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DLVO theory  
Sphere-plate. For the case of two approaching surfaces, one with spherical 
and the other with planar geometries (sphere-plate), the ΦvdW [J] interactions 
were calculated with the following expression:1  
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where A123 [J] is the combined Hamaker constant for microscopic bodies of 
composition “1” and “3” in medium “2” [(1-GO particle)-(2-water)-(3-collector)], 
λ ≈ 10-7 m is the characteristic wavelength of the sphere-plate or sphere-
sphere interactions, and rp [m] is the GO particle radius. In this study, the 
combined Hamaker constants for the system GO-water-quartz sand was set 
to A123=6.26×10-21 [J].2,3 The Φdl for sphere-plate interactions were calculated 
with the expression:4  
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where εr=ε/ε0 is the dimensionless relative dielectric constant of the 
suspending liquid, ε [C2/(J⋅m)] is the dielectric constant of the suspending 
liquid, ε0 [C2/(J⋅m)] is the permittivity of free space, Ψp [V] is the surface 
potential of the colloid particle, Ψs [V] is the surface potential of the collector 
surface (plate), and κ [1/m] is the inverse of the diffuse layer thickness, known 
as the Debye-Huckel parameter:                                                                                                                 
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where IS [mol/L] is the ionic strength, NA = 6.02×1023 [1/mol] is Avogadro’s 
number, e=1.602×10−19 [C] is the elementary charge, kB=1.38×10−23 [J/K] is 
the Boltzmann constant, and T [K] is the fluid absolute temperature. The ΦBorn 
[J] for sphere-plate was estimated by the relationship:5 

ΦBorn h( ) = 123A Born
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where ΦBorn [m] is the Born collision parameter. For the commonly used value 
of ΦBorn=0.5 nm,5 the resulting acceptable minimum separation distance, at 
h=h0, i.e. at “contact”, is estimated to be h0 = 0.25 nm, which compares well to 
h0=0.4 to 1.0 nm estimated by other investigators.6,7 Note that ΦBorn can easily 
be neglected if h>1 nm. The effect of Born interaction may not be of great 
significance in aqueous systems since the presence of any hydrated ions, 
which are likely to be present, will prevent surface-surface separation 
distances to approach h~0.3 nm.8  
 
Plate–plate. For the case of two approaching surfaces, both with planar 
geometries (plate–plate), the ΦvdW [J] interactions were calculated with the 
following expression:1,9  
ΦvdW h( ) = − 123A

12πh2
                                                                                       (SI5) 

The Φdl [J] for plate-plate interactions were calculated with the expression:4 
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where Ψp1 [V] is the surface potential of the GO nanoparticle, and Ψp2 [V] is 
the surface potential of the collector surface. The ΦBorn [J] for plate–plate 
interactions were estimated with the relationship:10  
ΦBorn h( ) = 123A  ho

6

45πh9
                                                                                       (SI7) 

 
Pseudo-second-order kinetic model  
The analytic expression (5) can be rearanged as follows:                                                                                                              
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or can also be written in the following linear form: 
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Figure SI1: Transmission electron micrograph images of  GO flakes. 
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Figure SI2. Effect of sonication time on the size of GO aggregates (Here pH=7, 
CGO=20 mg/L, IS= 1.4 mM). 

	  
	  

 
Figure SI3: Effect of solution pH on the zeta potential of GO and quartz sand 
suspensions (Here Is=1.4, CGO=20 mg/L, Csand=2 mg/L). 
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Figure SI4. Effect of time on the size of GO aggregates (Here pH=7, CGO=20 mg/L, 
IS= 1.4 mM). 

 
 

 
 

Figure SI5. Effect of ionic strength on the zeta potential of GO and quartz sand 
suspensions (Here pH=7, CGO=20 mg/L, Csand=2 mg/L). 
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Table SI1. Size of GO aggregates under the different experimental conditions 
(Here CGO=20 mg/L). 
                             
 
 
 
 
 
 
 
 
 
 
 
Table SI2. Experimental conditions of the various kinetic batch experiments 
conducted in this study. 
 

 Experimental Conditions 
Experiment pH IS (mM) T (°C) 

1 4 1.4 25 
2 7 1.4 25 
3 10 1.4 25 
4 7 6.4 25 
5 7 21.4 25 
6 7 1.4 12 
7 7 1.4 4 

 

 

Table SI3. Comparison of the R2 values of the three isotherm models tested 
in this work. 

 
R2 of Isotherm Model 

T (°C) Linear Langmuir Freundlich 
Static 

4 0.860 0.550 0.976 
12 0.814 0.408 0.947 
25 0.851 0.449 0.957 

Dynamic 
4 0.807 0.557 0.955 

12 0.765 0.591 0.934 
25 0.795 0.675 0.954 

 

 

Experimental Conditions Size 
(nm) 

pH IS (mM) T (°C) 

4 1.4 25 758 
7 1.4 25 714 

10 1.4 25 716 
7 6.4 25 734 
7 21.4 25 801 
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Table SI4. Amount of GO attached onto quartz sand at equilibrium in the 
various kinetic batch experiments conducted for this work.  
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Experimental Conditions Ceq
∗   

(µg GO/g 
sand) pH IS (mM) T (°C) 

Static 
4 1.4 25 0.093 
7 1.4 25 0.054 

10 1.4 25 0.157 
7 6.4 25 0.305 
7 21.4 25 0.236 
7 1.4 4 0.117 
7 1.4 12 0.041 

Dynamic 
4 1.4 25 1.812 
7 1.4 25 0.896 

10 1.4 25 0.145 
7 6.4 25 2.112 
7 21.4 25 3.361 
7 1.4 4 0.777 
7 1.4 12 0.902 


