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Abstract

Polydisperse Colloid Transport in Fractured Media

by

Scott C. James

Doctor of Philosophy in Engineering

University of California at IRVINE

Professor Constantinos V. Chrysikopoulos, Chair

The initial phase of the study will analytically solve for the transport characteristics of

Þnitely sized particle in a uniform aperture fracture. Results show that the larger the constituents of a

colloid plume, the greater the mean plume velocity and the lesser the plume dispersion. Incorporating

these parameters into analytical solutions for the transport of polydisperse colloid plumes in a

uniform aperture fracture shows that not only does the size of the constituents affect the transport

of the plume, but that a distribution of particle sizes further increases the spreading of the plume.

Next, a new constant spatial step particle tracking equation is developed to solve for the

transport characteristics of both monodisperse and polydisperse reactive colloids in a single fracture.

Using both the traditional and the new particle tracking algorithms, the transport characteristics of

colloid plumes in a uniform aperture fracture are investigated. Matrix diffusion and surface sorption

characteristics are incorporated into the model. Both perfect sink and kinetic colloid sorption onto

fracture surfaces are investigated. The Þnite size of a colloid particle as well as the size distribution

of the colloid plume will implicitly change the transport parameters of a plume as its constituents

travel through a fracture, sorbs onto the fracture surface, or diffuses through the rock matrix.
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As an extension to this, the parallel plate model is generalized to the more realistic case of

polydisperse colloid transport in a fracture with spatially variable aperture. The fracture aperture

spatial variability is considered a stochastic variable and Þnite differencing techniques are used to

develop the ßow Þeld in each variable aperture fracture. These ßow Þelds are used as input data for

the new particle tracking algorithm. Normalized cumulative breakthrough curves of polydisperse

colloid plumes are produced by repeatedly tracking a plume of particles through unique realizations

of stochastically generated fractures and incorporated into an ensemble average. Further, the effects

of kinetic sorption of colloids onto the walls of a variable aperture fracture are studied. It is shown

that not only does the variability in size of the polydisperse colloids affect their transport, but also

that the variability of the fracture aperture has a signiÞcant inßuence as well.

Professor Constantinos V. Chrysikopoulos
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 SigniÞcance of Research

Hazardous wastes, especially radioactive materials, are often disposed in canisters and

buried in deep, fractured, low�permeability rock formations (e.g., granites, slates, gneisses, and

clays). In the United States, the Þrst federally funded disposal site of this type, opening in 2004,

is the Geologic Repository for the Disposal of Spent Nuclear Fuel and High�Level Radioactive

Waste at Yucca Mountain, in Nye County, Nevada. Research activities surrounding the design and

construction of this site have stimulated a great deal of interest in characterizing subsurface colloid

and contaminant migration in fractured media, and in investigating the capacity of natural barriers to

retard the movement of leaked contaminants [e.g., Neretnieks et al., 1982; Abelin, 1986; Raven et al.,

1988; Haldeman et al., 1991; Johns and Roberts , 1991; Krishnamoorthy et al., 1992]. Although the

diffusion of contaminants and colloids through rock medium is often negligible, fractures, ubiquitous

in these formations, have been shown to provide preferential ßow paths. Unlike transport phenomena

observed in porous media, contaminants do not disperse through fractured media as a plume, instead

Þngering through the fracture network, often resulting in contamination at great distances from the

source.
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Transport of colloids in subsurface formations has increasingly captured the attention of

many researchers, because of the potential impact of colloids in facilitating the transport of pollutants

and toxic elements [e.g., McDowell-Boyer et al., 1986; Torok et al., 1990; Puls and Powell , 1992;

Grindrod , 1993]. Several experimental and Þeld studies indicate that contaminants can migrate

adsorbed on the surface of colloid particles thereby assuming transport characteristics of colloids

that may vary signiÞcantly from their own [e.g., Buddemeier and Hunt , 1988; Champ and Schroeter ,

1988; Toran and Palumbo, 1992; Moulin and Ouzounian, 1992]. The results of these studies suggest

that colloids may not only enhance the mobility of contaminants, but may also inhibit the retardation

and dilution of contaminant plumes by reducing the extent of sorption onto fracture surfaces and

diffusion into the rock matrix. Unfortunately, conceptual models that describe fractured systems

usually do not account for the Þnite size and polydisperse characteristics of a natural colloid plume.

In modeling colloid transport in fractured rocks, a common simpliÞcation/assumption em-

ployed by researchers is of inÞnitely small particles traveling in a single fracture separated by a

constant aperture, known as the parallel plate model [e.g., Grisak and Pickens , 1981; Tang et al.,

1981; Neretnieks et al., 1982; Novakowski et al., 1985; Raven et al., 1988; Shapiro and Nicholas , 1989;

Johns and Roberts, 1991; Ibaraki and Sudicky , 1995; Cormenzana, 2000]. Flow in a single fracture

is often described by the cubic law, where the ßow rate is proportional to the cube of the fracture

aperture [Neuzil and Tracy , 1981; Abdel-Salam, 1995]. Colloid transport in a fracture is then cou-

pled with diffusion into or sorption onto the host rock matrix through source/sink terms governing

the interaction between these two systems. Because the simplifying assumptions associated with

the derivation of the cubic law do not represent the actual geometric conditions of a rock fracture,

several modiÞcations to the parallel plate fracture model have been proposed. The shape of the void

is primarily inßuenced by the mechanical properties of the rock, the geometric characteristics of the

fracture surfaces, the relative displacement of the two surfaces, and the stress to which the rock is

subjected [Abelin, 1986]. A correction term is often included in the cubic law to account for surface

roughness (roughness perturbations in the fracture surface), existence of asperities or contact points,
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and/or the tortuosity of the ßow system [e.g., Witherspoon et al., 1980; Neuzil and Tracy , 1981].

Zimmerman and Bodvarsson [1996] indicated that a correction for roughness alone is not adequate

for fractures with surfaces highly in contact (i.e., very small apertures), wherein preferential ßow

paths may exist. This phenomenon has been observed in several Þeld and laboratory experiments

[Neretnieks , 1983; Abelin, 1986; Haldeman et al., 1991]. Several conceptual models have been pro-

posed to simulate preferential ßow, including two� and quasi�three�dimensional variable aperture

fractures [Tsang and Tsang , 1987; Moreno et al., 1988; James and Chrysikopoulos, 2000].

In this dissertation analytical and theoretical investigations are undertaken to gain a bet-

ter understanding of transport of Þnitely sized polydisperse colloids in single saturated fractures.

Initially, analytical solutions to the mathematical model describing the transport of Þnitely sized

colloids in a one�dimensional semi�inÞnite fracture subject to several different boundary conditions

are developed. Then a novel particle tracking algorithm is developed and veriÞed through compar-

ison with the analytical solutions. This particle tracking algorithm is then used to examine more

general transport in a uniform aperture fracture. Finally, because natural fractures have variable

apertures along their length, the particle tracking algorithm is extended to examine polydisperse

colloid transport within a quasi�three�dimensional spatially variable aperture fracture.

1.2 Research Objectives

This research focuses on polydisperse colloid transport in single saturated fractured media.

As a Þrst step, colloid and contaminant transport are studied within the framework of a single

fracture conceptualized as a pair of parallel plates. The Þnite size of the colloid particles are found

to affect their transport properties. Analytical solutions are derived that model the transport of

Þnitely sized polydisperse particle plumes in uniform aperture fractures. Next, a novel particle

tracking algorithm is developed and validated upon comparison to analytical solutions for colloid

transport in a uniform aperture fracture. Then, assuming that the aperture of a two�dimensional
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fracture is a stochastic variable, the effect of colloid size on colloid transport is examined. The

speciÞc objectives of this research are to:

� specify the size effect of Þnitely sized colloids on their transport properties;

� develop analytical solutions for the transport of polydisperse colloids in a one�dimensional

semi�inÞnite fracture subject to several sets of boundary and initial conditions without pene-

tration into the rock matrix, but accounting for both irreversible and reversible reaction with

the fracture walls;

� derive and verify a novel particle tracking algorithm through comparison with the analytical

solution;

� investigate the effect of polydispersity on colloid transport in a single fracture idealized as two

parallel plates where the effects of matrix diffusion and surface sorption are included; and

� model polydisperse colloid transport in a two�dimensional spatially variable aperture fracture

and investigate the effects of Þnite size and aperture variation on colloid transport.

1.3 Dissertation Overview

This dissertation is divided into nine chapters. Chapter 1 is an introduction with an outline

of the speciÞc objectives of this study. Chapter 2 provides the background material and literature

review.

Chapter 3 derives the effective velocity and dispersion coefficient for a plume of Þnitely

sized particles traveling in a water saturated uniform aperture fracture.

Chapter 4 develops models describing the transport of colloids in a one�dimensional semi�

inÞnite fracture. Several analytical solutions are constructed for both instantaneous particle injection

and constant concentration particle injection boundary conditions as well as for cases of reversible

and irreversible sorption onto the fracture walls.
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In Chapter 5, a new particle tracking algorithm is presented. In this new equation, instead

of a constant time step, a constant spatial step is speciÞed. The time for a particle to move this

speciÞed distance is selected from a distribution of random numbers that is a function of the particle

diameter and the distance traveled. This algorithm is veriÞed against previously derived analytical

solutions.

In Chapter 6, a more general particle tracking model describing the transport of a polydis-

perse colloids in a uniform aperture fracture is developed. Colloids are allowed to either diffuse into

the surrounding rock matrix or sorb onto the fracture surfaces.

In Chapter 7, the polydisperse colloid particle tracking algorithm presented in Chapter 6

is extended to quasi�three�dimensional fractures with spatially variable aperture. The system is

investigated using the new particle tracking algorithm with a speciÞed spatial step and variable time

step. The effect of size exclusion and variable aperture on colloid transport is examined. Moreover,

the inßuence of colloid attachment onto the wall is taken into account.

Finally, the implications and the signiÞcance of the results of this research is outlined along

with the possible applications are discussed in Chapter 8. Then, Chapter 9 summarizes and presents

the major conclusions of this research with recommendations for future research.
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Chapter 2

Literature Review

2.1 Flow and Transport in Saturated Fractured Media

The term fracture is a general one referring to various types of discontinuities (joints,

fracture zones, and shear zones) that can break a subsurface medium into blocks [Drever , 1985].

Fractures are found in almost all types of rocks: sedimentary (e.g., sandstone), metamorphic (e.g.,

limestone), and igneous or crystalline (e.g., granite). Naturally fractured systems contain extreme

and abrupt changes in porosity and permeability, and can be characterized by two distinct com-

ponents, fractures and matrix blocks. Fractures are the primary transmission conduits for ßuids,

colloids, and contaminants and have permeabilities several orders of magnitude greater than the

permeability of the surrounding rock matrix [Abdel-Salam, 1995].

2.1.1 Methods of Analysis

Fractured media are complex, heterogeneous, and anisotropic systems necessitating certain

idealizations when modeling ßow and transport. Three different approaches are commonly used

that depend on the number and location of fractures, size of the study area, and purpose of the

study: the equivalent porous medium approach [e.g., Bear , 1972; Grisak and Cherry , 1975; Bear
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and Verruijt , 1987; Rubin et al., 1999]; the discrete fracture approach [e.g., Gringarten et al., 1974;

Neuzil and Tracy , 1981; Schwartz et al., 1983; Long and Witherspoon, 1985; Cacas et al., 1990a, b;

Grindrod , 1993; Grindrod and Lee, 1997; James and Chrysikopoulos, 1999, 2000]; and the dual

porosity approach [e.g., Tang et al., 1981; Sudicky and Frind , 1984; Johns and Roberts , 1991; Ibaraki

and Sudicky , 1995; Cormenzana, 2000].

(1) The equivalent porous medium (or the single�continuum) approach assumes that the fractured

medium behaves as a porous medium and is appropriate when the medium of interest contains

many interconnecting fractures, i.e. the local effects of fractures may be incorporated into the

parameters describing the system. In this approach, concepts and laws describing ßow and

transport in porous media are employed. To be able to use this approach, effective values

for the important parameters (e.g., hydraulic conductivity for ßuid ßow and dispersivity for

solute transport) need to be deÞned; however, obtaining estimates of these parameters is often

difficult.

(2) When fractures are sparse, it is not a good approximation to deÞne the entire fractured medium

by averaged quantities, therefore the discrete fracture approach is employed. In this approach

each fracture is regarded as a separate entity and its detailed geometry is incorporated into

the modeling process, deterministically or stochastically. Discrete fractal or stochastic repre-

sentations of fractures have been used in the problem of ßow [e.g., Robinson, 1983; Long and

Witherspoon, 1985; Brown, 1995], and solute transport [e.g., Schwartz et al., 1983; Rasmuson,

1985; Tsang and Tsang , 1987; Moreno et al., 1997]. Based on statistical distributions of frac-

ture aperture, fracture length, fracture spacing, and fracture orientation, a fracture network

may be generated.

(3) For smaller scale problems (e.g., ßow to wells) or when the interaction between fractures and

the rock matrix is important, a dual porosity model is employed. This conceptual model was

Þrst introduced by Barenblatt et al. [1960]. In this approach the fractures and the rock matrix
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are modeled separately and then coupled by a source/sink term governing their interaction.

Because of the difference in conducting properties between fractures and the rock matrix, it

is often assumed that ßow and transport are primarily generated by the fractures while the

rock matrix provides a sink for contaminants. Further, the rock matrix may act as a source

for back diffusion after the bulk of a contaminant pulse has traveled down the fracture.

In a fractured subsurface medium, a fracture network generally controls ßow and transport

[Lowell , 1989]. The basic constructive unit in fractured media is a single fracture, and a single frac-

ture is often used as a starting point to represent a medium consisting of a series of parallel fractures

[Tang et al., 1981; van der Lee et al., 1992; Robinson et al., 1998]. Furthermore, a single fracture

may signiÞcantly inßuence overall ßuid, contaminant, and colloid movement within a fracture net-

work. Therefore, to study contaminant and colloid transport in fractured networks, it is important

to understand the transport mechanisms in a single fracture. SigniÞcant efforts have been directed

toward modeling ßow and contaminant transport in single fractures [e.g., Neuzil and Tracy , 1981;

Neretnieks et al., 1982; Neretnieks , 1983; Novakowski et al., 1985; Tsang and Tsang , 1987; Moreno

et al., 1988; Raven et al., 1988; Shapiro and Nicholas , 1989; Abdel-Salam, 1995; Brown et al., 1995;

James and Chrysikopoulos , 1999, 2000].

2.1.2 Flow in a Fracture

In many geological formations with low matrix permeability, ßuid ßow takes place through

a single fracture or fault, while in other cases the ßow occurs through a network of fractures. In either

case, an understanding of ßow through a single rock fracture is needed. A single fracture may be

regarded as a void enclosed by two surfaces [Abdel-Salam, 1995]. The shape of the void is primarily

inßuenced by the mechanical properties of the rock, the geometric characteristics of the fracture

surfaces, the relative displacement of the two surfaces, and the stress (overburden) applied to the

rock. The fracture void may be subjected to weathering by the ßowing water due to dissolution,

precipitation or clogging with small particles (e.g., colloidal particles). Typically, the fracture void

(aperture) decreases with depth because of increasing overburden pressure [Abdel-Salam, 1995].
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Figure 2.1: Idealization of a natural fracture as two parallel plates with constant aperture b and a
Poiseuille ßow proÞle.

Early studies of fracture hydrology idealized single fractures as a pair of smooth parallel

plates separated by a constant aperture. This simpliÞcation, motivated by the observation that

parallel plate geometry resembles the general geometry of a fracture allows ßow rate and other

transport properties in the fracture to be described by a parallel plate model [Abdel-Salam, 1995;

James and Chrysikopoulos , 1999].

Figure 2.1 displays an idealization of a natural fracture as two parallel plates. Surrounding

the two fracture plates is the host rock matrix that is assumed to be a very tight porous medium.

Although various methods have been devised for specifying the ßow Þeld in a single rough walled

fracture [e.g., Kirkpatrick , 1973; Ge, 1997; di Federico, 1998; Gavrilenko and Guéguen, 1998; Skjetne

et al., 1999], one technique has emerged as the primary method of solution to ßow in a single fracture;

solution of the Navier�Stokes equations. Several assumptions and simpliÞcations are applied to the

Navier�Stokes equations to make them more amenable to numerical or analytical solution. Initially,

the viscous ßuid within the fracture (water) is assumed to be Newtonian and incompressible. Further,

the �no slip� condition is enforced implying that both the normal and tangential components of

velocity vanish at the walls. Fracture ßow is generally deÞned under the assumption of steady�state

ßow subject to a uniform piezometric head gradient, eliminating the transient term in the Navier�
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Stokes equation. Finally, slow, laminar ßow is assumed in the fracture and the advective component

of acceleration disappears, linearizing the Navier�Stokes equations (see Appendix A). The solution of

the linearized Navier�Stokes equations results in fracture ßow that varies as the cube of the fracture

aperture (see Appendix B). For the ideal case of a parallel plate fracture, the volumetric ßow rate

per unit fracture width normal to the ßow can be expressed as [Fox and McDonald , 1992, p. 330]

q = − b
3γ

12µ

µ
dh

dx

¶
, (2.1)

where b is the aperture separating the fracture surfaces; µ is the ßuid dynamic viscosity; γ is the

speciÞc weight of the interstitial ßuid; h is the piezometric head; and x is the coordinate along the

fracture axis. The preceding equation is well known in the literature as the cubic law or the parallel

plate equation, and is valid for laminar ßow conditions in a fracture with no surface contact and

negligible surface roughness. Equation (2.1) is also a form of Darcy�s law with hydraulic conductivity,

K, expressed as

K =
b2γ

12µ
. (2.2)

Schrauf and Evans [1986] indicated that the principle argument against the use of the parallel plate

model is that it ignores the roughness, waviness, and tortuosity of natural fracture surfaces, as well

as the existence of surface contact between the fracture surfaces, all of which serve to reduce the

ßow rate. Moreover, at high normal stresses caused by overburden pressure, fracture surfaces tend

to close, the contact area between these surfaces increases, and consequently, the fracture aperture

takes on a range of values rather than one single value [Moreno et al., 1988]. Many laboratory

and Þeld studies [e.g., Novakowski et al., 1985; Rasmuson and Neretnieks , 1986; Raven et al., 1988;

Novakowski et al., 1995] indicate that the classical view of a rock fracture as a pair of smooth, parallel

plate is not adequate for the description of ßow. Theoretical studies of single�fracture ßow [e.g.,

Brown, 1987; Moreno et al., 1988; Oron and Berkowitz , 1998]; however, have postulated that the

fracture ßow Þeld is well described by the Reynolds equation derived by combining the continuity
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equation and the Navier�Stokes equations to yield

∇ · £b3 (x, y)∇h¤ = 0, (2.3)

where b(x, y) is the local fracture aperture; x and y are the coordinates in the plane of the fracture;

and ∇· denotes divergence (∇ · v = ∂vx/∂x + ∂vy/∂y, where v is an arbitrary two�dimensional

vector). Hasegawa and Izuchi [1983] concluded that the local cubic law is in general an adequate

approximation when applied to a fracture with a sinusoidally varying aperture; however, the ap-

plicability of the local cubic law to real fractures remained in question. Oron and Berkowitz [1998]

performed an order�of�magnitude analysis of the Navier�Stokes equations and concluded that if

the local cubic law was applied not on a point�by�point basis, but rather as an average over a

certain length, that it was a valid method for determining the fracture ßow Þeld. Dijk et al. [1999]

applied nuclear magnetic resonance imaging to the direct three�dimensional measurement of ßow

in a rough�walled water�saturated rock fracture. They determined that the velocity proÞles are

generally parabolic, but often asymmetric. The effects of the measured asymmetry on volumetric

ßow rates and hydraulic conductivities were found to be insigniÞcant while the overall ßow inside

rough walled fractures still obeyed the cubic law. Deviations from the cubic law may be expected

if there is signiÞcant surface roughness or if a large number of asperities exist. It is of note that

contact areas within the fracture, b(x, y) = 0, eliminate the cubic law as a method for determining

the fracture ßow Þeld, necessitating alternate solution techniques [Kumar et al., 1990; Zimmerman

and Bodvarsson, 1996]

Other problems with the application of the local cubic law to ßow in a fracture may exist.

