponential, or power-law

equations to these tables and interpolate the equation
coefficients.

The present paper describes several longitudinal

interpolators that can be adopted to estimate cross-sec-

tional geometry, describes differences in cross-sectional

properties estimated by different interpolators, and as-

sesses the impact of these differences in the context of

steady state flow predictions made by a deterministic

flow model. Two types of interpolators are considered,
namely piece-wise polynomial interpolation (linear and

cubic) and universal kriging. Compared to universal kri-

ging, piece-wise polynomial interpolation represents a

fast, efficient, easily implemented and widely used ap-

proach of parameter estimation. However, universal kri-

ging gives parameter estimates that minimize the mean

square error of the interpolator, so in theory, it gives

the most accurate estimate possible of bed elevation
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Fig. 1. Conceptual illustration of channel geometry. Plan view is

presented in (a) including survey transects, where channel geometry is

measured, and interpolated transects. Cross-sectional view is presented

in (b) including hypothetical survey measurements and a trapezoidal

approximation of this geometry. Cross-section view illustrates the four

geometrical parameters estimated in this study: zt, zb, wt, and wb.

Fig. 2. San Francisquito Creek and surrounding watershed showing

the study reach between the stream gage (x) and San Francisco Bay.
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data at points where it is not measured based on data at
points where it is measured. By comparing linear and

cubic polynomial interpolation estimates of bed eleva-

tion data against universal kriging estimates, insight into

the more accurate polynomial interpolator is obtained.
2. Field data

The data used in this study were obtained from the

Santa Clara Valley Water District and consist of tran-

sects at 283 stations (n = 283) along San Francisquito

Creek, which drains from the Santa Cruz Mountains

east to San Francisco Bay in northern California as

shown in Fig. 2. These transects span a 12.2km portion

of San Francisquito Creek below USGS gaging station

11164500, where the channel bed is earthen and charac-
terized by a cross-sectional shape that closely resembles

a trapezoid. Due to this shape and for consistency with

the hydraulic model used in this study, a four parameter

description (np = 4) was adopted involving the bottom

width wb, bottom elevation zb, bank width wt, and bank

elevation zt, as shown in Fig. 1b. These parameters were

estimated by a relatively subjective graphical fitting pro-

cedure and are presented in Fig. 3. Bank elevation and
bottom elevation are presented in Fig. 3a, while bank

width and bottom width are presented in Fig. 3b. The

elevation data illustrate that the channel is characterized
by a concave-up longitudinal profile [13], with a bed

slope of roughly 0.5% over the first 2km, a slope of
roughly 0.25% between kilometer 2 and 10, and a nearly

horizontal bed slope between kilometer 10 and 12. The

bottom width and bank width average roughly 10 and

30m, respectively, over the first 10km though these

parameters vary locally by as much as 10m. Bridges

cross the creek at several points denoted in Fig. 3 by

solid vertical lines. Bridge abutments, which restrict

the flow, are modeled as a rectangular cross-section so
the bottom and bank widths are identical. Between

kilometer 10 and 12, the channel is considerably wider.
3. Methods

Piece-wise polynomial and universal kriging interpo-

lation methods applied to this dataset are described in
this section, along with a cross-sectionally integrated

flow model used to assess the sensitivity of flow predic-

tions to the channel bed description. To simplify the

presentation of interpolation methods, the parameter

notation Pk(xi) is written as P(xi).

3.1. Piece-wise polynomial interpolation

For a set of n available observations of the spatially

variable parameter to be interpolated, P(x1), . . .,P(xn),

where x1 . . .xn are monotonically increasing, piece-wise

linear interpolation provides an estimate of P at x0
based only on neighboring data. That is, for

xi 6 x0 6 xi+1, P(x0) is estimated in terms of P(xi) and

P(xi+1). For linear polynomials, the estimate is given as

bP ðx0Þ ¼ x0 � xiþ1
xiþ1 � xi

P ðxiÞ þ
x0 � xi
xiþ1 � xi

P ðxiþ1Þ xi 6 x 6 xiþ1;

