Supporting Information

Interaction Between Graphene Oxide Nanoparticles and Quartz Sand

by

Nikolaos P. Sotirelis, and Constantinos V. Chrysikopoulos*

School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece

*Corresponding author (tel.: + 30 2821037797, email: cvc@enveng.tuc.gr).

DLVO theory

Sphere-plate. For the case of two approaching surfaces, one with spherical and the other with planar geometries (sphere-plate), the Φ_{vdW} [J] interactions were calculated with the following expression:¹

$$\Phi_{vdW}(h) = -\frac{A_{123}r_{p}}{6h} \left[1 + \left(\frac{14h}{\lambda}\right)\right]^{-1}$$
(SI1)

where A₁₂₃ [J] is the combined Hamaker constant for microscopic bodies of composition "1" and "3" in medium "2" [(1-GO particle)-(2-water)-(3-collector)], $\lambda \approx 10^{-7}$ m is the characteristic wavelength of the sphere-plate or spheresphere interactions, and r_p [m] is the GO particle radius. In this study, the combined Hamaker constants for the system GO-water-quartz sand was set to A₁₂₃=6.26×10⁻²¹ [J].^{2,3} The Φ_{dl} for sphere-plate interactions were calculated with the expression:⁴

$$\Phi_{dl}(h) = \pi_{\epsilon_{r}\epsilon_{0}r_{p}}\left[2\psi_{p}\psi_{s}\ln\left(\frac{1+e^{-\kappa h}}{1-e^{-\kappa h}}\right) + \left(\psi_{p}^{2}+\psi_{s}^{2}\right)\ln\left(1-e^{-2\kappa h}\right)\right]$$
(SI2)

where $\epsilon_r = \epsilon/\epsilon_0$ is the dimensionless relative dielectric constant of the suspending liquid, ϵ [C²/(J·m)] is the dielectric constant of the suspending liquid, ϵ_0 [C²/(J·m)] is the permittivity of free space, Ψ_p [V] is the surface potential of the colloid particle, Ψ_s [V] is the surface potential of the collector surface (plate), and κ [1/m] is the inverse of the diffuse layer thickness, known as the Debye-Huckel parameter:

$$K = \left[\frac{2000 I_{S} N_{A} e^{2}}{\epsilon_{r} \epsilon_{0} k_{B} T}\right]^{1/2}$$
(SI3)

where I_S [mol/L] is the ionic strength, N_A = 6.02×10^{23} [1/mol] is Avogadro's number, e=1.602×10⁻¹⁹ [C] is the elementary charge, k_B=1.38×10⁻²³ [J/K] is the Boltzmann constant, and T [K] is the fluid absolute temperature. The Φ_{Born} [J] for sphere-plate was estimated by the relationship:⁵

$$\Phi_{\text{Born}}(h) = \frac{A_{123}\sigma_{\text{Born}}^{6}}{7560} \left[\frac{8r_{\text{p}} + h}{(2r_{\text{p}} + h)^{7}} + \frac{6r_{\text{p}} - h}{h^{7}} \right]$$
(SI4)

where Φ_{Born} [m] is the Born collision parameter. For the commonly used value of Φ_{Born} =0.5 nm,⁵ the resulting acceptable minimum separation distance, at h=h₀, i.e. at "contact", is estimated to be h₀ = 0.25 nm, which compares well to h₀=0.4 to 1.0 nm estimated by other investigators.^{6,7} Note that Φ_{Born} can easily be neglected if h>1 nm. The effect of Born interaction may not be of great significance in aqueous systems since the presence of any hydrated ions, which are likely to be present, will prevent surface-surface separation distances to approach h~0.3 nm.⁸

Plate-plate. For the case of two approaching surfaces, both with planar geometries (plate-plate), the Φ_{vdW} [J] interactions were calculated with the following expression:^{1,9}

$$\Phi_{vdW}(h) = -\frac{A_{123}}{12\pi h^2}$$
(SI5)

The Φ_{dl} [J] for plate-plate interactions were calculated with the expression:⁴

$$\Phi_{dl}(h) = \frac{\varepsilon_{r}\varepsilon_{0}\kappa}{2} \left\{ 2\Psi_{p1}\Psi_{p2}\frac{1}{\sinh(\kappa h)} + \left(\Psi_{p1}^{2} + \Psi_{p2}^{2}\right)\left[1 - \coth(\kappa h)\right] \right\}$$
(SI6)

where Ψ_{p1} [V] is the surface potential of the GO nanoparticle, and Ψ_{p2} [V] is the surface potential of the collector surface. The Φ_{Born} [J] for plate–plate interactions were estimated with the relationship:¹⁰

$$\Phi_{\text{Born}}\left(h\right) = \frac{A_{123}}{45\pi h^9} \tag{S17}$$

Pseudo-second-order kinetic model

The analytic expression (5) can be rearanged as follows:

$$C_{t}^{*} = \frac{t}{\left[1/k_{p2}\left(C_{eq}^{*}\right)^{2}\right] + \left[t/C_{eq}^{*}\right]}$$
(SI8)

or can also be written in the following linear form:

$$\frac{t}{C_{t}^{*}} = \frac{1}{k_{p2} \left(C_{eq}^{*}\right)^{2}} + \frac{t}{C_{eq}^{*}}$$
(SI9)

Figure SI1: Transmission electron micrograph images of GO flakes.