Field studies of solute migration in single fractures in the Stripa mine in Sweden showed that

the ßow was very unevenly distributed along fracture planes and that large areas did not carry

any water [Neretnieks, 1983]. The amount and residence time of non�sorbing tracers collected at

sampling points within the same fracture varied signiÞcantly, and many aliquots registered no tracer

concentration at all. This indicates that the majority of ßow took place along a few selected paths, or
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ßow channels, that make up only a small percentage of the fracture plane. Another Þeld experiment

carried out in a single fracture in granitic rock at Cornwall in Wales, demonstrated that the majority

of ßow in a single fracture also took place in a limited number of channels, occupying a small area

of the fracture plane [Abelin, 1986]. These results are strongly indicative of localized channel ßow

within individual fractures.

Haldeman et al. [1991] performed a laboratory study of ßuid ßow and solute transport

through a fracture embedded in porous tuff. Breakthrough curves and temporal moments analyses

show that channeling of ßow in the fracture segment probably occurred within at least one pref-

erential ßow path. Laboratory experiments have been performed where molten wood�s metal was

injected into single fractures, at different levels of applied stress. The fractures were opened up when

cooled, and direct evidence of the formation of tortuous paths in single fractures was observed. This

is an indication that the channels are tortuous, yet may or may not intersect each other. Channeling

will lead to earlier initial breakthrough of contaminants than would be found in a uniform aperture

fracture with an equivalent fracture volume.

Several conceptual models attempt to replicate channeling phenomenon. For instance,

Neretnieks et al. [1982] modeled channeling as a bundle of independent channels, each with a con-

stant aperture selected from a representative aperture statistical distribution (e.g., a log�normal

distribution). Tsang and Tsang [1987] described ßuid ßow through a system of independent ßow

channels, each with a variable aperture along its length. The local channel aperture follows a given

statistical distribution, and the variation of the aperture along each channel is regulated by a Þnite

spatial correlation length. Brown [1987] used a fractal model to generate a mathematical represen-

tation of fracture surfaces that emulates channeling. Moreno et al. [1988] modeled the channeling

phenomenon by superimposing the fracture plane onto a two�dimensional regular grid with a distinct

aperture assigned to each element. The apertures are sampled from a log�normal distribution and

vary according to an isotropic Þnite spatial correlation length. Tsang and Tsang [1987] extended

the model of Moreno et al. [1988] to include an anisotropic Þnite spatial correlation length. Al-
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though these studies identify fracture ßow phenomena, some contaminant transport characteristics

were examined as well. However, the driving force for the contaminants was restricted to advection�

dominated dispersion and did not account for the effects of molecular diffusion, sorption, matrix

diffusion, and Taylor dispersion.

2.1.3 Transport Mechanisms

The study of contaminant and colloid transport in fractured media has its roots in the

pioneering work of Sir Geoffrey Taylor [1953]. When a soluble substance is introduced into a ßuid

ßowing slowly through a small�bore tube, it moves under the combined action of molecular diffusion

and the variation of velocity over the cross�section. Taylor [1953] showed that the distribution of

the solute is symmetrically centered about a point moving with the mean solvent velocity; however,

the dispersion along the tube is not only a function of the molecular diffusion coefficient, but of

the system characteristics as well (i.e., tube radius and maximum or centerline ßow velocity). The

rate of spreading of the solute is described by the Taylor dispersion coefficient and may be orders

of magnitude greater than spreading under the action of molecular diffusion alone. Aris [1956]

extended Taylor�s groundbreaking work by employing moment analysis to obtain results in a more

generalized manner. These original studies, however, apply only to non�reactive solute transport.

Sankarasubramanian and Gill [1974] and Brenner [1980, 1982] continued the study of internal ßow

and transport by developing exact solutions for the dispersion of reactive solutes in a tube. Following

the Taylor�Aris procedures, scientists have examined various aspects of contaminant transport in

parallel plate systems. DeGance and Johns [1978] and Shapiro and Brenner [1986, 1987, 1988]

have obtained approximate analytical models for the dispersion of reactive solutes in cylindrical or

parallel plate geometries and concluded that the Taylor dispersion coefficient needs to be modiÞed

to account for solute ßux at the system boundaries due to reactions with the walls.

Analytical solutions for contaminant transport in fractured porous media where contami-

nants are subject to plug ßow advection, dispersion, matrix diffusion, surface and matrix sorption,
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and decay have been presented [Tang et al., 1981; Sudicky and Frind , 1982; Cormenzana, 2000].

Abdel-Salam and Chrysikopoulos [1994] derived closed�form analytical solutions for colloid trans-

port in single, uniform rock fractures with and without colloid penetration into the rock matrix

for constant concentration as well as constant ßux boundary conditions. It was shown that axial

advection, transverse diffusion, and penetration into or reaction with the solid matrix govern colloid

migration in uniform aperture fractures.

For the more realistic case of a variable aperture fracture, other mechanisms may contribute

to the dispersion of contaminants and colloids in a fracture. Dispersion in fractures is strongly

dependent on the variability of fracture aperture [Keller et al., 1999]. This type of dispersion

is known as �channeling dispersion.� When channeling exists (with no or few interconnections),

velocity variations among the different channels due to the differences in channel width and/or ßow

resistance give rise to dispersion [Neretnieks, 1983]. Large aperture regions result in signiÞcant

channeling of the ßuid ßow, accelerating the movement of solutes in a particular direction, that

may differ locally with respect to the main ßow direction from high to low piezometric head. This

often results in earlier breakthrough than predicted by the conventional parallel plate simpliÞcation.

Johns and Roberts [1991] indicated that diffusion from the channels to neighboring small aperture

regions may be an important contaminant retardation mechanism. For a system of channels with

few intersections, Rasmuson [1985] showed that a the number of mixing points (points where the

channels intermix) that is needed to get a Fickian dispersion is dependent on the fracture aperture

distribution, i.e., a wider distribution requires more mixing points. Dispersion may also arise because

of varied residence times in different fractures of a fracture network.

Sorption reactions (ion exchange, physical and chemical sorption) often occur at fracture

surfaces. Because of sorption, contaminant and colloid breakthrough may be affected by the surface

area in contact with the interstitial ßuid, surface roughness, and interstitial ßuid velocity [Abdel-

Salam, 1995]. Attachment of particles onto the fracture matrix may be either reversible or irre-

versible, depending on the shear forces in the fracture, or upon changes in chemical properties of

the interstitial ßuid [Grolimund and Borkovec, 1999].
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2.2 Physicochemical Characteristics of Colloids

Colloids are very Þne particles that range in diameter between 10−3 µm and 1 µm [Bud-

demeier and Hunt , 1988]. Stumm [1977] extended the upper limit of colloids size to approximately

10 µm in diameter. Experiments determining the size of colloids in natural waters show that the

colloids are roughly spherical and have a log�normal distribution of diameters [Ledin et al., 1994;

Atteia and Kozel , 1997; Lartiges et al., 2001]. A wide variety of micro�organisms, organic and in-

organic colloidal material has been found in the subsurface environment. These may include, clay

minerals, metal oxides, silicic acid, viruses, bacteria, and organic matter (e.g., humic substances)

[Lieser et al., 1990]. The composition of colloids is often chemically similar to that of the immo-

bile subsurface material [McCarthy and Zachara, 1989]. Because a colloid has a high surface area

per unit mass, it possesses a high sorptive capacity for contaminants [McDowell-Boyer et al., 1986;

EnÞeld and Bengtsson, 1988; Toran and Palumbo, 1992]. Furthermore, liquid�phase colloids may

be more accessible to contaminants than solid surfaces. Chemically, colloids behave differently from

dissolved contaminants and are not expected to be affected by the same mechanisms that affect

contaminants during migration.

Colloids may be formed in groundwater as a result gradients in geochemical parameters such

as pH, ion composition, or CO2 partial pressure that induce supersaturation to readily precipitable

solid phases. Further sources of colloid production in groundwater include leachates from the vadose

zone, dissolution of inorganic cementing agents that bind colloid sized materials onto solid surfaces,

release and movement of viruses and bacteria, and formation of micelles from the agglomeration of

humic acids [McCarthy and Zachara, 1989; Puls et al., 1993]. Additionally, well pumping, rising

water tables, and replacement of saline water by fresh water may initiate particle mobilization

[Corapcioglu and Jiang , 1993]. When ionic metal species are at concentrations above their solubility

limit, colloids may be generated [Buddemeier and Hunt , 1988]. Suspended colloids are also subject to

aggregation, Þltration, and settling, all of which are relatively complex processes dependent on colloid
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density, colloid size, surface chemistry, water chemistry, and interstitial ßuid ßow rates [McCarthy

and Zachara, 1989]. Colloids are found in subsurface waters under various geochemical conditions

with concentrations ranging from a few milligrams per liter to a few hundred milligrams per liter

[Moulin and Ouzounian, 1992]. For instance, high particle concentrations were found in granitic

rock fractures at the Nevada test site (63 mg/l) and in Switzerland (1010 particles/l) [Buddemeier

and Hunt , 1988; Mills et al., 1991].

The transport of colloids is affected by hydrodynamic interactions between colloidal par-

ticles, fracture surfaces, and interstitial ßow [Goldman et al., 1967]. The stability of colloids is an

important consideration in determining their transport and is controlled by van der Waals attrac-

tive forces that promote aggregation, and electrostatic repulsive forces that keep particles apart.

When electrostatic repulsions are dominant, especially at low ionic strengths, colloidal particles are

electrostatically stabilized and remain in a dispersed state [McCarthy and Zachara, 1989]. Con-

ditions of weak electrostatic repulsive forces may promote coagulation but not necessarily lead to

immediate particle immobilization. Coagulation is a function of several variables, including particle

concentration and particle size, that can inßuence the extent of particle�particle collisions. More-

over, destabilized colloids can still be transported as aggregates if the aggregates are sufficiently

small relative to the interstitial void space between solid surfaces [McCarthy and Zachara, 1989].

Because of their physicochemical properties, colloids may be transported signiÞcant distances from

where they were introduced.

The surface charge of colloids is important in modeling their transport and it is sensitive

to solution pH [Abelin, 1986]. For every type of colloid there is a pH where the surface charge is zero

known as the point of zero charge or the isoelectric point. At this pH, the attractive van der Waals

forces start to play a role in particle�particle aggregation. Recall that the velocity distribution in

the void space between solid surfaces in subsurface formations (e.g., fracture surfaces) is parabolic,

with the maximum velocity along the centerline. Zero�charged colloids will randomly sample, by

diffusion, this velocity distribution, but they will not reach the solid surface because their dimensions
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physically exclude them from the slowest moving portion of the velocity proÞle [de Marsily , 1986;

Mills et al., 1991]. Therefore, the average velocity of non�reactive particles is higher than the mean

interstitial ßuid velocity, particularly for large size colloids [Brenner and Edwards , 1993; James and

Chrysikopoulos , 1999, 2000]. This phenomenon may be further affected by the ionic strength of

solution. For colloids and solid surfaces having the same charge, repulsion effects tend to increase

the average velocity of the particles by keeping them away from solid surfaces [de Marsily , 1986].

The adsorption process of colloids onto solid surfaces is conventionally termed as sorption, Þltration,

deposition, retention, or attachment, while colloid desorption is known as detachment. However,

if the solution ionic strength increases, repulsive forces decrease, and the attractive van der Waals

forces begin to play a role in slowing down or retaining the particles through particle�wall interactions

[de Marsily , 1986]. For colloids and solid surfaces having opposite charge, sorption mechanisms slow

down or Þlter the colloids [de Marsily , 1986]. Generally for charged colloids, particles move more

slowly than the average interstitial velocity because of reactions with the fracture matrix [de Marsily ,

1986].

2.3 Transport and Deposition of Colloids

Recent experimental and Þeld studies indicate that contaminants can migrate not only

as dissolved species in the liquid phase, but also adsorbed onto the surface of suspended colloidal

particles [e.g., Chiou et al., 1986; Buddemeier and Hunt , 1988; Torok et al., 1990]. At the Nevada

test site, radionuclide analyses for detonation�cavity samples indicated that substantial fractions of

selected nuclides are associated with colloid�sized particles. Colloid particles may serve as carriers for

contaminants thereby signiÞcantly inßuencing the net rate of contaminant migration. These results

spurred researchers to model colloid�facilitated contaminant transport in subsurface environments

[Grindrod , 1993; Abdel-Salam and Chrysikopoulos , 1995a, b]. Smith and Degueldre [1993] modeled

the co�transport of a radioactive material in the presence of colloids in a single fracture and showed

that depending on system conditions, colloids may either enhance or retard contaminant transport.
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In addition to enhancing contaminant transport, certain types of colloids are also hazardous

to human health (e.g., supersaturated nuclear species, viruses, microorganisms). Puls and Powell

[1992] concluded from laboratory experiments that iron oxide colloids may be signiÞcantly mobile,

and under some conditions these colloids may be transported faster than conservative tracers. In

heterogeneous porous formations, colloids are expected to travel faster than conservative tracers (e.g.,

tritiated water), because colloids bypass small size pores [Bales et al., 1989; Haber and Brenner ,

1993]. A retardation factor < 1 has been observed in several colloid transport studies [e.g., Champ

and Schroeter , 1988; Harvey et al., 1989; Toran and Palumbo, 1992]. Rapid transport of bacterial

colloids, relative to conservative tracers, was observed in a laboratory experiment using a natural

fracture [Bales et al., 1989] and in a Þeld experiment in crystalline fractured rocks [Champ and

Schroeter , 1988]. At two separate sites at Los Alamos, New Mexico, plutonium and americium were

detected at distances much further than distances predicted by dual porosity modeling techniques

[Corapcioglu and Jiang , 1993].

As colloids are transported through fractures, they may be deposited onto fracture sur-

faces. A Þeld experiment in crystalline rock fractures has demonstrated that the primary removal

mechanism of bacterial and non�reactive colloids from solution is deposition [Champ and Schroeter ,

1988]. Deposition of colloidal particles is generally considered to involve two processes: transport

of particles to the solid�liquid interface which is primarily controlled by Brownian motion for sub-

micron particles; and attachment of particles to fracture surfaces that is mainly affected by the

repulsive electric double layer, the attractive van der Waals forces, and viscous interaction [Bowen

and Epstein, 1979; Mills et al., 1991]. Particle deposition is also affected by particle shape, wall

roughness and whether fracture surfaces are clean or if deposition occurs on previously collected

particles [Chrysikopoulos and Abdel-Salam, 1997]. Comprehensive compilations of particle deposi-

tion mechanisms have been presented by McDowell-Boyer et al. [1986] and McCarthy and Zachara

[1989]. The kinetics of local adsorption of colloid particles in parallel plate systems have been studied
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in depth [e.g., Adamczyk and van de Ven, 1980; Adamczyk et al., 1983, 1991, 1992a, b, 1997]. Par-

ticle deposition may be represented mathematically by an empirical coefficient (Þlter or deposition

coefficient), that is often considered an irreversible adsorption term accounting for the mechanisms

governing the deposition process [Schaaf and Talbot , 1989; Chrysikopoulos and Abdel-Salam, 1997].

Because the deposition coefficient depends on the absolute temperature, the viscosity of the aqueous

medium, the average particle size, and other parameters accounting for the electric double layer

and van der Waals forces, it is usually determined from laboratory columns or Þeld experimental

measurements [e.g., Champ and Schroeter , 1988; Toran and Palumbo, 1992].

Detachment of colloids is not expected in fractured rocks where ßow velocities are low, and

Bowen and Epstein [1979] have shown experimentally that the rate of release of deposited colloids

from a smooth parallel plate channel is negligible when the aqueous geochemistry of the interstitial

ßuid is constant. However, several studies have indicated that high ßuid shear or changes in the

chemistry of the interstitial ßuid may allow for the resuspension of previously deposited colloids

[Grolimund and Borkovec, 1999; Lægdsmand et al., 1999; Bergendahl and Grasso, 2000]. Further,

some studies of colloid transport in fractures suggest that colloids do not penetrate low porosity

rock matrices [Bowen and Epstein, 1979]. For instance, Bradbury and Green [1986] reported that

particles in the size range of 0.091�0.312 µm do not penetrate a crystalline rock matrix with 0.14

µm micro�Þssures. Because the size of colloids ranges between 10−3 to 10 µm and the size of matrix

micro�Þssures ranges between 10−2 to 10 µm , the possibility of colloids diffusing into the rock

matrix can not be eliminated.

2.4 Boundary Conditions

In any modeling process, boundary conditions are important because they account for

effects of the system outside of the region of interest. Usually, contaminant transport models assume

that mass is introduced to the system through either a constant concentration (Þrst�type or Dirichlet)
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or a constant ßux (third�type or Cauchy) inlet boundary condition [van Genuchten and Alves , 1982].

The constant concentration boundary condition represents the case where colloids exist at the inlet

boundary at a prescribed concentration (this includes instantaneous or pulse injection), while the

constant ßux boundary condition represents the case where colloids are added at a constant rate

to the ßuid that enters the fracture. The constant concentration boundary condition indicates that

with steady velocity, the advective ßux across the boundary is constant, while the constant ßux

indicates that the sum of advective and dispersive ßuxes is constant. Solutions resulting from both

boundary conditions can be used in the analysis of experimental breakthrough curves obtained by

injecting colloids into a rock fracture.

2.5 Particle Tracking

With the ever expanding capabilities of computers, particle tracking solutions to vari-

ous engineering problems are becoming increasingly complex and realistic. Although random walk

methods, Monte Carlo simulations, and Fokker�Planck solutions to differential equations have been

employed for many years [Ahlstrom et al., 1977], the availability of inexpensive high speed proces-

sors and vast memory storage has allowed the application of these solution techniques to increas-

ingly complex problems [e.g., Uffink , 1989; Valocchi and Quinodoz , 1989; Yamashita and Kimura,

1990; Kitanidis, 1994; Grindrod and Lee, 1997; Lu, 2000; Liu et al., 2000; Michalak and Kitani-

dis, 2000]. Although particle tracking techniques were originally applied to contaminant transport

in porous media [e.g., Thompson and Gelhar , 1990; Thompson and Dougherty , 1992; Thompson,

1993; Thompson et al., 1996], extensions to fractured media have been made. For example, particle

tracking schemes that model the transport of colloids in both uniform [Yamashita and Kimura,

1990; James and Chrysikopoulos , 1999] and variable aperture fractures [Reimus, 1995; Grindrod and

Lee, 1997; James and Chrysikopoulos , 2000; Tsang and Tsang , 2001] as well as fracture networks

[Liu et al., 2000] have been developed. James and Chrysikopoulos [2001a, b] have also compared
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a traditional particle tracking algorithm with analytical solutions for the ideal case of polydisperse

colloid transport in a uniform fracture and excellent agreement was shown supporting the validity

of particle tracking techniques as solution methods for the transport of colloids and contaminants

in fractures. Higher order particle tracking schemes have been devised; however, they were found

to only be useful in heterogeneous systems with complicated unsteady ßow Þelds [Bensabat et al.,

2000].
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Chapter 3

Effective Parameters for a Colloid

Plume

In this chapter expressions for the effective velocity and effective dispersion coefficient for

a plume of Þnitely sized spherical particles with neutral buoyancy ßowing within a water saturated

fracture are derived. Consider the miscible displacement of a ßuid initially free of particles by

another ßuid containing suspended particles of Þnite size within a fracture formed by two semi�

inÞnite parallel plates. A parabolic velocity proÞle is induced by a uniform longitudinal pressure

gradient and the no slip condition at the fracture walls with maximum ßuid velocity maintained

along the fracture centerline. Particle spreading occurs due to the combined actions of molecular

diffusion and the dispersive effect of the velocity gradient. Unlike the derivation for the Taylor

dispersion coefficient, here the Þnite size of the particles is taken into account. It is shown that

because the Þnite size of a particle excludes it from the slowest moving portion of the velocity

proÞle, the effective particle velocity is increased, while the overall particle dispersion is reduced.