ð1Þ
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Fig. 3. Parameter values at survey stations. Bank elevation zt (circles) and bottom elevation zb (squares) are presented in (a), and bank width wt

(circles) and bottom width wb (squares) are presented in (b). Solid vertical lines denote the position of bridge abutments modeled as rectangular cross-

sections.
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where the hat signifies an estimate. For cubic polynomi-

als, the estimates is given as,bP ðx0Þ ¼ ai þ biðx0 � xiÞ þ ciðx0 � xiÞ2 þ diðx0 � xiÞ3

xi 6 x 6 xiþ1; ð2Þ

where ai, bi, ci, and di are weighting coefficients of the ith

segment. There are several different ways to determine

these coefficients. Each enforces the property thatbP ðxiÞ ¼ P ðxiÞ and bP ðxiþ1Þ ¼ P ðxiþ1Þ, but there are differ-
ences in how the remaining two constraints are ob-

tained. For example, use of bP 0
ðxiÞ ¼ P 0ðxiÞ andbP 0

ðxiþ1Þ ¼ P 0ðxiþ1Þ corresponds to piece-wise-cubic Her-

mite interpolation, where the prime notation signifies
the derivative, and therefore this method requires that

both the unknown parameter and its derivative be given

as input data. The interpolator is a cubic spline when the

cubic polynomial is constrained by continuity of the sec-

ond derivative, bP 00ðxÞ, at both endpoints, xi and xi+1. In

this study, the PCHIP routine (piece-wise-cubic Hermite

interpolating polynomial) implemented in the commer-

cial software MATLAB (The MathWorks, Natick,
Mass.) is adopted [8]. Using this approach, the slopes

P 0(xi) are computed from parameter measurements

P(xi) in such a way that P(x) is monotonic. Cubic splines

were initially tested but not used because the resulting

parameter estimates were not at all realistic, i.e., the
interpolator introduced new maxima and minima that

greatly exceeded measurements.

3.2. Interpolation using universal kriging

Universal kriging is a relatively flexible geostatistical
method of parameter identification. The kriging estima-

tor is a weighted linear combination of all available

experimental data, in contrast to piece-wise polynomial

interpolation which only combines data from neighbor-

ing points

bP ðx0Þ ¼ Xn

i¼1
kiPðxiÞ; ð3Þ

where the hat signifies an estimate; and k1, . . .,kn are

deterministic but unknown weight coefficients. These

are determined so that on the average the estimator

error is zero (unbiasedness property) and the square esti-

mation error is as small as possible (minimum variance

property). The weights are obtained from the solution

of a system of linear equations (kriging system).

The parameter P is assumed to be described by the
following model

P ðxÞ ¼
Xp

k¼1
bkfkðxÞ þ eðxÞ; ð4Þ
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where b1, . . .,bp are deterministic but unknown coeffi-

cients often referred to as drift coefficients; f1(x), . . .,
fp(x) are known space-dependent functions which are

called trial or base functions; and e(x) is a zero-mean

stochastic process (residual). Consequently, the mean

of the parameter P is given by

P ðxÞ ¼
Xp

k¼1
bkfkðxÞ; ð5Þ

where P ðxÞ ¼ E½P ðxÞ� is the mean of P (where E[ ] is the

expectation operator). Note that the functions for the

space-dependent parameter P and its mean defined in

(4) and (5), respectively, are both linear in the drift

coefficients.