Figure SI2. Effect of sonication time on the size of GO aggregates (Here pH=7, C_{GO} =20 mg/L, I_{S} = 1.4 mM).

Figure SI3: Effect of solution pH on the zeta potential of GO and quartz sand suspensions (Here I_s =1.4, C_{GO} =20 mg/L, C_{sand} =2 mg/L).

Figure SI4. Effect of time on the size of GO aggregates (Here pH=7, C_{GO}=20 mg/L, I_{S} = 1.4 mM).

Figure SI5. Effect of ionic strength on the zeta potential of GO and quartz sand suspensions (Here pH=7, C_{GO} =20 mg/L, C_{sand} =2 mg/L).

Table SI1. Size of GO aggregates under the different experimental conditions (Here C_{GO} =20 mg/L).

Experimental Conditions			Size
рН	I _S (mM)	T (°C)	
4	1.4	25	758
7	1.4	25	714
10	1.4	25	716
7	6.4	25	734
7	21.4	25	801

Table SI2. Experimental conditions of the various kinetic batch experiments conducted in this study.

	Experimental Conditions			
Experiment	рН	I _s (mM)	T (°C)	
1	4	1.4	25	
2	7	1.4	25	
3	10	1.4	25	
4	7	6.4	25	
5	7	21.4	25	
6	7	1.4	12	
7	7	1.4	4	

Table SI3. Comparison of the R² values of the three isotherm models tested in this work.

R ² of Isotherm Model					
T (°C)	Linear	Langmuir	Freundlich		
Static					
4	0.860	0.550	0.976		
12	0.814	0.408	0.947		
25	0.851	0.449	0.957		
Dynamic					
4	0.807	0.557	0.955		
12	0.765	0.591	0.934		
25	0.795	0.675	0.954		

Table SI4. Amount of GO attached onto quartz sand at equilibrium in the various kinetic batch experiments conducted for this work.

Experimental Conditions			C [*] _{eq}		
pН	I _S (mM)	T (°C)	(µg GO/g _sand)		
Static					
4	1.4	25	0.093		
7	1.4	25	0.054		
10	1.4	25	0.157		
7	6.4	25	0.305		
7	21.4	25	0.236		
7	1.4	4	0.117		
7	1.4	12	0.041		
Dynamic					
4	1.4	25	1.812		
7	1.4	25	0.896		
10	1.4	25	0.145		
7	6.4	25	2.112		
7	21.4	25	3.361		
7	1.4	4	0.777		
7	1.4	12	0.902		

References

- (1) Gregory, J., Approximate expressions for retarded van der waals interaction. *J. Colloid Interface Sci.* **1981**, *83* (1), 138–145.
- (2) Feriancikova, L. and Xu, S., Deposition and remobilization of graphene oxide within saturated sand packs. *J. Hazard. Mat.* **2012**, *235-236*, 194–200.
- (3) Lanphere, J.D., Luth, C.J. and Walker, S.L., Effects of Solution Chemistry on the Transport of Graphene Oxide in Saturated Porous Media. *Environ. Sci. Technol.* **2013**, *47*, 4255–4261.
- (4) Hogg, R.; Healy, T.W.; Fuersten, D.W.; Mutual coagulation of colloidal dispersions. *Trans. Faraday Soc.* **1966**, *62*, 1638–1651.
- (5) Ruckenstein, E.; Prieve, D.C. Adsorption and Desorption of Particles and Their Chromatographic Separation. *A.I.Ch.E. J.* **1976**, *22*, 276.
- (6) Frens, G. and Overbeek, J.T.G., Repeptization and the theory of electrocratic colloids. *J. Colloid Interface Sci.* **1972**, *38*, 376–387.
- (7) Kallay, N., Biskup, B., Tomic, M. and Matijevic, E., Particle adhesion and removal in model systems Part- X: The effect of electrolytes on particle detachment. J. Colloid Interface Sci., 1986, 114, 357–362.
- (8) Chrysikopoulos, C.V. and Syngouna, V.I., Attachment of bacteriophages MS2 and ΦX174 onto kaolinite and montmorillonite: Extended-DLVO interactions. *Colloids Surf.*, B 2012, 92, 74–83.
- (9) Elimelech, M.; Gregory, J.; Jia, X.; Williams, R.A. *Particle Deposition & Aggregation: Measurement, Modelling and Simulation*; Butterworth–Heinemann Ltd: Oxford, U.K., 1995.
- (10) Mahmood, T.; Amirtharajah, A.; Sturm, T.W.; Dennett, K.E. A micromechanics approach for attachment and detachment of symmetric colloidal particles. *Colloids Surf.*, A **2001**, *177*, 99–110.