CHAPTER 3. EFFECTIVE PARAMETERS FOR A COLLOID PLUME 25

3.1 Background

It is often assumed that the solutes are inÞnitesimally small and that axial advection and

transverse diffusion chießy govern contaminant fate and transport in fractures. While it is true

that many contaminants are of molecular size, this is not always the case. Many studies have shown

colloids to be ubiquitous in groundwater, often having a high affinity for contaminant sorption [Smith

and Degueldre, 1993; Contardi et al., 2001]. Essentially, if a contaminant sorbs onto a colloid, the

colloid itself becomes a contaminant with transport properties different than the soluble contaminant

[Abdel-Salam and Chrysikopoulos , 1995a, b].

It is well known that for a viscous ßuid ßowing in a channel, a velocity proÞle exists such

that the velocity of the ßuid is maximum along the centerline and diminishes toward the wall. A

colloidal particle injected into such a channel will, by Brownian motion, make transverse excursions

normal to the direction of the ßow thereby sampling and adopting velocities across the channel. The

mean velocity of the particle will therefore be a reßection of the velocity proÞle of the interstitial

ßuid with the important qualiÞcation that the center of a particle will be excluded from the slowest

streamlines closest to the fracture walls because of its size [Small , 1974]. Consequently, the particle

will move through the channel with a mean velocity greater than the mean ßuid velocity by a factor

that increases with increasing ratio of particle size to fracture aperture. This change in effective

particle velocity also alters the effective dispersion coefficient of the particle plume if the analysis

made by Taylor [1953] is performed with the modiÞed particle velocity used in place of the mean

ßuid velocity.

In this chapter, the effective velocity and effective dispersion coefficient for Þnitely sized

spherical colloidal particles with neutral buoyancy are derived from Þrst principles. Because the

Þnite size of a particle excludes it from the slowest moving portion of the velocity proÞle near the

walls of a fracture, it is shown that the effective velocity of a particle plume is greater than the mean

interstitial ßuid velocity. Furthermore, this particle size exclusion leads to a decrease in the effective

dispersion coefficient of a particle plume.
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3.2 Mathematical Derivations

3.2.1 Effective Velocity

Assume that a fully developed, unidimensional, Poiseuille velocity distribution exists within

a fracture as shown in Figure 3.1, expressed as [Fox and McDonald , 1992, p. 392],

ux (z) = Umax

∙
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The mean ßuid velocity may be expressed as
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where Umax is the maximum velocity of the interstitial ßuid along the centerline of the fracture; and

z is the coordinate direction perpendicular to the walls of the fracture with its origin at the center of

the fracture. It is assumed that a spherical particle travels with a velocity corresponding to the local

ßow velocity at its centroid. Particle�wall overlap is not allowed. Hydrodynamic, gravitational,

van der Waals, and electrostatic forces are not considered in the calculation of particle velocity.

The upper limit of the Reynolds number for colloid sized particles ßowing in fractured media is

below 10−3, well into the Stokes ßow regime. Drag and lift forces may be neglected. The average

(or effective) velocity of a particle is estimated by integrating the Poiseuille velocity distribution

over the aperture available to a particle and dividing by that same available aperture. The available

aperture is considered as the original aperture, b, less the diameter of a particle, dp. Because particle

penetration of the fracture wall is not permitted, the Þnite size of a particle does not allow it to

sample the slowest moving portion of the velocity proÞle nearest the wall. This size exclusion leads

to an effective particle velocity given by:

Ueff =
Umax
b− dp

Z b−dp
2

−b+dp
2

∙
1− 4

³z
b

´2¸
dz

=
2

3
Umax

"
1 +

dp
b
− 1
2

µ
dp
b

¶2#
. (3.3)
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Figure 3.1: Schematic illustration of the fracture considered in this study.

Note that the effective particle velocity (3.3) is greater than the mean ßuid velocity (3.2)

because the particle diameter may not be larger than the fracture aperture (dp/b < 1). In view of

(3.3) it is evident that the effective velocity of a particle increases with increasing particle diameter.

3.2.2 Effective Dispersion Coefficient

Consider a control volume of unit depth deÞned as ∆x∆z and situated in a fracture of

aperture b as shown in Figure 3.1. Conservation laws require that net mass accumulation of sus-

pended particles be equal to the difference between mass entering and exiting the control volume as

follows:

∂
¡
ndpV

¢
∂t

=
³
úNin − úNout

´
transverse
diffusion

+
³
úNin − úNout

´
axial

advection

(3.4)

where ndp is the number concentration of colloid particles;
úN is the time rate of change of the

number of colloids; V = ∆x∆z is the two�dimensional control volume per unit depth; and t is

time. Transport by axial diffusion is neglected in (3.4) as it is small in comparison to that by axial

advection. This assumption was initially made by Taylor [1953] as well as Aris [1956]; however,

Berkowitz and Zhou [1996] proved it to be a reasonable approximation for all but small time.
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Using a truncated Taylor series expansion around an arbitrary position x, i.e., f (x+∆x) =

f (x) +∆xf 0 (x) + · · ·, for the axial advection term yields:

úNin = Aux (z)ndp , (3.5)

úNout = A

∙
ux (z)ndp

+
∂ux (z)ndp

∂x
∆x

¸
, (3.6)

where A = ∆z is the unit depth cross�sectional area available for axial advection within the control

volume. Similarly, using a truncated Taylor series expansion around an arbitrary position z for the

transverse diffusion term leads to:

úNin = ∆xJz, (3.7)

úNout = ∆x

µ
Jz +

∂Jz
∂z
∆z

¶
, (3.8)

where Jz is the ßux term evaluated at z that is assumed to approximate a Fickian diffusion process

as

Jz = −Ddp

∂ndp

∂z
, (3.9)

where Ddp is the molecular diffusion coefficient of a particle with diameter dp, from the Stokes�

Einstein diffusion equation:

Ddp =
kT

3πµdp
, (3.10)

where k is Boltzmann�s constant; and T is the absolute temperature, and µ the dynamic viscosity

of the interstitial ßuid, respectively.

Substituting (3.5)�(3.8) into (3.4) and dividing by V yields the following partial differential

equation

∂ndp (x, z, t)

∂t
= Ddp

∂2ndp (x, z, t)

∂z2
− ux (z)

∂ndp (x, z, t)

∂x
. (3.11)

The preceding equation is the two�dimensional, unsteady, advection�diffusion equation with axial

advection and transverse diffusion as the two governing transport mechanisms.

Because in the present derivation the molecular diffusion in the axial direction is neglected,

all axial particle movement is due to advection. A steady�state assumption is made by considering
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only advection across the plane moving with the center of mass of a colloid particle plume, such

that x and t may be collapsed into a single coordinate so that the transient term in (3.11) may be

eliminated. This can be achieved by the following coordinate transformation

ξ = x− Uefft. (3.12)

Applying the preceding coordinate transformation to (3.11) yields the following partial differential

equation

Ddp

∂2ndp
(ξ, z)

∂z2
= [ux (z)− Ueff ]

∂ndp
(ξ, z)

∂ξ
, (3.13)

where the term ux (z)−Ueff = uξ (z) is termed the �velocity defect�, deÞned as the velocity that is a

function of z at a point ξ = 0 that follows the Þrst moment of a particle plume in time. Subtracting

the effective velocity (3.3) from the Poiseuille (parabolic) velocity proÞle (3.2) yields

uξ (z) = ux (z)− Ueff

=
Umax
3

"µ
1− dp

b

¶2
− 12

³z
b

´2#
. (3.14)

Figure 3.2 is an illustration of the velocity defect. Note that particles in the shaded regions

have a tendency to diffuse in the direction of the open arrows because of the concentration gradient

induced by the �velocity defect�. It is in these shaded regions where axial particle advection (indicated

by the Þlled arrows) and transverse particle diffusion (indicated by the open arrows) are important.

With respect to the moving frame of reference, the velocity of a particle that is in contact with the

wall becomes uξ(±(b− dp)/2) = −(2/3)Umax(1− dp/b)2. Consequently, the apparent velocity of the

particles in the shaded areas to the left of the moving frame of reference is negative as indicated by

the direction of the Þlled arrows. Because the mean particle velocity at the plane for which ξ = 0 is

zero, the transfer of particles across this plane depends only on the transverse variation of ndp
. In

view of (3.14), the governing equation (3.13) can be expressed as

∂2ndp (ξ, z)

∂z2
=
Umax
3Ddp

"µ
1− dp

b

¶2
− 12

³z
b

´2# ∂ndp (ξ, z)

∂ξ
. (3.15)
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ξ = 0

Figure 3.2: Schematic illustration of the �velocity defect� represented by the shaded areas. Filled
arrows indicate axial advection of particles and open arrows indicate transverse molecular diffusion
of particles.

Employing the assumption that transverse concentration gradients induced by axial advection are

quickly smoothed out by transverse molecular diffusion [Taylor , 1953], the rate of change of the

particle number concentration with respect to the moving frame of reference may be assumed nearly

constant across the aperture of the fracture. This assumption implies that ∂ndp (ξ, z) /∂ξ may be

replaced with ∂ndp (ξ) /∂ξ. Integration of (3.15) with respect to z yields

∂ndp (ξ, z)

∂z
=
Umaxb

3Ddp

"µ
1− dp

b

¶2
z

b
− 4

³z
b

´3# ∂ndp (ξ)

∂ξ
+ C (ξ) , (3.16)

where C (ξ) is an integration constant. Applying the non�dispersive ßux boundary condition across

the centerline (z = 0), because of the neutral particle buoyancy, indicates that the integration

constant vanishes:

∂ndp (ξ, z)

∂z

¯̄̄̄
z=0

= 0⇒ C (ξ) = 0. (3.17)
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Integration of (3.16) with respect to z yields

ndp
(ξ, z) =

Umaxb
2

6Ddp

"µ
1− dp

b

¶2 ³z
b

´2
− 2

³z
b

´4# ∂ndp (ξ)

∂ξ
+ ncl (ξ) , (3.18)

where ncl (ξ) is an integration constant. It can be shown by evaluating ndp (ξ, 0) that ncl (ξ) is

actually the particle concentration at the centerline of the fracture.

The average particle concentration in the z�direction over the entire fracture aperture is

deÞned by integrating the particle number concentration across the fracture and dividing by the

fracture aperture

ndp (ξ) =
1

b

Z b/2

−b/2
ndp (ξ, z) dz. (3.19)

Substituting (3.18) into (3.19) and performing the integration, the average colloid concentration is

expressed as:

ndp (ξ) =
Umaxb

2

6Ddp

"
7

120
− 1
6

dp
b
+
1

12

µ
dp
b

¶2# ∂ndp (ξ)

∂ξ
+ ncl (ξ) . (3.20)

Note that due to averaging over b, the term ∂ndp (ξ) /∂ξ is replaced by ∂ndp (ξ) /∂ξ. Solving (3.20)

for ncl (ξ) and substituting the resulting expression into (3.18) allows ndp (ξ, z) to be presented only

in terms of the average concentration across the fracture as follows:

n (ξ, z) =
Umaxb

2

6Ddp

"
− 7

120
+
1

6

dp
b
− 1

12

µ
dp
b

¶2
+

µ
1− dp

b

¶2 ³z
b

´2
− 2

³z
b

´4# ∂ndp (ξ)

∂ξ
+ n (ξ) .

(3.21)

To evaluate the effective dispersion coefficient, an expression for the ßux of particles across a plane

that is moving with the Þrst moment of a particle plume in time is sought. The average ßux of

particles in the axial direction relative to the moving coordinate, ξ, is given by

J =
1

b− dp

Z b−dp
2

−b+dp
2

ndp (ξ, z)uξ (z) dz

= − 2

945

U2maxb
2

Ddp

µ
1− dp

b

¶6 ∂ndp (ξ)

∂ξ
, (3.22)

where the latter transformation is a consequence of employing (3.14) and (3.21). The average ßux

is calculated only for the portion of the fracture available to the particles, hence the region spanned

by the limits of integration.
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Using the effective velocity as a moving frame of reference, the transport of particles within

the fracture may be viewed as a dispersion problem. Consequently, the advection�diffusion equation

may now be redeÞned as Fick�s second law of diffusion along the moving frame of reference, ξ, with

diffusion coefficient Deff . Thus, the unsteady transport of particles is expressed through use of the

continuity equation assuming there is no particle generation, as follows [Bird et al., 1960, p. 555]

∂ndp (ξ)

∂t
= −∂J

∂ξ
. (3.23)

Substituting the expression for average particle ßux (3.22) into the preceding equation yields

∂ndp (ξ)

∂t
= Deff

∂2n (ξ)

∂ξ2
, (3.24)

where the effective dispersion coefficient, Deff , represents the apparent particle spreading arising

from the combined effect of the advective ßux of particles across the plane moving with the center

of mass of a particle plume plus the particle molecular diffusion, and it is deÞned as

Deff = Ddp +
2

945

U2maxb
2

Ddp

µ
1− dp

b

¶6
. (3.25)

For the limiting case where a particle becomes negligibly small, dp → 0, the preceding expression for

the effective dispersion coefficient for Þnitely sized particles reduces to the classic Taylor dispersion

coefficient

DTaylor = Ddp +
2

945

U2maxb
2

Ddp

. (3.26)

3.3 Discussion

The effect of Þnite particle size on particle transport in a water saturated, uniform aperture

fracture is examined in this section by focusing on the limiting cases where the particle diameter

becomes inÞnitesimally small (dp → 0) as well as when the particle diameter is comparable to the

fracture aperture (dp → b). As the diameter of a particle becomes inÞnitesimally small, the effective

velocity with which the particle plume travels is reduced to the mean ßow velocity, Ueff =
2
3Umax.
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Furthermore, the effective dispersion coefficient of a plume of small particles reduces to the Taylor

dispersion coefficient. This is in agreement with the assumption of an inÞnitesimally small solute

made by Taylor in his derivation. At the limit of the particle diameter approaching the fracture

aperture, the effective velocity of a particle plume becomes Umax while the corresponding effective

dispersion coefficient reduces to the molecular diffusion coefficient. Both results arise directly from

the assumptions that each particle travels with a velocity equal to that found at its centroid due to

the existing hydraulic gradient and that particle�wall overlap is not permitted. If a particle is nearly

equal in size to the aperture of the fracture, it will experience only a narrow range of velocities

close to Umax thereby decreasing the dispersive effect of the velocity gradient. If a particle only

experiences a single velocity, the dispersion of a particle plume is caused by molecular diffusion

alone. The expected behavior of Deff at both limits of small and large particles is evident from

(3.25).

Figure 3.3a compares the effective velocity for a monodisperse plume of Þnitely sized parti-

cles calculated from (3.3) to the mean ßuid velocity calculated from (3.2). Figure 3.3b compares the

effective dispersion coefficient for a monodisperse plume of Þnitely sized particles calculated from

(3.25) to the Taylor dispersion coefficient calculated from (3.26). Particle diameters range from 0.1%

up to one�quarter of the fracture aperture. It should be noted that the molecular diffusion coeffi-

cient used in both the effective and Taylor dispersion coefficients was calculated from (3.10) even

though the Taylor dispersion coefficient is derived for inÞnitesimally small particles. It is evident

from Figure 3.3 that when the particle diameter is 6.5% of the fracture aperture, the effective disper-

sion coefficient of a particle plume is 50% less than the corresponding Taylor dispersion coefficient.

Therefore, accounting for the Þnite size of a particle increases the effective velocity and decreases

the dispersion of a particle plume within a fracture. Clearly, the Þndings in this work suggest that

for the transport of Þnitely sized particles through a water saturated fracture particle size should be

taken into account.
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Figure 3.3: Effective parameters for Þnitely sized particles of diameter, dp. The effective and mean
velocities are compared in (a); and (b) compares the effective and Taylor dispersion coefficients as
a function of particle size (here b = 1× 10−4 m, Umax = 1× 10−6 m/s, and T = 288.15 K).

3.4 Summary

In this chapter an effective velocity (3.3) and an effective dispersion coefficient (3.25) for

Þnitely sized, spherical, particles traveling in a uniform aperture fracture are derived. The slowly

ßowing carrier ßuid forms a parabolic velocity proÞle within the fracture. Because particle�wall

overlap is not allowed, and because a particle is assumed to ßow at a velocity equal to that found

at its centroid, the size of a particle physically excludes it from the slowest moving portion of the

velocity proÞle located at the fracture walls. While this size exclusion serves to increase the effective
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travel velocity of a particle plume, it also decreases its effective dispersion coefficient. The effective

dispersion coefficient derived here is found to be similar in form to the Taylor dispersion coefficient.

In fact, in the limit of a particle diameter becoming inÞnitesimally small, the newly derived effective

dispersion coefficient reduces to the classic Taylor dispersion coefficient. The results presented in

this chapter show that the Þnite size of a particle does in fact increase the effective plume velocity

and decreases the overall spreading of a particle plume.
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Chapter 4

Analytical Solutions

Analytical solutions are derived in this chapter that describe the transport of Þnitely sized

monodisperse and polydisperse particles of neutral buoyancy within a semi�inÞnite, uniform frac-

ture subject to several boundary and initial conditions. The transport of one monodisperse and

three polydisperse particle plumes composed of hard spherical particles with equivalent mean but

different log�normally distributed diameters is investigated. Instantaneous as well as continuous

particle injection are examined. Both reversible and irreversible particle�wall interactions are con-

sidered. It is shown that both the Þnite particle size and the characteristics of the particle diameter

distribution signiÞcantly affect the shape of the particle concentration breakthrough curves. Fur-

thermore, increasing the standard deviation of the particle diameter enhances particle spreading

and increases the number of sorbed particles when particle�wall interactions are taken into account.

Excellent agreement between available experimental data and the analytical solution for the case of

an instantaneous release of monodisperse particles in a natural fracture is observed.
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4.1 Background

The governing partial differential equations for transport in a fracture are linear with re-

spect to the dependent variable (i.e., particle concentration). Therefore, analytical solutions to

polydisperse particle transport in a fracture can be derived from the corresponding analytical solu-

tions to monodisperse particle transport through use of the superposition principle. In the present

study, four cases are considered. The Þrst case represents an instantaneous release of particles into

a fracture without particle�wall reactions. In the second case, it is assumed that a constant concen-

tration of particles is present at the fracture inlet and that particles do not interact with the walls

of the fracture. In both of these cases, the appropriate governing equation is of a form amenable

to a straightforward analytical solution. The third and fourth cases examined correspond to a con-

stant concentration of particles at the fracture inlet, but with irreversible and reversible particle

attachment onto the fracture walls, respectively. It should be noted that the analytical solutions for

polydisperse particles presented in this chapter are applicable to any distribution of particle sizes,

but model simulations are presented here for one monodisperse and three log�normal polydisperse

distributions.

4.2 Development of Models

4.2.1 Governing Transport Equations

Consider the miscible displacement of a ßuid initially free of particles by another ßuid

containing suspended particles of neutral buoyancy within a fracture formed by two semi�inÞnite

parallel plates of unit depth as shown in Figure 3.1. The governing equations for particle transport

in a uniform fracture accounting for advection, diffusion, and particle accumulation at the fracture

walls are given by:

∂ndp (x, z, t)

∂t
= Ddp

∙
∂2ndp (x, z, t)

∂x2
+
∂2ndp (x, z, t)

∂z2

¸
− ux (z)

∂ndp (x, z, t)

∂x
, (4.1)



CHAPTER 4. ANALYTICAL SOLUTIONS 38

∂n∗dp
(x, t)

∂t
= −Ddp

∂ndp (x,±b/2, t)
∂z

, (4.2)

where ndp
is the temporally and spatially varying number density (concentration) of particles with

diameter dp; n
∗
dp
is the time and space dependent number of sorbed particles per unit surface area of

the fracture wall; and ux (z) is the local interstitial ßuid velocity. A fully developed Poiseuille

velocity distribution exists within the fracture deÞned in Chapter 3 by equation (3.2) and the

molecular diffusion coefficient of a spherical particle was deÞned by equation (3.10). Furthermore, it

is assumed that the ßuid density and dynamic viscosity are constant and that gravitational effects

as well as particle�particle interactions are negligible. The coupled differential equations (4.1) and

(4.2) take into account the relationship between suspended colloids within the fracture and colloids

attached onto the fracture surface.

The formulation of equations (4.1) and (4.2) is quite general and, depending on boundary

and initial conditions, not amenable to an exact analytical solution. In subsequent sections, analyt-

ical solutions to various simpliÞed versions of (4.1) and (4.2) subject to appropriate boundary and

initial conditions speciÞc to each case considered will be derived.