In order to satisfy the unbiasedness requirement the
weight coefficients k1, . . .,kn should be selected so that

the average estimation error is zero

E bP ðx0Þ � P ðx0Þ
h i

¼ 0 ð6Þ

for any of the unknown drift coefficients b1, . . .,bp. In

view of (3)–(5) the preceding expression can be written

as

Xp

k¼1

Xn

i¼1
kifkðxiÞ � fkðx0Þ

( )
bk ¼ 0: ð7Þ

For this condition to be valid for any drift coefficient

b1, . . .,bp it is evident thatXn

i¼1
kifkðxiÞ ¼ fkðx0Þ: ð8Þ

In order to satisfy the minimum variance requirement,

the variance or mean square error MSE ¼ E ðbP ðx0Þ�h
P ðx0ÞÞ2

i
should be as small as possible. In view of (3)–

(5) the variance of the linear estimator bP ðx0Þ can be

expressed as

MSE ¼ E bP ðx0Þ � P ðx0Þ
� �2

	 

¼

Xn

i¼1

Xn

j¼1
kikjCPðxi; xjÞ

� 2
Xn

i¼1
kiCPðxi; x0Þ þ CPðx0; x0Þ; ð9Þ

where

CPðxi; xjÞ ¼ E P ðxiÞ � P ðxiÞ
� �

P ðxjÞ � P ðxjÞ
� �
 �

¼ E eðxiÞeðxjÞ

 �

ð10Þ

is the autocovariance function representing the mutual

variability between P(xi) and P(xj), or equivalently

the mutual variability between e(xi) and e(xj). Minimiza-

tion of the objective function (9) subject to the con-

straint (8) can be obtained by the Lagrange multipliers

method [12]. This method requires formation of the

Lagrangian
Lðk1; . . . ; kn; m1; . . . ; mpÞ ¼
Xn

i¼1

Xn

j¼1
kikjCPðxi; xjÞ

� 2
Xn

i¼1
kiCPðxi; x0Þ þ CPðx0; x0Þ

þ 2
Xp

k¼1
mk

Xn

i¼1
kifkðtiÞ � fkðx0Þ

( )
;

ð11Þ

where 2m1, . . ., 2mp are the Lagrange multipliers (the 2

is used only for mathematical convenience). A sys-
tem of n + p linear equations is formed by taking the

derivatives of L(k1, . . .,kn,m1, . . .,mp) with respect to

k1, . . .,kn, m1, . . .,mp and setting them equal to zero, as

follows:Xn

j¼1
kjCPðxi; xjÞ þ

Xp

k¼1
mkfkðxiÞ � CPðxi; x0Þ ¼ 0;

i ¼ 1; 2; . . . ; n; ð12Þ

Xn

i¼1
kifkðxiÞ � fkðx0Þ ¼ 0; k ¼ 1; 2; . . . ; p: ð13Þ

Eqs. (12) and (13) define a system of n + p linear equa-

tions with n + p unknowns that can be solved for the un-

known coefficients k1, . . .,kn, m1, . . .,mp. This system of

equations is the kriging system that can be expressed

in matrix notation as

Ax ¼ b; ð14Þ

where

A ¼

CPðx1; x1Þ 	 	 	 CPðx1; xnÞ f1ðx1Þ 	 	 	 fpðx1Þ

..

. . .
. ..

. ..
. . .

. ..
.

CPðxn; x1Þ 	 	 	 CPðxn; xnÞ f1ðxnÞ 	 	 	 fpðxnÞ

f1ðx1Þ 	 	 	 f1ðxnÞ 0 	 	 	 0

..

. . .
. ..

. ..
. . .

. ..
.

fpðx1Þ 	 	 	 fpðxnÞ 0 	 	 	 0

2666666666666664

3777777777777775
;

ð15Þ

x ¼

k1

..

.

kn

m1

..

.

mp

266666666666664

377777777777775
; ð16Þ
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b ¼

CPðx1; x0Þ
..
.

CPðxn; x0Þ
f1ðx0Þ

..