4.2.2 Transport Parameters for Finitely Sized Particle Plumes

4.2.2.1 Non�sorbing or Reversibly Sorbing Particles

In this work it is assumed that a hard spherical particle of neutral buoyancy travels with a

velocity corresponding to the ßow velocity at its centroid due to the existing hydraulic gradient. It

should be noted that hydrodynamic, gravitational, van der Waals, and electrostatic forces are not

included in the calculation of particle velocity. Particles are not allowed to penetrate the fracture

walls. Because the Þnite size of a particle does not allow it to sample the slowest moving portion

of the velocity proÞle nearest the wall, the effective velocity of a particle plume is greater than the

mean ßuid velocity. The effective velocity of a particle plume was derived in Chapter 3 and given

by (3.3) and it is evident that the effective velocity of a particle plume increases with increasing

particle diameter (dp/b < 1).
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Following Taylor�Aris procedures, it is assumed that the only contributors to particle

dispersion in a fracture are the fully developed Poiseuille ßow in the axial direction, transverse

diffusion, and particle�wall surface reactions. Although the parabolic velocity proÞle creates ßuid

shear in the z�direction, solutions for particle number concentrations derived here are independent of

z because the average particle concentration at a given axial location within a fracture is determined

by integrating the particle concentration across the local aperture of the fracture. Consequently,

particle plume movement resembles plug ßow. The difference between a parabolic velocity proÞle

and plug ßow conditions on particle transport lies in the spreading of the particles. Under plug ßow

conditions, the molecular diffusion coefficient may be orders of magnitude smaller than the effective

dispersion coefficient.

The Taylor dispersion coefficient of a non�reactive solute in a uniform fracture was given by

equation (3.26). As described in Chapter 3, a modiÞed form of the Taylor dispersion coefficient must

be used for Þnitely sized particles. The effective dispersion coefficient for a plume of particles with

diameter dp was given by (3.25) where it was shown that increasing the particle diameter decreases

the overall dispersion of the plume.

4.2.2.2 Irreversibly Sorbing Particles

Effective parameters for solute transport in cylindrical tubes and ideal fractures subject

to irreversible sorption have been derived in numerous works [Sankarasubramanian and Gill , 1974;

Johns and DeGance, 1975; Berkowitz and Zhou, 1996; Dijk and Berkowitz , 1998]. In this section

effective parameters appropriate for the transport of Þnitely sized particles undergoing irreversible

sorption at the fracture walls are presented.

The Þrst�order effective decay coefficient arising from irreversible solute attachment at the

fracture walls is derived in Appendix D as:

Keff =
12Ddp

b2
Da

6 +Da
, (4.3)
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where Da is the dimensionless Damköhler number measuring the ratio of the tendency for reaction

to the tendency for diffusive transport, deÞned as [Butt , 1980, p. 377]

Da =
kfb

Ddp

, (4.4)

where kf is the forward sorption rate constant.

The mean velocity of an irreversibly sorbing solute in a fracture is derived in Appendix D

and is modiÞed here to account for Þnitely sized particles by employing (3.3). The resulting effective

velocity for a plume of Þnitely sized particles undergoing irreversible sorption at the fracture walls

is given as

Ueff =
2

3
Umax

"
1 +

dp
b
− 1
2

µ
dp
b

¶2
+
3

10

Da

6 +Da

#
. (4.5)

Colloid reactions with fracture walls lead to a depletion of particles in the slower moving portion

of the velocity proÞle resulting in a distribution of suspended particles weighted in favor of those

particles present in the faster moving region of the ßow proÞle. Thus, suspended particles are

advected at a velocity greater than the effective velocity observed in the absence of particle sorption.

The dispersion coefficient for an irreversibly sorbing solute traveling within a water sat-

urated fracture with uniform aperture is derived in Appendix D. Substitution of the preceding

equation into the dispersion coefficient for an irreversibly sorbing solute plume leads to the following

effective dispersion coefficient for a plume of Þnitely sized particles undergoing irreversible sorption

at the fracture walls:

Deff = Ddp
+

2

945

U2maxb
2

Ddp

"µ
1− dp

b

¶6
− 7

10

Da

6 +Da

#
. (4.6)

From the preceding relationship it is evident that increasing Da serves to decrease particle spreading

in a fracture. Note that if Da = 0 (no wall reaction or kf = 0), then (4.5) and (4.6) reduce to (3.3)

and (3.25), respectively.
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4.3 Analytical Solutions

4.3.1 Instantaneous Injection Without Particle Sorption

4.3.1.1 Monodisperse Particle Plume

Consider the case where a known number of monodisperse particles are released instan-

taneously within a uniform, water saturated, fracture. Assuming that there are no particle�wall

interactions, the governing equation (4.1) is eliminated from the model formulation. It is assumed

that the concentration of colloids in the z�direction is uniform, equal to the average colloid concen-

tration across the fracture aperture and determined by:

ndp (x, t) =
1

b

Z b
2

− b
2

ndp (x, z, t) dz. (4.7)

As in Chapter 3, the two�dimensional form of the advection�diffusion equation (4.1) may be

simpliÞed through a transformation of coordinates. A steady state assumption is made by considering

only advection across the plane moving with the center of mass of a particle distribution, such that

x and t may be collapsed into a single coordinate and the transient term in (4.1) may be eliminated.

Let ξ = x−Uefft represent the distance along the fracture from a ßuid parcel traveling with velocity

equal to the effective velocity of a particle plume, Ueff , at time, t. Following Chapter 3, application

of this transformation yields, after some manipulation, the familiar unsteady dispersion equation

[James and Chrysikopoulos , 2001b]:

∂ndp (ξ, t)

∂t
= Deff

∂2ndp (ξ, t)

∂ξ2
, (4.8)

where Deff deÞned by (3.25) describes the spreading of the plume with respect to the moving

coordinate ξ. For an instantaneous injection of monodisperse particles at the inlet of a semi�inÞnite

fracture, the appropriate boundary and initial conditions are:

ndp (0, t) = 0, (4.9)

ndp (∞, t) = 0, (4.10)



CHAPTER 4. ANALYTICAL SOLUTIONS 42

ndp
(ξ, 0) = noδ (ξ) , (4.11)

where no represents the initial number of monodisperse particles injected into the fracture per cross�

sectional area of the fracture (plane source); and δ (ξ) is the Dirac delta function. The combination

of boundary and initial conditions (4.9) and (4.11) describe an instantaneous release of colloids.

Boundary condition (4.10) states that the fracture system is semi�inÞnite and the concentration

of particles far downstream from the inlet at any time is zero. Note that only for the case of

instantaneous particle injection, no has units of particles per cross�sectional area of the fracture

while δ (ξ) has units of inverse length. The analytical solution to (4.8) subject to (4.9), (4.10), and

(4.11) has been derived by Carslaw and Jaeger [1988, p. 258] and it is presented here as a function

of the original variable x = ξ + Uefft as follows:

n (x, t) =
no

(4πDefft)
1/2

exp

"
− (x− Uefft)

2

4Defft

#
. (4.12)

The subscript dp has been dropped for solutions involving monodisperse particles to differentiate

those solutions from the solutions for polydisperse particle plumes. It should be noted that (4.12) is

a novel analytical solution because of the new deÞnitions of Ueff and Deff for particles of diameter

dp given by (3.3) and (3.25), respectively.

4.3.1.2 Polydisperse Particle Plume

Because the governing partial differential equation (4.8) is linear in ndp , superposition of

two or more solutions for differently sized particles is allowed, provided that the boundary and initial

conditions as well as the domains of the various solutions are identical. For an initial number con-

centration of polydisperse particles introduced into the fracture, nodp
, consisting of several discrete

initial number sub�concentrations of particles with diameter dp,

nodp
=
X
dp

no (dp) . (4.13)

In view of the analytical solution for a monodisperse particle distribution given by (4.12), with no

replaced by no(dp), the analytical solution for the polydisperse particle distribution is obtained by
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summing the individual solutions corresponding to each discrete no(dp) as follows:

ndp
(x, t) =

X
dp

no (dp)

(4πDefft)
1/2

exp

"
− (x− Uefft)

2

4Defft

#
. (4.14)

For a continuous distribution of particle diameters the initial number concentration of polydisperse

particles is expressed as

nodp
=

Z ∞

0

npdf ddp, (4.15)

where npdf is an appropriate probability density function of polydisperse particles introduced into

the fracture. Consequently, the analytical solution for a continuous distribution of instantaneously

injected polydisperse particles is obtained from (4.15) by replacing the summation with integration

over the entire range of particle sizes in the polydisperse particle distribution and replacing no(dp)

with npdf as follows:

ndp (x, t) =

Z ∞

0

npdf

(4πDefft)
1/2

exp

"
− (x− Uefft)

2

4Defft

#
ddp. (4.16)

Employing (3.3) and (3.25) in (4.16) yields an integral equation expressing the temporally and

spatially varying particle concentration of a polydisperse particle plume within a water saturated

fracture with uniform aperture that is a function of the distribution of particle diameters. Note that,

in practice, the upper limit of integration in (4.16) need only be evaluated to b because dp < b.

4.3.2 Constant Concentration Injection Without Particle Sorption

4.3.2.1 Monodisperse Particle Plume

Berkowitz and Zhou [1996] have presented a solution for the speciÞc case of solute transport

in a channel formed between two parallel plates with a constant concentration inlet boundary con-

dition. In this section the model is extended to the more general case of transport of Þnitely sized,

monodisperse colloids subject to constant concentration injection. Using the Taylor�Aris assump-

tions of axial advection and transverse molecular diffusion being the dominant transport processes,

(4.8) may be solved analytically for an average particle concentration across the fracture, subject to
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constant concentration particle injection. For the case when a fracture is initially free of particles,

with a constant concentration of particles at the inlet, and without colloid reactions at the fracture

walls, the appropriate boundary and initial conditions are:

ndp (0, t) = no, (4.17)

ndp
(∞, t) = 0, (4.18)

ndp (ξ, 0) = 0, (4.19)

where no is the total number of monodisperse colloids per unit fracture volume (concentration).

The analytical solution to (4.8) subject to (4.17), (4.18), and (4.19) may be found using Laplace

transform techniques [van Genuchten and Alves, 1982; Berkowitz and Zhou, 1996]. It is presented

here in a form that accounts for the Þnite size of the particles as

n (x, t) =
no
2

(
erfc

"
x− Uefft
2 (Defft)

1/2

#
+ exp

µ
xUeff
Deff

¶
erfc

"
x+ Uefft

2 (Defft)
1/2

#)
, (4.20)

where Ueff and Deff are given by (3.3) and (3.25), respectively.

4.3.2.2 Polydisperse Particle Plume

The analytical solution for the more general case of a constant concentration injection of

polydisperse particles in the absence of particle sorption onto the fracture walls is obtained in this

section. Substituting (4.15) for no in (4.20) and integrating the resulting expression for the average

colloid concentration over all particle diameters leads to the following expression for the time and

space dependent polydisperse particle concentration

ndp (x, t) =
1

2

Z ∞

0

npdf

(
erfc

"
x− Uefft
2 (Defft)

1/2

#
+ exp

µ
xUeff
Deff

¶
erfc

"
x+ Uefft

2 (Defft)
1/2

#)
ddp. (4.21)

The size dependent values for the effective velocity and effective dispersion coefficient given by (3.3)

and (3.25), respectively, should be used in the preceding equation. It is noteworthy that in both

(4.20) and (4.21) the term involving the exponential function is non�zero only for small x or t.
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4.3.3 Constant Concentration Injection with Irreversible Sorption

4.3.3.1 Monodisperse Particle Plume

Colloid particles present in environmental systems have physicochemical properties that

allow them to react with the media in which they reside. Consequently, particle�wall reactions

(attachment) can be important processes affecting the movement of a particle plume within a water

saturated fracture. The particle concentration sorbed onto the walls of a fracture may be determined

through the solution of the governing partial differential equation (4.2).

The local linear irreversible rate of particle sorption as a function of the average colloid

concentration across the fracture can be expressed as [Abdel-Salam and Chrysikopoulos , 1994]

∂n∗dp
(x, t)

∂t
= kfndp (x, t) , (4.22)

where kf is the forward sorption rate constant that is often expressed as a function of particle

diameter [Adamczyk et al., 1992a]. In view of (4.22), the governing equation (4.2) can be rewritten

as

Ddp∂ndp (x,±b/2, t)
∂z

= −kfndp (x, t) . (4.23)

The preceding equation expresses the ßux of particles at the fracture walls as a function of average

colloid concentration across the fracture, particle diffusion coefficient, and sorption rate.

Following the procedures of Appendix D, each term of the governing transport equation

(4.1) is averaged across the fracture according to (4.7), yielding the following differential equation

for average solute concentration:

∂ndp (x, t)

∂t
= Ddp

∙
∂2ndp (x, t)

∂x2
+
∂ndp (x,±b/2, t)

∂z

¸
− ∂

∂x

Z b
2

− b
2

ux (z)ndp (x, z, t) dz. (4.24)

Substitution of the Poiseuille velocity proÞle given by (3.1) for ux(z) and evaluating the integral

term as well as employing (4.23) in (4.24) yields the following one�dimensional advection�diffusion

equation with a Þrst�order decay term

∂ndp (x, t)

∂t
= Deff

∂2ndp (x, t)

∂x2
− Ueff

∂ndp (x, t)

∂x
+Keffndp (x, t) , (4.25)
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where the effective decay, advection, and dispersion constants for irreversibly sorbing colloids are

given by (4.3), (4.5), and (4.6), respectively.

The solution to (4.25) subject to the following constant concentration inlet boundary and

initial conditions

ndp
(0, t) = no, (4.26)

ndp (∞, t) = 0, (4.27)

ndp (x, 0) = 0, (4.28)

is tabulated by van Genuchten and Alves [1982]:

n (x, t) =
no
2
exp

µ
xUeff
2Deff

¶(
exp

µ
− Ωx

2Deff

¶
erfc

"
x− Ωt

2 (Defft)
1/2

#

+exp

µ
Ωx

2Deff

¶
erfc

"
x+ Ωt

2 (Defft)
1/2

#)
, (4.29)

Ω =
¡
U2eff + 4KeffDeff

¢1/2
, (4.30)

where, for the case of Þnitely sized particles undergoing irreversible sorption at the fracture walls

considered here, Keff , Ueff , and Deff are given by (4.3), (4.5), and (4.6), respectively.

4.3.3.2 Polydisperse Particle Plume

The analytical solution for the particle number concentration of a continuous distribution

of polydisperse particles is obtained by integrating (4.29) over all particle diameters and using nodp

from (4.15) in place of no to yield

ndp (x, t) =
1

2

Z ∞

0

npdf exp

µ
xUeff
2Deff

¶(
exp

µ
− Ωx

2Deff

¶
erfc

"
x− Ωt

2 (Defft)
1/2

#

+exp

µ
Ωx

2Deff

¶
erfc

"
x+ Ωt

2 (Defft)
1/2

#)
ddp, (4.31)

where Keff , Ueff , Deff , and Ω are deÞned in (4.3), (4.5), (4.6), and(4.30) respectively. The last term

inside the integral of the preceding equation rapidly diminishes for increasing x or t, as it does in

(4.29).
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4.3.4 Constant Concentration Injection with Reversible Sorption

4.3.4.1 Monodisperse Particle Plume

Changes in solution chemistry of the interstitial ßuid and the presence of hydraulic gradients

within the fracture may contribute to the resuspension of previously deposited colloid particles.

Consequently, we consider the case where particles are allowed to reversibly sorb onto fracture walls.

It is assumed that local chemical equilibrium exists throughout the system. For simplicity, the

following linear isotherm is used to express the relationship between the average number of particles

in solution and the number of particles sorbed onto the solid surface

n∗dp
(x, t) = krndp (x, t) , (4.32)

where kr is the surface distribution coefficient. Taking the derivative of both sides of (4.32) with

respect to time yields the desired expression for the time dependent ßux of colloids at the fracture

surface

∂n∗dp
(x, t)

∂t
= kr

∂ndp (x, t)

∂t
. (4.33)

A closed form analytical solution to the coupled governing equations (4.1) and (4.2) subject

to a constant concentration of colloids at the inlet and reversible wall attachment is not achievable.

However, for the special case where the particle concentration is averaged across the fracture, the

following one�dimensional advection�dispersion equation approximates the transport of Þnitely sized

particles along a uniform aperture fracture [Domenico and Schwartz , 1990, p. 477]:

∂ndp (x, t)

∂t
+
2

b

∂n∗dp
(x, t)

∂t
= Deff

∂2ndp (x, t)

∂x2
− Ueff

∂ndp (x, t)

∂x
. (4.34)

The preceding equation is a consequence of mass conservation applied to the average colloid con-

centration within the fracture. The factor of two in front of the rate of change of sorbed colloids

per unit fracture surface area arises from colloids reversibly sorbing onto both walls of the fracture.

Employing (4.33) in (4.34) yields

R
∂ndp (x, t)

∂t
= Deff

∂2ndp (x, t)

∂x2
− Ueff

∂ndp (x, t)

∂x
, (4.35)
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where Ueff and Deff are given by (3.3) and (3.25), respectively; and the retardation factor, R, of

the suspended particles is a function of the forward sorption rate constant as well as the fracture

aperture and is given by

R = 1 + 2
kr
b
. (4.36)

The solution to the governing partial differential equation (4.35) subject to boundary and

initial conditions (4.26), (4.27), and (4.28) was tabulated by van Genuchten and Alves [1982] and it

is presented here in a modiÞed form that accounts for Þnitely sized particles

n (x, t) =
no
2

(
erfc

"
Rx− Uefft
2 (DeffRt)

1/2

#
+ exp

µ
xUeff
Deff

¶
erfc

"
Rx+ Uefft

2 (DeffRt)
1/2

#)
, (4.37)

where Ueff and Deff are given by (3.3) and (3.25), respectively. Note that when there is no wall

reaction (kr = 0) the retardation factor is one and (4.37) reduces to (4.20).

4.3.4.2 Polydisperse Particle Plume

Integrating (4.37) over all particle sizes, replacing no by nodp
deÞned by equation (4.15),

and using the size dependent effective velocity and effective dispersion coefficient given by (3.3) and

(3.25), respectively, results in the following expression representing the time and space dependent

number concentration of polydisperse colloids in a uniform fracture subject to linear reversible

sorption at the fracture walls

ndp (x, t) =
1

2

Z ∞

0

npdf

(
erfc

"
Rx− Uefft
2 (DeffRt)

1/2

#
+ exp

µ
xUeff
Deff

¶
erfc

"
Rx+ Uefft

2 (DeffRt)
1/2

#)
ddp. (4.38)

A summary of all equations solved, boundary and initial conditions employed for each case,

and their respective solutions is presented for monodisperse colloids in Table 4.1 and for polydisperse

colloids in Table 4.2. Note that any appropriate probability density function npdf can be employed

with the analytical solutions for polydisperse particle transport in saturated fractures derived here.
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Table 4.1: Analytical solutions for monodisperse particle transport in saturated fractures.

Model B.C.�s/I.C. Analytical Solution

∂n(ξ,t)
∂t = Deff

∂2n(ξ,t)
∂ξ2 n (0, t) = 0 n (x, t) = no

(4πDeff t)
1/2 exp

h
− (x−Ueff t)

2

4Deff t

i
ξ = x− Uefft n (∞, t) = 0 Ueff =

2
3Umax

∙
1 +

dp

b − 1
2

³
dp

b

´2¸
n (ξ, 0) = noδ (ξ) Deff = Ddp +

2
945

U2
maxb

2

Ddp

³
1− dp

b

´6
∂n(ξ,t)
∂t = Deff

∂2n(ξ,t)
∂ξ2 n (0, t) = no n (x, t) = no
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h
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Deff
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i¾
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∙
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2
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b
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Deff = Ddp +
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945

U2
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2

Ddp
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1− dp

b
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Table 4.2: Analytical solutions for polydisperse particle transport in saturated fractures.

Model B.C.�s/I.C. Analytical Solution

∂ndp (ξ,t)

∂t = Deff
∂2ndp (ξ,t)

∂ξ2 ndp (0, t) = 0 ndp (x, t) =
R∞
0

npdf

(4πDeff t)
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4.4 Discussion

Particles found in natural environments are never of a single size; rather, they have a

distribution of diameters. Ledin et al. [1994] have suggested that naturally occurring particles follow

a log�normal distribution of diameters given by:

npdf =
no√
2πζdp

exp

"
−1
2

µ
ln dp − λ

ζ

¶2#
, (4.39)

where λ is the mean of the particle log�diameters; and ζ2 is the variance of the particle log�diameters.

In this work the mean particle diameter is represented by µdp = exp
¡
λ+ 0.5ζ2

¢
and the standard

deviation of the particle diameter by σdp = µdp

³
eζ

2 − 1
´1/2

[Ang and Tang , 1975]. The initial

concentration of polydisperse colloids in a plume is determined by integrating the preceding equation

over all particles diameters in the distribution.

For the model simulations presented in this work four different particle distributions con-

sisting of no = nodp
= 10, 000 particles/m3 are considered. One distribution is composed of monodis-

perse particles with diameter dp = 1× 10−6 m. The other three polydisperse particle distributions

are composed of particles with log�normally distributed diameters; however, all have mean particle

diameter µdp
= 1 × 10−6 m with increasing standard deviations of σdp

= 0.3, 0.6, and 0.9 µm.

It is assumed that the fracture has an aperture of b = 1 × 10−4 m and the maximum centerline

velocity of the interstitial ßuid is Umax = 1× 10−6 m/s. The results from the model simulations are

presented as space and time dependent particle concentrations in the form of snapshots in time, or

breakthrough curves. The snapshots are taken after 5,000 hours of transport time in the system,

while the breakthrough curves are estimated at a distance of 12 m from the particle injection point.

Figure 4.1a illustrates snapshots of particle number concentrations evaluated by (4.12) for

the monodisperse particle distribution and by (4.16) for the polydisperse particle distributions at

a time of 5,000 hours after the instantaneous injection of the particles into the fracture. Note

that simply changing the value of σdp changes the shape of the concentration proÞle. A large

σdp implies a wide range of particle diameters with a greater number of small particles and a few
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Figure 4.1: Particle concentration (a) snapshots and (b) breakthrough curves generated from (4.12)
and (4.16) for 10,000 particles instantaneously injected at t = 0 into an aperture with Umax = 1×10−6
m/s and b = 1 × 10−4 m. Three of the plumes are polydisperse and consist of particles with log�
normally distributed diameters of µdp = 1 µm and σdp = 0.3, 0.6, and 0.9 µm, respectively, while
the fourth plume is monodisperse and consists of particles with diameter 1 µm. The snapshots
of particle concentrations were evaluated 5,000 hours after injection and breakthrough curves were
determined 12 m downstream from the particle injection location.

very large particles. These few largest particles experience the greatest mean velocity and lead

the concentration front. Conversely, the many small particles contribute to a slower moving peak

concentration that lags the peak concentration of the monodisperse distribution. Figure 4.1b shows

normalized breakthrough curves evaluated by (4.12) and (4.16) at a distance of 12 m from the

instantaneous injection point. Because of the increased range of colloid sizes for plumes with larger

standard deviation in particle diameter, the particle distribution with σdp = 0.9 µm contains the

largest and smallest colloids considered. The earlier initial breakthrough of this plume is attributed

to the increased effective velocity of the largest particles. Further, complete breakthrough of this

plume is delayed because of the many slower moving small particles.

Figure 4.2a shows normalized particle concentration fronts evaluated by (4.20) for the

monodisperse particle distribution and by (4.21) for the polydisperse particle distributions at a
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Figure 4.2: Normalized particle concentration (a) snapshots and (b) breakthrough curves evaluated
by (4.20) and (4.21) for a constant concentration inlet boundary condition (here Umax = 1 × 10−6
m/s, b = 1× 10−4 m, t = 5,000 hr, and x = 12 m).

time of 5,000 hours after the initiation of constant concentration injection. Note that the steepest

concentration front is exhibited by the monodisperse particle distribution. Increasing the standard

deviation of the particle diameters increases the dispersion of the plume because polydisperse plumes

with large standard deviations have greater ranges of effective particle velocities and effective dis-

persion coefficients. The normalized particle concentration breakthrough curves at a distance of 12

m from the fracture inlet are evaluated by (4.20) or (4.21) for constant concentration injection of

the particle distributions and are illustrated in Figure 4.2b. Again, note the increasing dispersion of

particle distributions with increasing standard deviation.

Normalized particle concentration fronts evaluated by (4.29) for the monodisperse particle

distribution and by (4.31) for the polydisperse particle distributions subject to constant concentra-

tion injection and irreversible particle sorption onto the fracture walls are shown in Figure 4.3a.

Note that the simulations are conducted for a constant Damköhler number of Da = 1 × 10−3.

This small value was selected to show the advancing front of the particle plumes because a larger

Damköhler number leads to deposition of the entire particle plume. Selecting a constant Damköhler
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Figure 4.3: Normalized particle concentration (a) snapshots and (b) breakthrough curves evaluated
by (4.29) and (4.31) for a constant concentration inlet boundary condition accounting for irreversible
particle�wall reaction (here Umax = 1 × 10−6 m/s, b = 1 × 10−4 m, Da = 1 × 10−3, t = 5, 000 hr,
and x = 12 m).

number forces the forward sorption rate coefficient, kf , to be a function of particle size. Because the

Damköhler number (4.4) describes the relative effect of reaction to that of molecular diffusion on

particle transport and because a smaller particle has a larger molecular diffusion rate, a small par-

ticle will have a proportionally large forward sorption rate coefficient (inversely proportional to the

particle diameter). Note the decreasing particle concentration with increasing σdp (more small par-

ticles) of the injected particle distribution. Figure 4.3b illustrates the particle breakthrough curves

evaluated from (4.29) and (4.31). It is evident that increasing the standard deviation of particle

diameter leads to increased particle attachment onto the fracture walls. The particle distribution

with the highest standard deviation in particle size contains the greatest number of small colloids

(with large kf ). Small particles with large forward sorption rate coefficients preferentially sorb onto

the fracture walls leading to a decreased normalized concentration breakthrough for the particle

distribution with the largest standard deviation in particle diameter at a distance of 12 m from

injection.
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Figure 4.4: Normalized particle concentration (a) snapshots and (b) breakthrough curves evaluated
by (4.37) and (4.38) for a constant concentration inlet boundary condition accounting for reversible
particle�wall reaction (here Umax = 1× 10−6 m/s, b = 1× 10−4 m, kr = 1× 10−5, t = 5, 000 hr, and
x = 12 m).

The normalized particle concentration fronts evaluated by (4.37) for the monodisperse

particle distribution and by (4.38) for the polydisperse particle distributions subject to constant

concentration injection and reversible sorption after 5,000 hours of simulation time are shown in

Figure 4.4a. A retardation factor of R = 1.2 with kr = 1 × 10−5 m was employed. The reversible

sorption process serves primarily to retard the propagation of the particle concentration fronts.

Figure 4.4b illustrates four normalized particle concentration breakthrough curves evaluated by

(4.37) and (4.38). It should be noted that for the conditions considered here the time required

for the particle plumes to achieve complete breakthrough at a distance of 12 m from the particle

injection point is much greater than for the case of non�sorbing particles shown in Figure 4.3b.
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4.5 Comparison with Experimental Data

An effort has been made to compare the analytical results derived in this work to available

experimental data. Unfortunately, no experimental data could be found for the case of polydisperse

particle transport. However, Bales et al. [1989] have experimentally studied virus transport in

fractured rock. In their experiment a constant concentration of suspended f2 coliphages (diameter

2.3 × 10−8 m) was introduced at the inlet of a 19 cm long natural fracture at a volumetric ßow

rate of 1.83 × 10−10 m3/s. The effective cross�sectional area of the fracture was calculated by

dividing the estimated volume of the fracture by the estimated effective aperture and found to be

8.65× 10−6 m2. Although the effective porosity was reported as 0.23, the coliphages are considered

large enough that penetration of the rock matrix is negligible. This experimental procedure can be

most accurately compared to the solution for a constant concentration injection of monodisperse

particles without reaction at the fracture walls given by (4.20) with Ueff and Deff evaluated by (3.3)

and (3.25), respectively. Because the experimental fracture was of natural rock with non�uniform

aperture, the analytical results based on a uniform fracture may not be directly applicable to this

case. Consequently, a nonlinear least squares procedure [Pezzullo, 2000] was employed in order to

Þt the experimental data using the calculated effective cross�sectional area of the fracture as the

dependent variable. This procedure yielded an estimate of 1.00 × 10−5 m2 for the effective cross�

sectional fracture area, similar to the value suggested by Bales et al. [1989]. Dividing the volumetric

ßow rate by the Þtted value of the effective cross�sectional area yields a mean ßuid velocity within

the fracture of U = 2/3Umax = 1.83×10−5 m/s. Figure 4.5 clearly shows a good agreement between

the model prediction (solid curve) and the experimental data (bullets).

4.6 Summary

Analytical solutions describing the transport of one monodisperse and three polydisperse

particle plumes through a single fracture with uniform aperture accounting for an axial parabolic
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Figure 4.5: Comparison of experimental data from Bales et al. [1989] and the analytical solution
(4.20) for f2 coliphage (monodisperse particle) transport in a natural fracture in the absence of
particle�wall reaction (here b = 1.33×10−4 m, dp = 2.3×10−8 m, U = 2/3Umax = 1.83×10−5 m/s,
and x = 0.19 m).

velocity proÞle, transverse molecular diffusion, and particle�wall reaction are derived. It is shown

that a distribution in constituent diameters of a polydisperse particle plume signiÞcantly affects

the shape of snapshots and concentration breakthrough curves. Increasing the range of colloid sizes

while maintaining the mean colloid size increases the overall spreading of a particle plume. Based on

data gathered from reported Þeld studies, a log�normal distribution of particle sizes was used for the

polydisperse plumes. A comparison of the analytical solution for instantaneous colloid injection into

a fracture with no reaction at the walls and experimental data for coliphages traveling down a 19 cm

natural fracture is made. Using a nonlinear least squares estimate for the fracture cross�sectional

area, excellent agreement between the experimental data and the analytical breakthrough curve was

observed.
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Chapter 5

A New Particle Tracking Equation

5.1 Introduction

With the ever expanding capabilities of computers, particle tracking solutions to various

engineering problems are becoming increasingly accurate. Although random walk methods, Monte

Carlo simulations, and Fokker�Planck solutions to differential equations have been employed for

many years, the availability of inexpensive high speed processors and vast memory storage has al-

lowed the application of these solution techniques to increasingly complex problems [e.g. Uffink ,

1989; Valocchi and Quinodoz , 1989; Yamashita and Kimura, 1990; Lu, 2000; Liu et al., 2000; Micha-

lak and Kitanidis, 2000]. For example, James and Chrysikopoulos [1999, 2000] have investigated

particle tracking schemes that model the transport of variably sized colloids in both uniform and

variable aperture fractures. James and Chrysikopoulos [2001a, b] have also compared a traditional

particle tracking algorithm with analytical solutions for the ideal case of polydisperse colloid trans-

port in a uniform fracture and excellent agreement was shown. However, for more realistic and

involved models accounting for a fracture with variable aperture, a distribution of particle sizes,

or particle sorption onto the fracture walls, a traditional particle tracking algorithm may not be

the most efficient solution method [James and Chrysikopoulos , 2000]. There are often cases when
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a particle tracking algorithm using a constant time step may lead to both insufficient prediction

accuracy and excessive computation time.

An important case where the traditional particle tracking equation with a constant time

step may be insufficient arises in the study of polydisperse colloid transport. Consider the simple

example of random diffusion of a plume of polydisperse colloids in a quiescent ßuid. Particle tracking

theory suggests that the time step should be chosen small enough to represent the time that a particle

might take to travel along a certain path before it is forced to signiÞcantly deviate from its course

through a molecular exchange of kinetic energy [Uffink , 1988]. If a constant time step that is

appropriate for the median colloid size is applied to all particles in the plume, this constant time

step, when applied to colloid particles at each extreme of the size distribution, yields undesirable

results. Colloid diameters and corresponding molecular diffusion coefficients can span several orders

of magnitude, and as a result, the smallest colloids may travel diffusively too far during this pre�

determined time step to meet the desired accuracy, while the largest colloids may require an excessive

number of time steps to achieve the desired solution interval resulting in increased computational

cost.

Another case when the traditional particle tracking algorithm may be insufficient is when

the transport of colloids is signiÞcantly affected by deposition onto formation surfaces. As a colloid

travels through a fracture, transport mechanisms may eventually bring the particle close enough to

a fracture wall to have the opportunity to establish a contact at the liquid�solid matrix interface. If

a time step was speciÞed, rarely would the particle exactly encounter a sorption site on the fracture

wall. Instead, by determining a random diffusive travel time for the particle to reach the fracture wall

a known distance away, knowledge of exactly where and when a particle encounters a sorption site is

obtained. In either of the above mentioned cases, a particle tracking equation with a pre-determined

spatial step yielding a random travel time would achieve the desired predictional accuracy while

maximizing computational efficiency.
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The new particle tracking equation will maximize computational efficiency and solution

accuracy by specifying a priori a spatial step and determining the random time it will take a spher-

ical particle of neutral buoyancy to diffusively travel a speciÞed distance. This chapter formally

presents the methodology used to obtain accurate coefficients for the new particle tracking equation.

Results based on the new particle tracking algorithm are validated through comparison with both

an analytical solution and results from the traditional particle tracking equation.

5.2 Model Development

5.2.1 Traditional Particle Tracking Equation

The traditional particle tracking transport equation for the solution of advection�diffusion

problems consists of a deterministic (or absolute advective) term, and a stochastic (or diffusive) term

that is a function of the random motion of the particle [Thompson, 1993; Kitanidis, 1994]. For the

case of particle diffusion in the absence of advection considered in this chapter, the advective term

is eliminated and in vector notation the traditional diffusive particle tracking equation is given by

Xm = Xm−1 +B
¡
Xm−1¢ · Z (0, 1)√∆t, (5.1)

where exponent m is the numerical step number; Xm = (xm, ym, zm)T is a three�dimensional

position vector representing the xm, ym, and zm Cartesian coordinates of the centroid location of a

particle at the numerical step m; B(Xm−1) is a deterministic scaling second order tensor, evaluated

at Xm−1, that is a function of the spreading of the particle plume; and Z(0, 1) is a vector of three

independent random numbers selected from the standard normal distribution (zero mean and unit

variance). When only molecular diffusion is considered, the terms of the diagonal second�order

tensor B(Xm−1) are equal to
p
2Ddp [Ahlstrom et al., 1977]. The diffusive particle tracking vector

equation (5.1) may be replaced by the following directional particle tracking equations,

xm = xm−1 + Z (0, 1)
q
2Ddp∆t (5.2)
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ym = ym−1 + Z (0, 1)
q
2Ddp∆t (5.3)

zm = zm−1 + Z (0, 1)
q
2Ddp∆t (5.4)

Traditionally, a time step is speciÞed and an updated position vector is marched through

time until the desired solution can be examined. In the limit of ∆t → 0, the particle tracking

equation (5.1) becomes an exact solution to the diffusion equation [Kinzelbach, 1988; Thompson and

Gelhar , 1990]. However, the cost of improved accuracy is increased processor time that is inversely

proportional to decreasing ∆t. When choosing an appropriate time step, both the accuracy of the

solution and computational cost should be considered.

A particle suspended in a quiescent volume of ßuid undergoes molecular diffusion in all

three dimensions. Figure 5.1 shows the (a) x, y�plane and (b) x, z�plane Brownian motion pathlines

for a particle with diameter dp = 1×10−6 m that was released at the origin and allowed to diffuse in

water at T = 288.15 K according to (5.2)�(5.4) with a time step of ∆t = 0.1 s. The time required

for this particle to exit a spherical volume of water with radius 5× 10−5 m was Σ∆t = 3,860 s.

It is expected that the times required for a particle to repeatedly travel a constant distance

would follow some distribution of random times. An intuitive estimation of the time required for

a particle to travel a speciÞed distance ∆z = zm − zm−1 might be obtained by rearranging the

traditional particle tracking equation (5.2) to solve for ∆t as follows

∆t =
[∆z/Z (0, 1)]

2

2Ddp

. (5.5)

However, if a plume of particles with diameter dp = 1 × 10−6 m (i.e., colloidal particles) are to

travel a distance of ∆z = 5× 10−5 m in water at T = 288.15 K, the preceding equation yields travel

times ranging from 1 second to on the order of 1011 seconds, depending on the value of the random

number Z(0, 1). Neither end of the spectrum of travel times are physically observed, recall that the

particle in Figure 5.1 required 3,860 s to travel 5 × 10−5 m. Shortest travel times are obtained for

normally distributed random numbers with values greater than 1. In view of (5.5) it is evident that

the large travel times are consequences of dividing ∆z by a random number with value approaching
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Figure 5.1: Pathline projected at (a) the x, y�plane; and (b) the x, z�plane of the Brownian motion
for a particle of size dp = 1× 10−6 m released at the origin of a spherical volume of water of radius
5× 10−5 m.

the zero mean. Any random number that falls near the mean (i.e., in the range of ±10−5) produces

a travel time too large to be physically reasonable. Clearly, the expression (5.5) is not adequate for

the estimation of particle travel times.

5.2.2 New Particle Tracking Equation

The goal of this chapter is to generate a new particle tracking equation that expresses

a diffusive travel time as a random function of a particle�s diffusion coefficient and the distance

traveled. Because diffusion is an isotropic process, the diffusive particle tracking equation (5.1) may
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be studied by any of the three directional particle tracking equations (5.2)�(5.4). In this analysis,

(5.4) will be used, but similar results may also be obtained from (5.2) or (5.3). The traditional

particle tracking equation with an extremely small time step is used to generate histograms of times

necessary for plumes of uniquely sized monodisperse particles to travel a preselected distance |∆z|

with the intent of determining the relationship between the characteristics of the histograms and

the parameters, ∆z and Ddp .

The one�dimensional particle tracking equation (5.2) is employed to simulate the diffusion

of a particle plume in the x�direction initially released in water at T = 288.15 K and at z = 0 (the

origin). Each particle is allowed to randomly diffuse until it moves a distance of ∆z = ±5 × 10−5

m from the origin. The selected travel distance is representative of a typical fracture aperture in a

fractured rock formation. The numerical time step is chosen to be ∆t = 1 second, so that a large

number of time steps (∼ 3,000 for a particle with diameter dp = 1 × 10−6 m) will be required for

any particle to travel the speciÞed distance, even for the extreme case when the magnitude of all

randomly generated numbers is 1. If the time step is too large, accuracy is compromised. The travel

time, Σ∆t, required for the particle to achieve the speciÞed distance |∆z| = 5 × 10−5 is recorded.

This particle diffusion process is repeated 500,000 times. Each stochastic trajectory mimics the

actual path of an individual particle. Collectively, the trajectories illustrate the overall behavior

of a 500,000 particle plume. It should be noted that any possible particle�particle interactions are

not accounted for in the present analysis. One hundred unique particle travel time histograms are

prepared for particle diameters ranging from 1× 10−7 m to 1× 10−5 m in increments of 1× 10−7 m.

Figure 5.2 presents three of the one hundred travel time histograms generated by this process. Figure

5.2a is the histogram generated for the smallest particles considered in this study (dp = 1×10−7 m);

Figure 5.2b represents the median particle size examined (dp = 1 × 10−6 m); and Figure 5.2c the

largest particles (dp = 1×10−5 m). Figure 5.2 supports the suggestion by Tory [2000] that diffusive

travel times are log�normally distributed. Note that the travel times increase proportionally to the

increase in particle diameter (decreasing molecular diffusion coefficient).
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Figure 5.2: Histograms of travel times for monodisperse plumes of 500,000 particles of size (a)
dp = 1×10−7 m; (b) dp = 1×10−6 m; and (c) dp = 1×10−5 m, traveling a distance of∆z = ±1×10−5
m.

Taking the log of the travel time for each particle of the plume, τ = lnΣ∆t, and generating

the corresponding histogram, it is observed that the normal probability density function (pdf) can

consistently Þt the distribution of log�travel times obtained by the traditional particle tracking

equation (5.2). The normal pdf in terms of log�travel times is given by the equation [Banks et al.,

1996, p. 209],

f (τ) =
1

στ
√
2π
exp

"
−1
2

µ
τ − µτ
στ

¶2#
, (5.6)

where µτ and στ are the mean and standard deviation of log�travel times, respectively.