.

fpðx0Þ

266666666664

377777777775
: ð17Þ

Assuming that CP(xi,xj) is known or it can be deter-

mined from available data, the coefficients k1, . . .,kn,

m1, . . .,mp are easily determined by solving the kriging sys-
tem (14). Subsequently, the estimate bP ðx0Þ is evaluated
from (3). Note that neither P(x0) nor P(x0 + r) need to

be measured for the estimation of bP ðx0Þ. Furthermore,

in view of (12) and (13) the MSE expression (9) can be

simplified as

MSE ¼ �
Xn

i¼1
kiCPðxi; x0Þ �

Xp

k¼1
mkfkðx0Þ þ CPðx0; x0Þ:

ð18Þ
3.2.1. Autocovariance function determination

A random field is partially described by second-order

characteristics, e.g. its mean function or expected value,

and autocovariance function [5]. Consequently, the sta-
tionary stochastic random field for the parameter e(t) is
characterized by the mean function:

leðxÞ ¼ E½eðxÞ� ¼ 0; ð19Þ

indicating a zero-mean stochastic process, and by the

autocovariance function:

CPðxi; xjÞ ¼ CPðrÞ ¼ E½eðxÞeðxþ rÞ�; ð20Þ
representing the mutual variability between e(xi) and

e(xj) or equivalently the mutual variability between

e(x) and e(x + r), where r = jxi � xjj. The autocovariance
function of a stationary random field is related to the

semi-variogram by [9,11]

CPðrÞ ¼ CPð0Þ � cðrÞ; ð21Þ
where CP(0) = E[e2(x)] is the variance of e(x), represent-
ing the mean square deviation of e(t) from its mean va-

lue, le(x) = 0; and c(r) is the semi-variogram defined as

cðrÞ ¼ 1

2
E½ðeðxÞ � eðxþ rÞÞ2�: ð22Þ

To determine the autocovariance function CP(xi,xj) the

detrended data sets, shown in Fig. 4e–h , were used

for the construction of the appropriate raw semi-vario-

grams or scatter plots. The raw semi-variogram is essen-

tially a plot of the square difference 1/2[e(xi) � e(xi + r)]2

as a function of separation distance between measure-

ments, r.

For n experimental data points, there are n(n � 1)/2
such pairs that comprise the raw variogram. For the
zt(u) detrended data set (see Fig. 4eu), there are 202 meas-

urements that yield a cloud of 20,301 pairs, indicated by

the solid circles in Fig. 5au. Dividing the axis of r into

nine consecutive intervals and by averaging the pairs

of measurement in each interval, the experimental

semi-variogram of the detrended data is constructed
and is illustrated by the solid squares in Fig. 5au. The

experimental semi-variogram is fitted with the following

exponential, theoretical semi-variogram model:

cðrÞ ¼ r2 1� exp � r
f

� �	 

; ð23Þ

CPðrÞ ¼ r2 exp � r
f

� �
; ð24Þ

where r2 = CP(0)>0 is the variance or sill of the expo-

nential semi-variogram, and f>0 is a model parameter

that determines how fast the semi-variogram increases

to its sill value. For a value of r = 3f the exponential

semi-variogram is approximately equal to 95% of r2;
this distance is known as the range of the exponential

semi-variogram model. The exponential model is fre-

quently used in various hydrologic applications

[6,14,17,19]. The unknown model parameters of the

semi-variogram are determined by a relatively subjective

graphical fitting procedure that leads to estimates

r2 = 31.98 and f = 193.80 meters. In Fig. 5au, the fitted

model is indicated by the solid curve and is in agreement
with the experimental semi-variogram. In a similar fash-

ion we constructed the raw variograms (scatter plots)

and obtained the appropriate theoretical semi-vario-

grams for the zt(l), zb(u), zb(l), wt(u), wt(l), wm(u), and wt(l)

data sets shown in Fig. 4.
3.2.2. Interpolation at desired grid locations

In view of equation (5) and the estimated drift
coefficients for zt(u) presented in Table 1, it is evident

that

ztðuÞðxÞ ¼ E½ztðuÞðxÞ�
¼ 33:33681 � 1:28497� 10�3x: ð25Þ

Consequently, the appropriate trial or base functions for

zt(u) are:

f1ðxÞ ¼ 1; ð26Þ

f2ðxÞ ¼ x: ð27Þ
Furthermore, in view of (21), (23) and the fitted theoret-

ical semi-variogram for zt(u) listed in Table 2, the corre-

sponding autocovariance function is:

CxtðuÞ ðrÞ ¼ 31:98 exp � r
193:8

h i
: ð28Þ

For the zt(u) data set, n = 202, and p = 2. Consequently,

in view of (26)–(28) and (14) the corresponding kriging
system can be written as



31:98 	 	 	 31:98 exp � jx1�xnj
193:8

h i
1 x1

31:98 exp � jx2�x1j
193:8

h i
	 	 	 31:98 exp � jx2�xnj

193:8

h i
1 x2

..