Figure 5.3 presents the three probability distributions of log�travel times corresponding to

the same plumes of 500,000 monodisperse particles used to construct Figure 5.2. The solid lines on
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Figure 5.3: Probability distributions of log�travel times for the same monodisperse plumes used to
generate Figure 5.2. The solid lines are obtained from the normal probability distribution function
with parameters (a) µτ = 5.588 and στ = 0.786; (b) µτ = 7.848 and στ = 0.787; and (c) µτ = 10.133
and στ = 0.787.

Figure 5.3 represent the normal pdf�s generated by (5.6). The parameters in (5.6), µτ and στ , are

the calculated arithmetic mean and standard deviation, respectively, of the log�travel times for the

500,000 particles of each plume. Note that in Figure 5.3a, µτ = 5.588 and στ = 0.786; in Figure

5.3b, µτ = 7.848 and στ = 0.787; and in Figure 5.3c, µτ = 10.133 and στ = 0.787.

Any normally distributed random number, Z
¡
µτ ,σ

2
τ

¢
, can be generated from the standard

normal distribution, Z(0, 1), by employing the following relationship [Banks et al., 1996, p. 342],

Z
¡
µτ ,σ

2
τ

¢
= µτ + στZ (0, 1) . (5.7)

Because it is evident from Figure 5.3 that a normal pdf closely approximates the log�travel times for
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a plume of particles, a random number generated by (5.7) can be used to determine the log�travel

time necessary for a particle with known diffusion coefficient to travel a speciÞed distance. Assuming

that the mean, µτ , and standard deviation, στ , of log�travel times may be expressed as functions

of the variables, ∆z and Ddp
, then taking the inverse log of a single normally distributed number

generated from Z(µτ ,σ
2
τ ) is equivalent to selecting a particle travel time from the histogram of such

travel times (see Figure 5.2).

As seen in Figure 5.3, the mean log�travel time varies with the particle diameter (i.e.,

molecular diffusion coefficient) used in each numerical simulation. For the units of the mean log�

travel time to be log�seconds, the relationship for the mean of the log�travel times must be linear

with respect to ln[(∆z)
2
/Ddp ] and of the form

µτ = α ln

"
(∆z)

2

Ddp

#
+ β, (5.8)

where α is the slope and β the y�intercept of the linear least squares Þt. The preceeding equation

may be rearranged as follows

µτ = ln

("
(∆z)

2

Ddp

#α)
+ β. (5.9)

For the units of the mean log�travel time, µτ , to be consistent in the preceding equation, α must be

unity. Using a linear least squares procedure, the preceding equation is Þt to the 100 numerically

determined data points for µτ , thereby specifying the y�intercept β = −0.978±0.012. Consequently,

the mean of the log�travel times can be expressed as,

µτ = ln

"
(∆z)

2

Ddp

#
− 0.978. (5.10)

Figure 5.4 shows the 100 numerically determined values for µτ together with the best linear

Þt. The correlation coefficient between the numerical data points and (5.10) is R2 ≈ 1, indicating a

near perfect Þt.

Simulation results show that the values of the standard deviation of the log�travel times

for each particle plume are independent of ∆x and Ddp . The arithmetic mean and variance of
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Figure 5.4: Variation of the mean log�travel time, µτ , as a function of the log of the ratio (∆z)
2/Ddp .

The equation for the least squares Þt (solid line) of the numerically determined values (open circles)
and the corresponding correlation coefficient are shown.

the standard deviations of the log�travel times are 0.787 and 0.001, respectively, yielding a 95%

conÞdence limit for the standard deviation in log�travel times of

στ = 0.787± 0.002. (5.11)

The standard deviation of log�travel times may be viewed as a measure of the difference between

the fastest and slowest log�travel times for each particle plume, or the range of log�travel times.

While these differences are constant on the log scale, the differences between the fastest and slowest

actual travel times are inversely proportional to the molecular diffusion coefficient and proportional

to the particle diameter (see Figure 5.2). For example, the range of travel times for 99% of the

particles to travel the speciÞed distance may be derived from properties of the normal distribution

as exp(µτ + 2.58στ ) − exp(µτ − 2.58στ ). Comparing the range of travel times for the values used

in Figure 5.3a and 5.3b shows that the ratio of these ranges is 0.101, essentially the ratio of the

diameters of the particles used for these simulations. Larger particles take a longer time to diffusively

travel the speciÞed distance while having a correspondingly larger range of travel times.
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Substituting (5.10) and (5.11) into (5.7) yields,

Z
¡
µτ ,σ

2
τ

¢
= ln

"
(∆z)

2

Ddp

#
− 0.978 + 0.787Z (0, 1) . (5.12)

Taking the inverse log of the previous equation yields a log�normally distributed travel time. Con-

sequently, the time step necessary for a particle to travel a speciÞed distance, ∆z, may be written

as:

∆t = exp
£
Z
¡
µτ ,σ

2
τ

¢¤
= exp

(
ln

"
(∆z)

2

Ddp

#
− 0.978 + 0.787Z (0, 1)

)
. (5.13)

A new particle tracking equation is obtained by recasting the preceding equation to describe the

current time of a particle as a function of its previous time, speciÞed travel distance, and particle

diffusion coefficient as follows:

tm = tm−1 + exp

(
ln

"¡
zm − zm−1¢2

Ddp

#
− 0.978 + 0.787Z (0, 1)

)
. (5.14)

To Þnd the time for a particle to move a speciÞed distance, ∆z = zm − zm−1, select a single value

from the standard normal distribution and substitute it into (5.14). It should be noted that Reimus

[1995] has presented, without proof, the following particle tracking equation

∆t = exp

(
ln

"
(∆z)

2

2D

#
− 0.2 + 0.79Z (0, 1)

)

= exp

(
ln

"
(∆z)

2

Ddp

#
− 0.89 + 0.79Z (0, 1)

)
. (5.15)

Although equations (5.14) and (5.15) are similar, they have some subtle differences that will be

discussed in the next section.

5.3 VeriÞcation

Consider a uniform fracture with aperture b = 5 × 10−5 m that is saturated with water

(288.15 K) that is ßowing with a Poiseuille velocity proÞle with maximum centerline velocity of
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Umax = 1 × 10−6 m/s. A polydisperse colloid (particle) plume of 10,000 particles with neutral

buoyancy and log�normally distributed diameters with mean, µdp = 1 µm, and standard deviation,

σdp = 0.9 µm, is instantaneously injected at the fracture inlet at time zero. The various times

required for the 10,000 particles to travel 8 m are used to generate the cumulative particle break-

through curve. Three methods are used to obtain the cumulative particle breakthrough curves: the

Þrst method employs the traditional particle tracking algorithm with a constant time step, the sec-

ond method utilizes the new particle tracking algorithm with a constant spatial step derived here,

and the third method employs the analytical solution for polydisperse particle transport in a water

saturated, uniform fracture (4.16) speciÞed in Chapter 4 by equation (4.16) with effective plume

velocity and effective plume dispersion coefficient given by (3.3) and (3.25), respectively.

5.3.1 Traditional Particle Tracking Algorithm

As discussed above, the general particle tracking transport equation consists of a non�

stochastic or absolute term, the advection, and a stochastic term representing the random molecular

diffusion [Thompson, 1993; Kitanidis, 1994]. In vector notation the particle tracking equations are

[Thompson and Gelhar , 1990]

Xm = Xm−1 +A
¡
Xm−1¢∆t+B ¡Xm−1¢ · Z√∆t, (5.16)

where A(Xm−1) is the absolute forcing vector (i.e., the velocity proÞle) evaluated at Xm−1; and the

remaining of the components are as described in the diffusive particle tracking equation (5.1). In

view of (5.16), the traditional particle tracking transport equations for a uniform aperture fracture

with a Poiseuille velocity proÞle can be written as:

xm = xm−1 + Umax

"
1− 4

µ
zm−1

b

¶2#
∆t+ Z (0, 1)

q
2Ddp∆t, (5.17)

zm = zm−1 + Z (0, 1)
q
2Ddp∆t. (5.18)

The particle tracking model developed in this work assumes that every individual particle undergoes

an incremental movement during each time step. It is understood that as a particle diffuses across
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streamlines over a single time step that changes in particle velocity from the starting to ending

location do not compromise the accuracy of the solution. The colloids are introduced at the inlet

side of the fracture ßow domain (x = 0) and distributed according to the local volumetric ßow

rate. It is assumed that the probability of a colloid entering the fracture at a given z�location

(perpendicular to the fracture walls) is proportional to the ßow rate at that particular position.

Consequently, the probability of a colloid having a starting position of its centroid less than z is

given by [Reimus, 1995]:

P (z) =

R z
− b

2
ux (z) dzR b

2

− b
2

ux (z) dz
. (5.19)

Substituting the Poiseuille velocity proÞle (3.1) into the preceding equation and integrating yields

the following cubic equation

P (z) = −2
³z
b

´3
+
3

2

z

b
+
1

2
. (5.20)

A uniform random number between zero and one is substituted for P (z) in (5.20) and the roots

of the resulting polynomial in z are evaluated by Newton�s Method. Roots found outside of the

range of −b/2 and b/2 are ignored. Because of the Þnite size of a particle it is possible that

solution of (5.20) allows particle�wall overlap. If this occurs, new random numbers are selected until

(5.20) yields a centroid location for a particle to be wholly contained within the fracture. Particle�

particle interactions are not taken into account. A large number of particles is used in an effort

to reduce random noise. A time step of ∆t = 0.9 s was selected for use in the traditional particle

tracking equation because it is the mean diffusive travel time necessary for the smallest particle

of the polydisperse plume (dp = 1 × 10−8 m) to move a distance equal to 1/4th of the aperture

according to the new particle tracking equation (5.14). A particle normalized cumulative number

breakthrough curve is generated by tracking the number of particles that exit the fracture at 8 m.

5.3.2 New Particle Tracking Algorithm

Because molecular diffusion is the only transport mechanism in the z�direction, a constant

spatial step in z may be used to determine the time step. Another particle breakthrough curve was
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Figure 5.5: Cumulative normalized particle breakthrough curves determined by the traditional and
new particle tracking algorithms (dashed lines) as well as by the analytical solution (solid line).

also generated using the new particle tracking equation with a constant spatial step equal to 1/4th

of the aperture (∆z = 1.25 × 10−5 m). Colloids are again placed in the fracture as a function of

the ßow rate according to (5.20). In the x�direction, the same particle tracking equation (5.17) is

used to simulate particle motion; however, the spatial step in the z�direction is speciÞed and the

corresponding time step is calculated from (5.14). The particle tracking equation in the z�direction

becomes

zm = zm−1 ±∆z, (5.21)

where the direction of the displacement, ±∆z, is determined from the sign of a standard normally

distributed random number, Z(0, 1).

5.3.3 Comparisons

Figure 5.5 shows that the cumulative particle breakthrough curves for each solution method

are nearly coincident; however, the computational time required to produce each solution is quite

different. Using a PC with an 866 MHz Pentium III processor, the traditional particle tracking

equation required 32,071 seconds of CPU time to generate a solution while the new particle tracking
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scheme required 3,100 seconds, an order of magnitude faster. It is apparent that for this case, the

new particle tracking equation is computationally efficient and suffers no serious loss of accuracy.

Because the new particle tracking algorithm uses a constant spatial step to generate a

random time step, at any spatial step level, m, each particle of the plume will have a different total

travel time associated with it. This poses no problem when examining particle breakthrough curves;

however, if reactive particles are considered one caveat is worthy of mention. If plume constituents

are not all at the same time, local concentrations cannot be calculated. Sorption rate (or probability)

may be a function of instantaneous local colloid concentrations and the constant spatial step particle

tracking algorithm, without modiÞcation, is not a viable solution technique. In such instances, the

traditional particle tracking algorithm may be a more appropriate solution technique.

5.4 Summary

Particle tracking methods are able to solve increasingly complex contaminant transport

problems with the rapid advances in computing power. In cases where a constant time step is

inappropriate (e.g., polydisperse particle plumes), it may be necessary to determine the (random)

time it takes a particle to diffusively travel a speciÞed distance. However, it is not possible to

simply retrieve the time step directly from the traditional particle tracking equation. Because

the size of a particle affects how it diffuses in a quiescent ßuid, differently sized particles require

different times to travel a given distance. Histograms of travel times for plumes of monodisperse

particles were consistently log�normal in shape. Thus, probability distributions of the log�travel

times are normally distributed. The parameters describing these normal distributions (i.e., mean

and standard deviation of the log�travel times), are functions of the distance speciÞed for travel and

the diffusion coefficient of the particles. A constant standard deviation of log�travel times was found

in each numerical simulation regardless of the parameter values, ∆z and Ddp . Using a least squares

method, a linear relationship was found between the mean of the log�travel times and ln[(∆z)2/Ddp ].
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Employing the expressions obtained for the mean and standard deviation of the log�travel times, a

new particle tracking equation with speciÞed spatial step was determined. Using both the traditional

and the new particle tracking algorithms to model polydisperse colloid transport in a fracture, a

comparison of computational times proves that the new particle tracking equation derived here may

be more efficient than the traditional particle tracking equation. Cumulative particle breakthrough

curves for both constant spatial step and constant time step particle tracking algorithms compare

favorably with the analytical solution. The new particle tracking equation is quite robust and may

be applicable to particle tracking techniques where it is more appropriate to specify a spatial step

than a temporal step.
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Chapter 6

Transport in a Uniform Aperture

Fracture

6.1 Introduction

In this chapter, theoretical investigations based on particle tracking simulations are under-

taken to gain a better understanding of the effect of a distribution of colloid sizes on their transport

properties in a single fracture. Log�normal colloid diameter distributions are used because they are

realistic representations of naturally occurring colloid suspensions [Ledin et al., 1994]. Results are

compared to analytical solutions derived in Chapter 4 for instantaneous particle injection within a

uniform aperture fracture. The spreading of polydisperse colloid suspensions is compared to that

of a monodisperse suspension. Matrix diffusion can serve to increase colloid residence time by back

diffusion into the fracture once the bulk of the colloid cloud has moved downstream, and its role in

colloid transport is examined as well. Furthermore, the effects of particle deposition onto fracture

surfaces on the transport of colloids are investigated by both perfect sink and kinetic sorption mod-

els. For the kinetic sorption case both linear and nonlinear dynamic blocking functions (DBFs) are
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employed, Þrst applied to models of colloid transport in fractures by Chrysikopoulos and Abdel-Salam

[1997]. Finally, the effect of fracture aperture on cumulative colloid breakthrough is investigated.

6.2 Model Development

6.2.1 Flow and Transport

As a basis for a comprehensive particle tracking simulation for polydisperse colloid transport

in fractured media, particle movement in a single fracture with uniform aperture is considered in this

chapter. Flow in the fracture is idealized as Poiseuille ßow (i.e., having a parabolic velocity proÞle),

where particles are both advected according to the local ßuid velocity and diffused by molecular

diffusion [Buckley and Loyalka, 1994]. The magnitude of the advective transport component is a

function of the distance from the center of the fracture, i.e., the z�location as described by (3.1).

Colloids are assumed to be hard spherical particles (i.e., no surface charge) that are advected and

diffused through the aperture and are allowed to penetrate the surrounding matrix by diffusion

or attach onto fracture walls. Although settling rates can affect colloid transport in fractures,

gravitational effects have been disregarded in the interest of simplicity and in order to explicitly

examine ideal particle transport in a single uniform fracture. Ledin et al. [1994] reported that

colloids found in natural environments often follow a log�normal size distribution. The log�normal

probability density function for colloid concentration was given by (4.39). A similar equation is

used to describe the number of polydisperse colloids in a plume (as opposed to concentration) by

replacing no with No, the total number of plume constituents. The total number of particles in a

log�normally distributed colloid plume is:

Nodp
=

Z ∞

0

Npdf ddp

=

Z ∞

0

No√
2πζdp

exp

"
−1
2

µ
ln dp − λ

ζ

¶2#
ddp, (6.1)

where parameters λ and ζ are deÞned below (4.39).
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Figure 6.1: Monodisperse colloid transport in a uniform aperture fracture at simulation times of
(a) 5 × 109 seconds, (b) 10 × 109 seconds, and (c) 15 × 109 seconds (here dp = 1 × 10−6 m,
Umax = 1× 10−9m/s, and b = 1× 10−4 m).

Recall that under fully developed Taylor conditions, axial advection and radial diffusion

contribute to the overall dispersion with the net result of colloids traveling in an apparent plug ßow.

The difference between a parabolic velocity proÞle and a uniform velocity proÞle on particle transport

lies in the spreading of the colloids. In plug ßow, the diffusion coefficient, Ddp , may be orders of

magnitude less than in parabolic ßow where the effective dispersion coefficient, Deff , governs the

spreading. Figure 6.1 shows three snapshots of particle tracking data for a fracture with aperture

b = 1×10−4 m and maximum ßuid velocity Umax = 1×10−9 m/s. The very small ßuid velocity was

chosen in order to make more prominent the dispersive effects on the instantaneous source of colloids
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at this scale. It is evident from Figure 6.1 that the colloids are, on average, traveling slightly faster

the mean ßuid velocity (dashed vertical line). Although there is a parabolic velocity proÞle within

the fracture, the colloids are traveling as if under plug ßow conditions because at fully developed

Taylor conditions the dispersive pattern of colloids appears to be similar to that observed in plug

ßow as expected.

6.3 Matrix Diffusion

Diffusion within the matrix is typically modeled as a Fickian process where a concentration

gradient controls mass transfer. As a colloid moves between fracture and matrix a sharp gradient

is encountered both in porosity and diffusivity. Thompson and Gelhar [1990] note that additional

deterministic velocity terms are necessary additions to a particle tracking algorithm when gradients

in diffusivity or porosity exist. The appropriate mathematical expressions are:

UD = ∇ · Ddp (6.2)

Uθ = Ddp (∇ · ln θ) (6.3)

where UD and Uθ are the deterministic velocities due to diffusivity and porosity gradients, respec-

tively; and θ is the local porosity. If (6.2) and (6.3) are not included in a particle tracking algorithm,

particles will falsely accumulate in stagnant and low porosity zones of the ßow system.

6.4 Colloid Deposition

6.4.1 Perfect Sink Approximation

Colloid deposition onto fracture surfaces is often considered a relatively fast process when

compared to interstitial ßuid velocity so that a sorption relationship like the Smulochowski�Levich

approximation is assumed valid. The Smulochowski�Levich relationship is an approximate analytical

solution to the perfect sink model that solves the transport and continuity equations based on



CHAPTER 6. TRANSPORT IN A UNIFORM APERTURE FRACTURE 78

Eulerian theory. With some manipulation, it can be cast in a form similar to a linear local irreversible

deposition representation. As opposed to Lagrangian methods where the trajectories of individual

particles are calculated (e.g., the particle tracking method), Eulerian methods describe particles

collectively in terms of their distribution, or probability density, in space and time, ndp
(x, t). Recall

from Chapter 4 that the rate of change of the concentration of sorbed particles per unit fracture

surface area is a function of the number of particles in the bulk solution:

∂n∗dp
(x, t)

∂t
= kfndp(x, t), (6.4)

where kf is an approximation to the forward sorption rate coefficient. In the Smulochowski�Levich

sorption relationship, deposition is described in terms of particle ßux onto sorbent surfaces as a

function of the colloid number concentration, ndp(x, t), ßow velocity, Umax, molecular diffusion co-

efficient, Ddp , fracture aperture, b, and distance from the fracture inlet, x. Due to the lack of

detailed information on actual fracture conditions, and questionable validity of available colloidal

force expressions applicable near walls, the attachment process of colloids is often represented by

highly idealized models that, in an Eulerian analysis, are employed as boundary conditions for the

governing transport equations. The Smulochowski�Levich approximation is a perfect sink model

which assumes that the particle�wall hydrodynamic repulsive interaction is exactly counterbalanced

by van der Waals attractions between the particle and the wall, and that all other colloidal and

external forces are absent [Elimelech et al., 1995, p. 100]. In view of this approximation, an ana-

lytically derived expression for the local dimensionless mass transfer coefficient, representing colloid

deposition onto the surfaces of a fracture during colloid transport, is deÞned as [Adamczyk et al.,

1983]

Sh =
Jdp

2ndpDdp

, (6.5)

where Sh is the Sherwood number; and J is the normal component of the local colloid ßux at the

wall. Van de Ven [1989, p. 273] has presented Sherwood numbers for several ßow geometries with

surface sorption. SpeciÞcally, in the case of a parallel plate channel, the Sherwood number is given
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as

Sh = 0.538

µ
bPe

x

¶ 1
3

, (6.6)

where the fracture Peclet number, Pe, for a parallel plate fracture is deÞned as [Adamczyk and

van de Ven, 1980]

Pe =
Umaxd

3
p

2b2Ddp

. (6.7)

Equating (6.5) and (6.6) and subsequently employing (6.7), yields the following expression for the

colloid ßux at the surfaces of the fracture

J = 0.854

ÃD2dp
Umax

xb

! 1
3

ndp(x, t). (6.8)

From the local concentration of colloids in the fracture, it is possible to determine the particle ßux

at any location x on the collector (fracture) surface in particles per square meter per second because

Ddp , Umax, and b are known constants. The forward sorption coefficient may be found by equating

the ßux of colloids onto the fracture surface, (6.8), to the rate of change of attached colloids at the

fracture surface, (6.4). This yields a forward sorption rate constant of

kf = 0.854

ÃD2dp
Umax

xb

! 1
3

. (6.9)

The preceding expression is employed in (6.4). It is important to note that with the use of the

Smulochowski�Levich assumptions, the fracture walls act as perfect sinks and deposition of colloids

onto a smooth parallel plate channel is considered irreversible. In this particle tracking model the ef-

fect of colloid size variations on attachment are realized in the forward sorption rate coefficient, (6.9),

that is a function of the diffusion coefficient and consequently, a function of the colloid diameter.

6.4.2 Kinetic Relationship

A kinetic sorption approach accounting for the surface exclusion effects of previously de-

posited variably sized colloids is also examined. As a colloid travels through the fracture, the

transport mechanisms (advection and diffusion) may eventually bring the particle close enough to
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the fracture surface to have the opportunity to establish a contact resulting from local interaction

forces between the colloid and the liquid�solid matrix interface. The probability of the particle being

placed (sticking probability) per wall collision, is calculated by a modiÞed Boltzmann law [Adamczyk

et al., 1991]

p = exp

µ
− φ

kT

¶
F
³
n∗dp

´
. (6.10)

where φ is the repulsive energy of interaction between the particle and the fracture surface (φ ' 10kT

[Adamczyk et al., 1997]); and F (n∗dp
) is DBF that takes into account the effect of previously deposited

colloids per unit fracture surface area on subsequent colloid deposition by specifying the portion of

the fracture surface that remains available for deposition [Chrysikopoulos and Abdel-Salam, 1997].

The previous equation may be used to model colloid deposition onto a fracture surface that may have

previously deposited colloids. The DBF ranges between one (for a fracture free of colloids) and zero

(for a fracture surface completely covered by deposited colloids). The detachment of colloids may

be modeled by determining the random time of attachment according to the procedures outlined

by Valocchi and Quinodoz [1989]; however, when interstitial ßuid and sorbent surface chemical

conditions favor the attachment of stable colloid particles onto sorbent surfaces, colloid deposition is

essentially irreversible and restricted to monolayer coverage [Johnson et al., 1996]. The linear DBF

(the area that remains available for a colloid to deposit onto the fracture wall) is given by [Song and

Elimelech, 1994; Chrysikopoulos and Abdel-Salam, 1997]

F
³
n∗dp

´
=
²max − ²
²max

(6.11)

where

² (x, t) = Apn
∗
dp
(x, t) (6.12)

and

²max =
1

ν
, (6.13)

and Ap = πd2p/4 is the cross�sectional area of a colloid particle; and ν is a factor accounting for

blocked area not directly covered by the colloid (excluded area) [Rajagopalan and Chu, 1981]. Due
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to electrostatic repulsive forces a sorbed colloid should effectively block more area than simply the

space it physically occupies. For comparison, the following nonlinear DBF is also investigated in

this study [Adamczyk et al., 1992b]:

F
³
n∗dp

´
= 1− 2.184

µ
²

²max

¶
+ 0.986

µ
²

²max

¶2
+ 0.29

µ
²

²max

¶3
. (6.14)

The linear DBF is valid for spherical uncharged particles depositing onto a ßat surface. At higher

surface coverage (² ≥ ²max/10), (6.14) is a better estimate of the area blocked by the colloids and

is valid for coverage up to 0.8²max [Adamczyk et al., 1992a; Chrysikopoulos and Abdel-Salam, 1997].

The Boltzmann law assumes that if a particle comes into contact with a fracture wall it is either

adsorbed with probability, p, or reßected thereby affording a probabilistic sorption model to simulate

the kinetic sorption of colloids [Hinrichsen et al., 1990]. For example, if φ = 10kT and the fracture

surface is free of colloids, F (n∗dp
) = 1, then according to (6.10), p = 4.54 × 10−5 and roughly

2 particles out of every 104 wall collisions will sorb onto the fracture surface. Because particle

detachment is often considered irreversible, desorption is not modeled in this analysis and the time

of attachment is inÞnite.

6.5 Particle Tracking

Particle tracking algorithms provide stochastic solutions to linear partial differential equa-

tions like the advection�diffusion equation. Although the particle tracking technique does not provide

a direct numerical solution to a differential equation, it does not suffer from numerical dispersion as

do the Þnite element and Þnite difference methods [Thompson and Gelhar , 1990]. Particle tracking

techniques have been applied in numerous investigations of contaminant transport in porous and

fractured media [Ahlstrom et al., 1977; Smith and Schwartz , 1980; Kinzelbach, 1988; Chrysikopoulos

et al., 1992; Thompson et al., 1996; James and Chrysikopoulos, 1999, 2000]. It should be noted that

particle tracking is the only method that facilitates the use of variably sized colloids. Each particle

is individually considered (i.e., stored in a memory location), and as such, it can retain its own
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unique characteristics including, for example, size and sorption status. Although such factors as

gravity, clogging, ßocculation, and Þltration can affect colloid transport in fractures, they have been

disregarded in the interest of simplicity and in order to explicitly examine ideal particle transport

and sorption in a uniform aperture fracture. Because of the varied transport mechanisms examined

in this chapter, both traditional and new particle tracking algorithms must be utilized. For cases

when colloids irreversibly sorb according to the Smulochowski�Levich approximation or when they

diffuse into the surrounding rock matrix it is necessary to use a traditional particle tracking algo-

rithm with equations given by (5.17) and (5.18). This is because in the perfect sink approximation,

(6.4), colloid deposition is dependent upon the instantaneous local colloid concentration requiring all

colloids to be at the same time level. For the case of matrix diffusion, it is not possible to specify a

constant spatial step in the z�direction because of the deterministic velocities that must be included

to take into account the low porosity and diffusivity of the surrounding matrix described by (6.2) and

(6.3), respectively. For simulations involving non�sorbing and kinetically sorbing colloids, the new

particle tracking algorithm is more efficient to use. The distance a particle moves in the z�direction,

∆z = zm − zm−1 = b/4, is speciÞed and the corresponding travel time is calculated from the new

particle tracking equation, (5.14). Once the time step associated with a particle�s movement of ∆z

is determined, the corresponding distances moved by the particle in the x�direction is calculated

from (5.17). As in (5.21), the z�direction that the particle follows (positive or negative) is speciÞed

by the sign of a standard normally distributed random number.

6.6 Numerical Procedures

6.6.1 Transport

The colloid plume is introduced at the inlet side of the fracture ßow domain (x = 0) and

distributed according to the local volumetric ßow rate. It is assumed that the probability of a colloid

entering the fracture at a given z location (perpendicular to the fracture walls) is proportional to
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the ßow rate at that particular position as done in Chapter 5. The probability of a colloid having a

starting position less than z is given by (5.20). A large number of particles, on the order of 150,000,

is used in an effort to reduce random noise [Valocchi and Quinodoz , 1989]. Although increasing the

number of particles increases the computation time, a large number of particles leads to smoother

results by averaging out the effect of individual particles. As in any averaging process, the larger the

sample size, the less the contribution of a single component and the more smooth and regular the

results. For the traditional particle tracking algorithm, at each time level a new particle position is

determined from (5.17) and (5.18). The constant time step is chosen to be the mean time necessary

for the smallest particle to diffusively travel a distance equal to 1/4th of the fracture aperture

according to (5.14). When the new particle tracking algorithm is employed, the spatial step is set

equal to 1/4th of the fracture aperture and the corresponding time step is calculated from (5.14)

and used in (5.17). For the case where the solid matrix is impermeable (zero porosity), all particles

are reßected from the wall as in a mirror image without loss of energy. That is, the Þnal x�location

remains unchanged, whereas the Þnal z�coordinate is set a distance away from the wall equal to the

distance that the particle would have obtained if it had penetrated the rock matrix plus the particle

diameter. For example, if a particle of dp = 5× 10−7 m initially obtains a z value of 5.03× 10−5 m

(5 × 10−5 m being the location of the fracture wall), its reßected z�location would be 4.92 × 10−5

m.

6.6.2 Matrix Diffusion

For permeable rock matrices, each time a particle reaches a fracture surface, it has a

probability of penetrating the matrix that is proportional to the matrix porosity. For example,

when a colloid contacts a solid matrix with porosity 0.1, it has a 10% chance of encountering a void

space of that solid matrix. A uniformly distributed random number between 0 and 1 is generated

each time a particle encounters a wall, and if this number is less than the porosity, the colloid

enters the matrix. It is assumed that a particle entering a solid matrix continues to migrate within
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the pore as it did in the fracture only for the remaining portion of the time step, because when a

particle enters a pore, it still experiences an effective porosity of 1.0 and its diffusivity is not altered

from that in the fracture. Although the probability of penetrating the matrix is independent of

particle size, once in the matrix, particle diameter affects how a particle is transported according

to its diffusion coefficient (also a factor in both (6.2) and (6.3)). As the rock matrix interferes with

colloid diffusion, the diffusion coefficient is also proportional to the solid matrix porosity (i.e., the

value of the particle diffusion coefficient within a solid matrix with porosity 0.1 is assumed to be

0.1Ddp [Buckley and Loyalka, 1993]). Although wall effects on diffusion and velocity are known,

no modiÞcation to diffusivity or particle velocity in the fracture near the walls is performed as the

constant time step used in this analysis is too large to account for such corrections.

To incorporate the deterministic velocities arising from the reduction in diffusivity and

porosity inside the rock matrix, a transition zone just inside the solid matrix is deÞned. The

gradients of diffusivity and porosity are assumed to vary linearly over that zone, chosen to be one

half of the fracture aperture. Thus, the differences between matrix and fracture diffusivities and

log�porosities are calculated and divided by the transition zone thickness to determine gradients in

the transition zone. Thus, (6.2) and (6.3) may be expressed as

UD =
2Ddp (θ − 1)

b
, (6.15)

and

Uθ =
2Ddp ln θ

b
. (6.16)

If a particle is within the matrix and less than a distance of b/2 from the fracture wall, UD and Uθ

are multiplied by ∆t and added to the particle tracking equation in the z�direction as follows:

zm = zm−1 + Z (0, 1)
q
2Ddp∆t± UD∆t± Uθ∆t. (6.17)

The sign of the deterministic velocities are opposite to the sign of z, encouraging particles to diffuse

back into the fracture, thereby avoiding the uncharacteristic buildup of particles in stagnation and
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low porosity zones. Any colloid size distribution (e.g., log�normal, Gaussian, or uniform) can be

used in this particle tracking transport model.

6.6.3 Deposition

For the case of perfect sink attachment (employing the Smulochowski�Levich approximation

to determine kf ), the fracture walls and channel aperture are discretized into length elements. Each

element comprises a segment of the fracture walls, both top and bottom, along the x�direction. A

triple nested sorting algorithm arranges the colloids Þrst according to x�location, then size, and

Þnally z�location. At the beginning of every time step, the number of colloids contained within each

length element of the fracture is calculated. Within each length element the colloids are subdivided

into ten equally sized �bins� according to diameter. The size of each bin is set equal to one tenth

of the difference between the largest and smallest colloid diameters of the particles present within

the element. Subsequently, the ßux of particles onto the surface within each element of each bin is

determined according to (6.8). The ßux, J , multiplied by the time step, ∆t, (rounded to the nearest

integer) indicates how many particles sorb onto each length element of the fracture from each bin

during each time step. The particles nearest the wall (greatest absolute z�location) are assumed to

attach. An exact particle balance is maintained by tagging each adsorbed particle with an integer

associated with the length element to which it is attached. The number of attached particles may

be plotted against their associated length element. This process is repeated each time step. Because

colloids are assumed to sorb irreversibly, desorption is not considered.

When particles undergo kinetic sorption, the fracture wall is also discretized into length

elements. Each time a particle comes in contact with the wall, its chance of sorbing is based on the

number of previously sorbed colloids, n∗dp
, and the particle�wall repulsive energy, φ. The number

of sorbed colloids in each element of fracture wall is tallied after each particle movement and the

sorption probability of a colloid onto an element is calculated according to relationship (6.11) or

(6.14). As the number of sorbed colloids increases, the probability of future sorption decreases. The

fracture surface area that remains available for deposition depends on the size of the sorbed colloids.



CHAPTER 6. TRANSPORT IN A UNIFORM APERTURE FRACTURE 86

Table 6.1: Model parameters for simulations.

Parameter Value Reference

b 1× 10−4 m Reimus [1995]
Umax 1× 10−6 m/s Reimus [1995]
ν 15 Chrysikopoulos and Abdel-Salam [1997]
∆t 1 s (5.14)
∆z 2.5× 10−5 m
θ 0�0.1 Buckley and Loyalka [1994]
µdp 1× 10−6 m Ledin et al. [1994]
σdp 0.3, 0.6, 0.9 µm
φ 4.04× 10−19 J/colloid Adamczyk et al. [1997]

6.7 Simulations and Discussion

6.7.1 Model Parameters

Particle tracking simulations of 150,000 particles were conducted following the previously

described procedures. The diameter of each particle, dp, is assigned a discrete quantized value

accurate to one�hundredth of a micrometer. The three log�normal colloid diameter distributions

with mean µdp = 1× 10−6m and standard deviations σdp = 0.3, 0.6, and 0.9 µm used in this study

are shown in Figure 6.2. Unless otherwise speciÞed, the simulations presented in this work are

obtained with Umax = 1× 10−6m/s, and b = 1× 10−4m. Table 6.1 summarizes model parameters.

6.7.2 Comparison with an Analytical Solution

To check the accuracy of the particle tracking algorithms described in this work, concen-

tration distribution curves generated by the analytical solutions of Chapter 4 for the ideal case of

monodisperse and polydisperse particle transport in a uniform aperture fracture are compared to

appropriate particle tracking results. It is worth discussing how the particle number concentration

is determined and how the results are presented. The particle tracking simulation only returns the

two�dimensional x� and z�coordinates of each colloid, yet from these data a concentration is to be

determined. First the maximum and minimum x�coordinates of all particles are used to calculate

the range of values. This range is then divided into equal length subsections or �bins� and the parti-
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Figure 6.2: Illustration of three log�normal distributions of colloid diameters with µdp = 1× 10−6m
and σdp = 0.3, 0.6, and 0.9 µm.

cles that fall into each bin are counted (as would be done with a histogram). Because the length of

the bin is known, as is the aperture, the number of colloids within this area can be presented as an

areal concentration (particles/cm2). Similarly, for a three�dimensional fracture the corresponding

volume concentrations should be expressed in (particles/cm3). Figure 6.3 shows an excellent agree-

ment between the analytical solutions for monodisperse, (4.12), and polydisperse, (4.16), particle

transport and the particle tracking simulations for all colloid plumes studied. Figure 6.3 shows

how the monodisperse and three log�normally distributed polydisperse colloid plumes compare to a

monodisperse colloid suspension at a distance of 12 m downstream from the fracture inlet (injection

point). The larger the range of colloid sizes (large σdp), the greater the observed spreading. Thus,

by adding an extra degree of heterogeneity to the system (i.e. the distribution of colloid sizes), the

spreading of a colloid plume is enhanced. This is analogous to the case of virus transport in porous

media (viruses are often considered colloidal particles) where increased spreading is predicted with

increased sorption variations caused by ßuctuating external conditions [Chrysikopoulos and Sim,
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Figure 6.3: Comparison of the analytical solution (solid lines) and the particle tracking simulations
for a monodisperse colloid plume (circles) and the three polydisperse colloid plumes with µdp =
1×10−6m and σdp = 0.3 µm (triangles), σdp = 0.6 µm (squares), and σdp = 0.9 µm (diamonds). Due
to the two�dimensional nature of the fracture considered, areal colloid concentrations are presented
(here t = 5,000 days).

1996]. The introduction of random noise, ubiquitous in random walk methods, is evident as the

particle tracking distribution is not completely smooth [Uffink , 1988]. It should be noted that the

analytical solutions of Chapter 4 make the simplifying assumption that the effect of longitudinal

diffusion is small enough to be neglected. This assumption is not employed in the particle tracking

model, but its validity is supported.

6.7.3 Effects on Spreading

To examine the effect of variable size on colloid spreading, for each of the three log�normal

diameter size distributions used, the predicted particle plume, at the end of 5,000 hours of simulation

time, was divided into three groups with equal number of particles (50,000 particles). Histograms of

colloid diameters for the three groups of each polydisperse plume are presented in Figure 6.4. The
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Figure 6.4: Number of colloids with a given diameter for plumes of colloids with log�normal diameter
distributions with µdp = 1 × 10−6m and (a) σdp = 0.3 µm, (b) σdp = 0.6 µm, and (c) σdp = 0.9
µm (here t = 5,000 h). The colloids have been divided into thirds based on their travel distances.
The squares represent the fastest third, the closed circles the middle third, and the open circles the
slowest third (closest to the inlet).

Þrst group is indicated in Figure 6.4 with open circles and represents the slowest colloids; that is,

the colloids located nearest to the fracture inlet at the end of the speciÞed simulation time. The

second group is indicated by the Þlled circles and represents the portion of the particles that are

located in the middle of the colloid plume. The third group is indicated by squares and represents

the particles that have traveled farthest within the fracture. Although the distribution of each group

retains a log�normal shape, it is clear that a separation of colloids based on size is occurring. The

larger colloids travel further and faster than the smaller colloids. This result is expected based on a

colloid�s Þnite dimensions prohibiting it from contacting the slowest moving ßuid near the fracture
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Figure 6.5: Normalized cumulative breakthrough curves for plumes of colloids having different log�
normal distribution of particle diameters in a fracture with uniform aperture and (a) 1% and (b)
10% solid matrix porosity (here x = 5 m).

boundaries and thereby forcing it to be advected at a velocity faster than the mean ßuid velocity.

Clearly, Figure 6.4 shows that, on average, the largest colloid particles are transported faster than

the smaller particles.

6.7.4 Effects of Matrix Diffusion

The effect of matrix diffusion on colloid breakthrough curves at a distance of 5 m from the

fracture inlet for the monodisperse and the three log�normal colloid size distributions is illustrated in

Figure 6.5. Clearly, differences in colloid size distribution lead to distinct cumulative breakthrough

patterns. The higher the standard deviation of the colloid size distribution, the more pronounced

the retardation of the colloid plume. In particular, the plume with σdp = 0.9 µm contains the largest

number of small colloids. These smaller particles are transported slowest not only because they can



CHAPTER 6. TRANSPORT IN A UNIFORM APERTURE FRACTURE 91

sample the slowest moving portion of the parabolic velocity proÞle (nearest to the wall), but because

smaller colloids preferentially diffuse into the rock matrix.

The probability for diffusion into the fracture wall is dependent on the matrix porosity

alone. However, the number of times that a colloid contacts the wall is a function of its diffusion

coefficient. Due to their large diffusion coefficient (large diffusive travel distance per time step),

smaller particles are more likely to come into contact with the fracture wall. Each time a particle

contacts the wall there is a speciÞed probability that it will diffuse into it. The more often a particle

encounters a wall, the higher the chance that it will eventually diffuse into the solid matrix. The

deterministic velocities added to the particle tracking equations assure back diffusion into the fracture

once the bulk of the colloid cloud has passed. Although some particles are effectively lost from the

system by diffusing well into the rock matrix (past the transition zone), many return to the fracture

by the concentration gradient remaining when few colloids are left in the fracture. Smaller colloids

are more likely to diffuse into (and be transported out of) the matrix. This effectively increases the

residence time of small colloids and retards the breakthrough of large variance colloid plumes with

many small constituents.