. . .
. ..

. ..
. ..

.

31:98 exp � jx202�x1j
193:8

h i
	 	 	 31:98 1 x202

1 	 	 	 1 0 0

x1 	 	 	 x202 0 0

26666666666664

37777777777775

k1
k2

..

.

k202
m1
m2

26666666664

37777777775
¼

31:98 exp � jx1�x0j
193:8

h i
31:98 exp � jx2�x0j

193:8

h i
..
.

31:98 exp � jx202�x0j
193:8

h i
1

x0

26666666666664

37777777777775
: ð29Þ
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The preceding set of linear equations is solved for the

unknown coefficients k1, . . .,k202, m1, and m2, for 9700 dif-
ferent x0 values (grid points) ranging from 0 to 9700m.

For each x0 considered the corresponding bztðuÞðx0Þ is
determined by (3) using the determined coefficients

k1, . . .,k202 and the data presented in Fig. 4au. All other

desired parameter values are interpolated in a similar

fashion.
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Table 2

Fitted theoretical semi-variograms and variances

Parameter c(r) Cp(0) = c(1)

wt(u) 31:98 1� expð� r
193:80Þ


 �
31.98

wt(l) 28:82 1� expð� r
88:91Þ


 �
28.82

wb(u) 9:25 1� expð� r
161:21Þ


 �
9.25

wb(l) 6:11 1� expð� r
32:96Þ


 �
6.11

zt(u) 0:34 1� expð� r
2988

Þ

 �

0.34

zt(l) 0:024 1� expð� r
25:20Þ


 �
0.024

zb(u) 0:11 1� expð� r
74:04Þ


 �
0.11

zb(l) 0:018 1� expð� r
79:65Þ
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Fig. 6. Typical channel geometry illustrating geometrical shape

parameters.
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3.3. Cross-sectionally integrated flow model

Cross-sectionally integrated flow models (i.e., one-

dimensional) are widely used for watershed scale mode-

ling involving floods, sediment transport, and water
quality predictions and are the basis of government

sponsored modeling software such as the river analysis

system HEC-RAS [2], the channel network model

UNET [18], and the hydrologic and water quality mode-

ling system HSPF [1]. Cross-sectionally integrated flow

models are derived from macroscopic mass and momen-

tum balance equations where the control volume, shown

in Fig. 6, is a tube of water bounded laterally by the
channel bed, banks, and free-surface and longitudinally

by control sections separated by a finite length, Dx [7].

In the limit that Dx ! 0, these equations are converted

to a differential form known as the St. Venant equations,

ogðx; tÞ
ot

þ 1

T ðx; tÞ
oQðx; tÞ

ox
¼ 0; ð30Þ

oQðx; tÞ
ot

þ o

ox
½V ðx; tÞQðx; tÞ� þ gAðx; tÞ ogðx; tÞ

ox
¼ �gAðx; tÞSfðx; tÞ; ð31Þ

where g is the free surface elevation, Q is the volumetric

flow rate, V is the cross-sectionally averaged fluid veloc-
Table 1

Drift coefficients

Parameter b1 b2 b3

wt(u) 33.33681 �1.28497 · 10�3
wt(l) �952.7980 1.709383 · 10�1 �7.24
wb(u) 9.08768 �2.567335 · 10�4
wb(l) 281.4035 �5.245153 · 10�2 2.53

zt(u) 39.33364 �7.084518 · 10�3 1.27

zt(l) 927.0335 �2.745761 · 10�1 2.96

zb(u) 33.69423 �8.671870 · 10�3 1.45

zb(l) �4827.1370 1.7740 �2.43
ity, T is the bank to bank width of the channel at the free

surface (top width), A is the wetted cross-sectional area,

g is the gravitational acceleration constant, Sf is the
friction slope, x measures distance along the channel

centerline (longitudinal distance), and t is time. The

free-surface elevation is related to the cross-sectional

area by the geometry of the channel as follows:

Aðx; tÞ ¼
Z gðx;tÞ

zbðxÞ
wðx; zÞdz; ð32Þ

where zb(x) is the bottom elevation (lowest point) of the

channel cross-section, w(x,z) represents the bank-to-

bank width, and z measures vertical position as shown

in Fig. 6. Note that w(x,g(x, t)) = T(x, t). The volumetric

discharge, cross-sectional area, and cross-sectionally

averaged velocity are related by Q(x, t) = V(x, t)A(x, t),

and the friction slope is determined by an empirical
b4 b5

3566 · 10�6

0053 · 10�6

5390 · 10�6 �1.730340 · 10�10 8.446015 · 10�15

7751 · 10�5 �1.360626 · 10�9 2.163467 · 10�14

6767 · 10�6 �1.566120 · 10�10 6.470396 · 10�15

6105 · 10�4 1.481862 · 10�8 �3.369931 · 10�13
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resistance law such as the Manning equation, which

gives the friction slope as

Sfðx; tÞ ¼
nmðxÞV ðx; tÞ2Pwðx; tÞ4=3

Aðx; tÞ4=3
; ð33Þ

where nm is the Manning coefficient and Pw(x, t) is the

wetted perimeter.

The St. Venant equations describe unsteady, gradu-

ally varied channel flow under the following set of con-

ditions [7]: (i) the velocity and water level are laterally
uniform, (ii) streamline curvature is small and vertical

accelerations are negligible, (iii) the effects of boundary

friction and turbulence can be accounted for by resist-

ance laws analogous to those used for steady flow, and

(iv) the average channel bed slope is small, so that the

cosine of the angle it makes with the horizontal may

be replaced by unity. Because of these restrictions, the

St. Venant equations given by Eqs. (30) and (31) are
applicable only to channels with relatively simple geom-

etry such as that shown in Fig. 6, or channels that are

rectangular, trapezoidal, or triangular in cross-section.

Modification to these equations are needed to model

flow in channels with irregular cross-sections, when

overbank flow occurs, or when any of the above condi-

tions are not applicable. For water quality modeling,

flow models which solve Eq. (30) and a simplified form
of Eq. (31) are often used (e.g., [1]).
0 2 4
–0.4

–0.2

–0.4

–0.2

0

0.2

z b 
(m

)

0 2 4

–4

–2

–4

–2

0

0.2

∆  
z t (

m
)

0 2 4

0

2

4

∆ w
b (

m
)

0 2 4

0

2

4

Distan

∆ w
t (

m
)

∆

Fig. 7. Differences between piece-wise linear and kriging based estimates of

and kriging based estimates (dots).
In the context of modeling flow in San Francisquito

creek (where the cross-section is roughly trapezoidal),

the St. Venant equations are applicable to flood flows

that do not crest above the banks of the channel. It

has been estimated this occurs when the discharge ex-

ceeds 170m3/s, while the 100 year return period flood
has been estimated to be 250m3/s [10]. To characterize

the sensitivity of flood stage predictions to the topo-

graphic interpolation, but not exceed the limitations of

the flow model, the St. Venant equations were solved

to predict water levels in San Francisquito Creek based

on a volumetric flow rate of 100m3/s, which corresponds

roughly to a 5-year flood event [10]. A total variation

diminishing (TVD) finite volume numerical method
was used to numerically integrate the St. Venant equa-

tions [15], or more specifically macroscopic mass and

momentum balance equations applied to the control

volume shown in Fig. 1. That is, this numerical method

does not discretize the differential form given by Eqs.

(30) and (31) but rather integral equations. A more de-

tailed description of these differences is presented in

[7]. This numerical method is ideal for resolving channel
flow over a wide range of Froude numbers because it

can accommodate discontinuities arising from hydraulic

jumps. Source terms related to spatial variations in the

channel shape are modeled in a robust way [16]. Finally,

energy losses are accurately predicted even though the
6 8 10 12

Linear–Kriging
Cubic–Kriging

6 8 10 12

6 8 10 12

6 8 10 12
ce (km)

channel geometry parameters (solid line) and between piece-wise-cubic
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model is a momentum-only formulation, i.e., the model

does not include an energy balance equation [16].
4. Results and discussion

Based on the data from 283 stations and the methods

described above, interpolation was performed by piece-

wise linear polynomials (linear), monotone piece-wise-

cubic Hermitian interpolating polynomials (cubic), and

universal kriging (kriging) on a grid of 12,201 points

which discretize the 12.2km reach of San Francisquito

Creek at 1m resolution. For all of the parameters, kri-

ging estimates were tracked considerably better by linear
estimates than cubic estimates. Fig. 7 presents differ-

ences between polynomial and universal kriging esti-

mates for zb, zt, wb, and wt. The delta notation is used

to denote a difference, either between the linear and kri-

ging estimates or the cubic and kriging estimates. The

root-mean-square difference between linear and kriging

estimates of zb, zt, wb, and wt was computed to be 2.5,

0.8, 13 and 4.3cm, respectively; while the root-mean-
square difference between cubic and kriging estimates

for zb, zt, wb, and wt was computed to be 4.6, 5.8, 35
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as hydraulic jumps.
and 44cm, respectively. Hence, the linear estimates are

in all cases better predictors than cubic estimates, given

that kriging estimates are most accurate. The implica-

tion of this comparison is that, when interpolating chan-

nel topography between survey stations, piece-wise

linear interpolation is preferable to high order methods
such as monotone piece-wise-cubic Hermitian interpo-

lating polynomials or cubic splines.

Deterministic flow predictions were made on three

separate 1km reaches of San Francisquito Creek to as-

sess sensitivities to channel geometry. These reaches cor-

respond to km 0–1, 6–7, and 10–11 and were chosen to

sample a steep, intermediate and nearly horizontal por-

tion of the channel, respectively. For analysis purposes,
a uniform value of the Manning coefficient, nm = 0.025

was used and a supercritical upstream boundary condi-

tion based upon a depth of 1m was enforced. These con-

ditions give rise to regions of both subcritical and

supercritical flow allowing sensitivities to be assessed

over a range of flow conditions. In reality, the Manning

coefficient for San Francisquito Creek is likely to be

higher since it is vegetated, and vary longitudinally. Re-
sults of model predictions are shown in Figs. 8–10 in

terms of the free surface elevation g, the difference
5 0.6 0.7 0.8 0.9 1
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e (km)
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Kriging
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Cubic–Kriging

in (a) based on linear, cubic, and kriging based estimates of channel

vation, and between cubic and kriging based estimates, are presented in

icate regions of supercritical (Fr>1) and subcritical (Fr<1) flow, as well
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between model predictions of g using polynomial and

kriging based topographic parameters, and the Froude

number Fr which corresponds to the ratio of the cross-

sectionally averaged velocity to the wave speed and de-

fines regions of subcritical (Fr<1) and supercritical

(Fr>1) flow. Note that over the first reach flow is largely
supercritical but includes several hydraulic jumps, over

the second reach flow is supercritical and subcritical in

equal proportion, and over the third reach flow is largely

subcritical.

Differences between linear and kriging based predic-

tions of g are smaller than differences between cubic

and kriging based predictions, which is not surprising

considering that linear based topographic parameters
are a better predictor of the kriging based topographic

parameters than are the cubic based parameters. The

root-mean-square difference between estimates of g,
based on linear and kriging based parameter estimates,

was computed to be 2.9, 0.5 and 1.3cm for km 0–1, 6–

7, and 10–11, respectively; while based on cubic and kri-

ging parameters the root-mean-difference was computed

to be 6.8, 3.4 and 2.1cm, respectively. On the whole,
these differences are small compared to the depth in each

of these reaches, the average of which was computed to
be 1.9, 2.8, and 2.0m for km 0–1, 6–7, and 10–11,

respectively. At most, this represents less than a 5%

error in the depth prediction. Locally, however, these

differences can be significant. For example, roughly at

x = 0.3km a hydraulic jump is predicted to occur but

its position, based on cubic prediction of channel
geometry, is roughly 20m upstream of where it is pre-

dicted to be based on linear and kriging based channel

geometry.

Another source of uncertainty in channel flow predic-

tions arises from the selection of resistance parameters,

in this case the Manning coefficient, nm. To quantify

the effect of channel interpolation methods on water

level predictions, in comparison to the effect of uncer-
tainty in resistance parameters, steady state flow predic-

tions were repeated for each reach (km 0–1, 6–7, and

10–11) using a 5% larger Manning coefficient. Kriging

based estimates of the channel geometry were used for

these predictions. The root-mean-square difference

between estimates of g, based on a 5% increase in nm,

was computed to be 2.7, 3.3 and 3.0cm for km 0–1, 6–

7, and 10–11, respectively. These differences in g
are slightly larger than differences in predictions based

on linear and kriging based channel geometry
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estimates, but similar or slightly smaller than differences

based on cubic and kriging based channel geometry

estimates.

Many streams feature geometrical properties consid-

erably more complex than those of San Francisquito

Creek involving features such as multiple thalwegs, pro-
nounced flood plains, and terraces. Methods of longitu-

dinal interpolation presented in this study can be applied

without modification to such systems by using larger

numbers of parameters. For example, a channel charac-

terized by a thalweg bordered by active floodplain

would require at least an eight parameter description

(elevations and widths for the thalweg, left flood plain,

right flood plain, and bank elevations). For more com-
plex channels, it may become advantageous to target

hydraulic properties for interpolation instead of geomet-

rical properties, assuming the number of parameters

needed to fit each hydraulic property remains constant

while the number of parameters needed to parameter-

ize channel geometry increases. Additional study is war-

ranted to carefully examine these tradeoffs, to

characterize the performance of interpolators in more
complex channels, and to characterize the performance

of interpolators when data are sparse and/or data gaps

exist.
5. Summary

Interpolation of parameters characterizing the geom-

etry of channel beds is needed to support flow modeling

at varying grid resolutions. Three methods of interpo-

lating geometric parameters between survey stations
were described including piece-wise linear interpolation,

monotone piece-wise-cubic Hermitian interpolation,

and universal kriging. The latter gives parameter esti-

mates that minimize the mean square error of the inter-

polator and therefore is considered the most accurate

method. Based on the application of these methods to

a dataset describing cross-sectional properties at 283 sta-

tions, piece-wise linear interpolation gave parameter
estimates that very closely track universal kriging esti-

mates. Piece-wise-cubic interpolation, including mono-

tone piece-wise-cubic Hermitian interpolation and

cubic spline interpolation, gave parameter estimates that

did not track as well. In fact, parameter estimation

based on cubic splines is not a viable method because

it predicts unphysical, oscillatory parameter values.

Given that the implementation of universal kriging for
interpolation purposes is considerably more involved

than piece-wise polynomial interpolation, the results of

this study support use of piece-wise linear interpolation
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over higher order polynomial interpolants for determin-

istic flow modeling.

In the context of one-dimensional flow predictions,

root-mean-square differences in water level predictions

arising from different interpolators were at most 5% of

the depth. The largest differences were observed in the
vicinity of hydraulic jumps, because the interpolation

method was observe to alter the predicted longitudinal

position of the jump by as much as 20m. Differences

in water level predictions based on linear and kriging

based channel geometry estimates were slightly smaller

than differences based on cubic and kriging based chan-

nel geometry estimates. The sensitivity of flow predic-

tions to the channel bed interpolation method was
found to be similar to 5% uncertainty in the Manning

coefficient.
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