6.7.5 Colloid Deposition

6.7.5.1 Perfect Sink Sorption

Figure 6.6 presents sorbed colloid concentrations, n∗dp
, after 5,000 hours of simulation time

for each of the three colloid suspension considered (σdp
= 0.3, 0.6, and 0.9 µm). The results for

the two�dimensional fracture considered here are presented in units of (particles/cm); however, for

a fully three�dimensional fracture the corresponding units are (particles/cm2). The colloids are

divided into three groups of 50,000 particles according to diameter. It is evident from Figure 6.6

that the smallest colloids show the highest sorbed concentration. Preferential sorption of small

colloids occurs. Also, the number of deposited colloids as a function of fracture length follows an

x−
1
3 dependence as indicated by the ßux relationship (6.8). The concentration of colloids in the

liquid phase decreases as more colloids sorb onto the fracture surface.
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Figure 6.6: Sorbed colloid concentrations under perfect sink conditions as a function of fracture
length for colloid plumes having log�normal diameter distribution with µdp = 1 × 10−6m and (a)
σdp = 0.3 µm, (b) σdp = 0.6 µm, and (c) σdp = 0.9 µm. The colloids have been divided into thirds
based on their diameter. The open circles represent the smallest third, the closed circles the middle
third, and the squares the largest third (here t = 5, 000 h).

6.7.5.2 Kinetic Sorption

Figure 6.7 shows snapshots of the sorbed colloid concentrations, n∗dp
, under linear kinetic

sorption conditions for each of the three log�normal colloid distributions considered in this study

(σdp = 0.3, 0.6, and 0.9 µm). Because of their larger diffusion coefficients, preferential sorption of

small colloids over larger colloids is expected as they will contact the wall more frequently than larger

colloids. This is clearly illustrated in Figure 6.7 where the colloid suspension with σdp = 0.9 µm

(composed of the largest number of small colloids), exhibits the greatest sorption near the entrance

to the fracture.
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Figure 6.7: Overall sorbed colloid concentrations under linear DBF kinetic sorption conditions as a
function of fracture length for the three polydisperse colloid plumes (here t = 5,000 h and φ = 10kT ).
Due to the two�dimensional nature of the fracture considered, sorbed colloid concentrations per unit
length are presented.

Figure 6.8 presents the colloids divided into three equal groups of 50,000 particles arranged

according to diameter to reveal a trend of preferential sorption. The group comprising the largest

third of colloids exhibits the least sorption while the group of the smallest third of colloids yields the

highest concentration of sorbed colloids. As smallest particles have the largest Brownian diffusion,

they come into contact with the fracture wall more often than the larger particles, and consequently

have a higher sorption rate as is supported by Figure 6.8. Figure 6.9 compares the effect of linear

and nonlinear DBFs on sorbed colloid concentrations. The results are comparable for all three

polydisperse plumes with the nonlinear DBF leading to slightly lower sorbed colloid concentrations

than the linear case. In view of (6.14), this is an expected result, because for a small concentration

of sorbed particles, the nonlinear DBF behaves similarly to the linear DBF. Only for a relatively

large concentration (² ≥ ²max/10) of sorbed particles per length element does the nonlinear case

substantially deviate from the linear DBF in the form of a reduced sorption probability.
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Figure 6.8: Sorbed colloid concentrations under linear kinetic sorption conditions as a function of
fracture length for colloid plumes having log�normal diameter distributions with µdp = 1 × 10−6m
and (a) σdp = 0.3 µm; (b) σdp = 0.6 µm; and (c) σdp = 0.9 µm. The colloids have been divided into
thirds based on their diameter size (here t = 5, 000 h and φ = 10kT ).

6.7.6 Effect of Varied Fracture Aperture

To examine the effect of fracture aperture on colloid deposition onto fracture walls, parti-

cle tracking simulations were conducted for fractures with distinct apertures while keeping all other

transport parameters constant. A monodisperse colloid suspension is employed. Furthermore, it

is assumed that colloids follow a linear kinetic sorption relationship. The results presented in Fig-

ure 6.10 indicate that the number sorbed colloids varies inversely to the aperture. The number of

kinetically sorbed colloids from a monodisperse suspension decreases with increasing fracture aper-

ture. As the aperture is increased, a colloid will contact the wall less frequently. Abdel-Salam and

Chrysikopoulos [1994, 1995a, b] proposed a expression for the mass ßux of colloids onto fracture

surfaces with equivalent consequences.
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Figure 6.9: Effect of linear (open diamonds) and nonlinear (closed diamonds) DBFs on sorbed colloid
concentrations along the fracture for colloid plumes having log�normal diameter distribution with
µdp = 1× 10−6m and (a) σdp = 0.3 µm; (b) σdp = 0.6 µm; and (c) σdp = 0.9 µm.

6.8 Summary and Conclusions

In this chapter, the transport of polydisperse colloid plumes in a fully saturated fracture

with a uniform aperture was modeled by particle tracking techniques. Both the effects of matrix dif-

fusion and surface sorption were individually investigated. Simulation results show that polydisperse

colloid suspensions exhibit transport characteristics that differ from monodisperse suspensions. The

observed spreading of polydisperse colloid plumes is proportional to the standard deviation of the

colloid diameter distribution. Large colloids have larger effective velocities than smaller colloids re-

sulting in faster transport times leading to increased spreading of a polydisperse plume. Cumulative

breakthrough curves of polydisperse colloid suspensions in fractures with different matrix porosities



CHAPTER 6. TRANSPORT IN A UNIFORM APERTURE FRACTURE 96

140x10
3
 

120

100

80

60

40

20

0

N
*

500040003000200010000

t (h)

b = 0.6x10
-4 

m

      0.8x10
-4 

      1.0x10
-4 

      1.2x10
-4 

      1.4x10
-4 

Figure 6.10: Total number of sorbed colloids from a monodisperse suspension (dp = 1× 10−6m) as
a function of time for several different fracture apertures (here x = 5 m).

indicate that a plume with larger standard deviation in colloid diameter becomes progressively re-

tarded, owing to the increased number of small colloids that are more often trapped in the solid

matrix. It can be concluded that the increased retardation for colloid plumes with higher standard

deviation in colloid diameter is due to both the slower effective velocity of the smallest particles

and their preferential diffusion into the solid matrix. Particle size affects colloid sorption with the

smallest particles preferentially sorbing onto the fracture walls. The linear and nonlinear kinetic

sorption DBF models examined show different sorbed colloid distributions when the fracture sur-

face area covered by the sorbed colloids is relatively large, but similar results when sorbed colloid

concentrations are low. Furthermore, it was demonstrated that the number of sorbed particles is

inversely proportional to the fracture aperture. This investigation lays the groundwork for the next

chapter that models the more realistic situation of reactive colloid transport in a variable aperture

fracture.
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Chapter 7

Transport in a Variable Aperture

Fracture

7.1 Introduction

In Chapter 6 it was shown that polydisperse (log�normally distributed) colloid plumes

exhibit greater spreading than monodisperse suspensions when ßowing in a single, uniform aperture

fracture. Furthermore, it was shown that larger particles are least retarded when the effects of

matrix diffusion and surface sorption are included. In this chapter, the previous research efforts

are extended to investigate the transport of polydisperse colloid distributions in a two�dimensional

fracture with spatially variable aperture under both sorbing and non�sorbing conditions. Matrix

diffusion of colloids is not considered in this chapter.

7.2 Fracture Generation

Figure 7.1 is an illustration of the system modeled in this work. The quasi�three�dimension-

al fracture used in this study is 8 m long (x�direction) and 4 m wide (y�direction). The fracture
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Figure 7.1: Schematic illustration of a quasi�three�dimensional fracture with spatially variable aper-
ture b(x, y) and a migrating plume of polydisperse colloids undergoing surface sorption. Note that
z = 0 at the center of the fracture.

plane is partitioned into 3,200 discrete square elements. Each 10 × 10 cm element exhibits a distinct

aperture and is represented by a contour plot of the fracture apertures in Figure 7.2. The aperture

Þeld is generated stochastically by the geostatistical code SPRT2D [Gutjahr , 1989]. It is assumed

that the aperture distribution in the fracture plane follows a log�normal distribution [Johns et al.,

1993; Reimus et al., 1993; Keller , 1998] with preselected mean, µln b, and variance, σ
2
ln b. Further-

more, the aperture distribution is assumed to vary spatially according to an isotropic exponential

autocovariance function with speciÞed correlation length, ξb. By deÞnition, a correlation length im-

plies that for distances in the fracture plane smaller than the correlation length the aperture values

are likely to be similar, but at distances larger than the correlation length there is no correlation be-

tween apertures. Unique realizations of the aperture Þeld are obtained by changing the seed number

of the random Þeld generator.



CHAPTER 7. TRANSPORT IN A VARIABLE APERTURE FRACTURE 99

x (m)

y
(m

)

0 1 2 3 4 5 6 7 80

1

2

3

4

Figure 7.2: A realization of the aperture spatial distribution in the fracture plane. The fracture is
partitioned into 80×40 equal�size elements. The varied shades illustrate apertures between 0.01 and
0.15 mm (here x = 8 m, y = 4 m, b = 1× 10−4 m, σ2ln b = 0.15, and ξb = 1 m).

7.3 Flow in a Fracture

7.3.1 Mathematical Model

The two�dimensional, steady�state partial differential equation describing ßow with in a

spatially variable aperture fracture is [Chrysikopoulos and Abdel-Salam, 1997]

∂

∂x

∙
b3 (x, y)

∂h (x, y)

∂x

¸
+
∂

∂y

∙
b3 (x, y)

∂h (x, y)

∂y

¸
= 0, (7.1)

where b(x, y) is the local fracture aperture; and h is the piezometric head. The preceding equation

assumes that the cubic law (Reynolds equation) for incompressible laminar ßow between two parallel

plate elements can effectively simulate the average ßow at every point within the fracture [Dijk

et al., 1999]. Brown et al. [1995] has shown that the cubic law tends to overestimate ßuid velocity

in low aperture areas; however, variable aperture fractures will channelize ßow thereby minimizing

overall error for the cumulative breakthrough curves obtained using this approximation. The above

equation is a stochastic partial differential equation, because one of its parameters, namely b(x, y),

is a stochastic variable.
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For each realization of the aperture Þeld, a distribution of the piezometric head within

the fracture is obtained by solving the governing ßuid ßow equation (7.1) subject to constant head

(Dirichlet) boundary conditions along the x = 0 and x = 8 m sides of the fracture. A net ßow is in-

duced in the positive x�direction with the incorporation of no�ßow (Neumann) boundary conditions

along the sides of the fracture at y = 0 and y = 4 m. Flow in the rock matrix is neglected because

the saturated hydraulic conductivity in the rock matrix is several orders of magnitude smaller than

the saturated hydraulic conductivity in the fracture [Abdel-Salam and Chrysikopoulos , 1996]. A grid

of 3,321 (81 × 41) nodes is laid over the two�dimensional fracture (system of elements) considered

here, and the piezometric head is determined at each unknown node.

7.3.2 Numerical Formulation

For each realization of the aperture Þeld, the following Þve�point central Þnite difference

numerical approximation is employed for the solution of the governing ßow equation [Hoffman, 1992,

p. 411]

b3i,j+1/2hi,j+1 + b
3
i,j−1/2hi,j−1 + b

3
i+1/2,jhi+1,j + b

3
i−1/2,jhi−1,j

−hi,j
³
b3i,j+1/2 + b

3
i,j−1/2 + b

3
i+1/2,j + b

3
i−1/2,j

´
= 0, (7.2)

where the subscripts i and j are the discretized distance in the x� and y�directions, respectively.

The Þve�point Þnite difference stencil is shown in Figure 7.3. The aperture at the interface of two

adjacent elements in the x� and y�directions are obtained by employing the harmonic mean (derived

in Appendix C)

b3i,j±1/2 =
2b3i,jb

3
i,j±1

b3i,j + b
3
i,j±1

, (7.3)

b3i±1/2,j =
2b3i,jb

3
i±1,j

b3i,j + b
3
i±1,j

. (7.4)

Using the central Þnite difference numerical approximation (7.2) for the solution of the

governing ßow equation for each node on the grid of the fracture plane results in a set of linear
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Figure 7.3: Five�point Þnite difference stencil.

equations with as many unknowns as the number of unspeciÞed nodes on the fracture grid [Hoffman,

1992, p. 825]. The resulting set of linear equations is solved using a banded LU decomposition matrix

solving algorithm [Press et al., 1992, p. 963]. Average velocity components in the x� and y�directions

are then calculated for every unit element from the steady�state volumetric ßuxes by the following

expressions:

ux = −γb
2 (x, y)

12µ

∂h (x, y)

∂x
, (7.5)

uy = −γb
2 (x, y)

12µ

∂h (x, y)

∂y
, (7.6)

Second order accurate Þnite difference forms of (7.5) and (7.6) used in this analysis are

uxi,j = −
γb2i,j
12µ

hi+1,j − hi−1,j
2∆x

, (7.7)

uyi,j = −
γb2i,j
12µ

hi,j+1 − hi,j−1
2∆y

. (7.8)

Because a parabolic velocity proÞle develops within each element, the velocities in the x� and y�

directions are functions of z

ux (x, y, z) = ux (x, y)
3

2

(
1− 4

∙
z

b (x, y)

¸2)
, (7.9)

uy (x, y, z) = uy (x, y)
3

2

(
1− 4

∙
z

b (x, y)

¸2)
, (7.10)
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Figure 7.4: The velocity Þeld in the variable aperture fracture shown in Figure 7.3. Arrow lengths
are tangential and proportional to the local mean velocities.

where z is the direction normal to the fracture surface. Equations (7.9) and (7.10) are consequences

of the no slip boundary conditions at the fracture walls, and are spatial functions of the (x, y, z)

location in the fracture. Figure 7.4 is a vector plot of the velocity Þeld.

7.4 Algorithm Development

7.4.1 Particle Tracking

The new particle tracking algorithm developed in Chapter 5 is employed in these simula-

tions; however, three dimensions need to be considered. By substituting (7.9) and (7.10) into the

vector particle tracking equation, (5.16), the overall transport equations for the problem examined

in this work are:

xm = xm−1 + ux
¡
xm−1, ym−1

¢ 3
2

(
1− 4

∙
zm−1

b (x, y)

¸2)
∆t+ Z (0, 1)

q
2Ddp∆t, (7.11)

ym = ym−1 + uy
¡
xm−1, ym−1

¢ 3
2

(
1− 4

∙
zm−1

b (x, y)

¸2)
∆t+ Z (0, 1)

q
2Ddp∆t, (7.12)

zm = zm−1 ±∆z. (7.13)
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Again, a characteristic spatial step in the z�direction is speciÞed and the associated time

for the particle to travel this distance is calculated from (5.14). Once the time step associated with

a particle�s movement of ∆z is determined, the corresponding distances moved by the particle in

the x� and y�directions are determined from (7.11) and (7.12), respectively.

7.4.2 Numerical Methods

In these simulations, 10,000 colloids are introduced at the inlet side of the fracture ßow

domain (x = 0) and distributed according to the local volumetric ßow rate as suggested by Reimus

[1995, p. 93]. A discrete cumulative probability density function based on the volumetric ßow rate

into each inlet element of the fracture is constructed by summing all individual element ßow rates

at the fracture inlet and determining each element�s contribution (probability) to the total sum.

Subsequently, a uniform random number between zero and one is generated for each particle. The

random number�s placement in the cumulative distribution of the ßow rates at the inlet designates

the corresponding entrance element. Once the element, j, is speciÞed, a particle�s exact y�location

in meters is found according to the equation:

y =
(j − 1) +Rn (0, 1)

10
, (7.14)

where Rn(0, 1) is a uniformly distributed random number between 0 and 1. As in Chapter 6, it is

assumed that the probability of a colloid entering a designated element of the fracture inlet at a given

z�location (perpendicular to the fracture walls) is proportional to the ßow rate at that particular

position. Consequently, the probability of a colloid having a starting position less than z is

P (z) = −2
∙

z

b (0, y)

¸2
+
3

2

z

b (0, y)
+
1

2
. (7.15)

A uniform random number between zero and one is substituted for P (z) in (7.15) and the roots of

the resulting polynomial in z are evaluated by Newton�s Method. Roots found outside of the range

of −b(0, y)/2 and b(0, y)/2 are ignored and colloids must be wholly contained within the fracture.
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For an impermeable solid matrix all particles are assumed to be reßected from fracture

walls as in a mirror image without loss of energy if they do not sorb. That is, the Þnal x� and

y�coordinates position remain unchanged, whereas the Þnal z location is placed a distance away

from the wall equal to the distance that the particle would have obtained if it had penetrated the

rock matrix plus the particle diameter.

Particle movements between elements of different aperture are assumed to follow the rela-

tionship [Happel and Brenner , 1965, p. 553]

zold
bold

=
znew
bnew

, (7.16)

which is applicable for creeping ßow conditions in slowly converging or diverging channels. Thus the

ratio of the new z�location to the old z�location is equivalent to the ratio of the fracture aperture

at the new location to the fracture aperture at the old location. Particle are allowed to cross both

perpendicularly as well as diagonally between elements; however, if the particle crosses diagonally

only its initial and Þnal element apertures are used in (7.16).

7.5 Particle Deposition

The transport of colloids in fractured media is signiÞcantly affected by colloid deposition

onto formation surfaces. The probability of a particle sorbing per wall collision (attachment effi-

ciency), was described in Chapter 6 and the same methodology is used here. The effect of previously

deposited colloids is taken into account through use of the linear DBF, (6.11). The value of a DBF

ranges between one (for a fracture free of colloids) and zero (for a fracture surface completely cov-

ered by deposited colloids). Only the linear DBF is considered in the case of the variable aperture

fracture because it is not expected to signiÞcantly differ from the nonlinear DBF. The modiÞed

Boltzmann law, (6.10), is incorporated into the particle tracking simulation as follows: each time a

particle�wall encounter is recorded, Þrst the probability p is determined and then a uniform random

number between zero and one is generated. Particle attachment is assumed to occur if the selected

random number is less than or equal to pF (n∗dp
).
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7.6 Model Simulations

One monodisperse and three polydisperse colloid size distributions are examined here.

All distributions have the same mean colloid diameter, µdp
= 1 µm, and the three polydisperse

colloid distributions are log�normally distributed with standard deviations in the colloid diameter

of σdp = 0.3, 0.6, and 0.9 µm as shown in Figure 6.2.

The hypothetical fracture used in this work is subjected to a hydraulic gradient of 0.031 in

the x�direction. Cumulative colloid number, N , exiting the fracture at x = 8 m, normalized by the

initial liquid phase colloid number, Nodp
, is evaluated by averaging the results from Þfty realizations

of the fracture aperture Þeld. The number of realizations is chosen such that additional realizations

do not change the calculated ensemble averages by more than 2%. Furthermore, the spatial step in

the z�direction, ∆z, is set equal to 1/4th of the local fracture aperture. This distance was chosen

in order to assure reasonable accuracy from the particle tracking program by allowing a particle to

sample all portions of the velocity proÞle.

Figure 7.5 qualitatively illustrates the effect of colloid diameter distribution, fracture aper-

ture variability, and colloid sorption on the transport of Nodp
= 10, 000 colloid particles in water

saturated fractures. Four different cases are considered when the colloids have been in the system

for approximately half of the mean total travel time for the fracture. The Þrst case (Figure 7.5a)

represents a fracture with uniform aperture, b = 1× 10−4 m, and a plume of monodisperse colloids

with particle diameter 1 µm. The second case (Figure 7.5b) represents a fracture with uniform aper-

ture (b = 1 × 10−4 m) and a plume of polydisperse colloids with log�normal diameter distribution

described by a mean particle diameter of µdp = 1 µm and standard deviation σdp = 0.9 µm. It

should be noted that this polydisperse plume is divided into three equally numbered groups based

on diameter. The triangles represent the smallest third, the squares represent the middle third, and

the circles represent the largest third. The next case (Figure 7.5c) represents a fracture with mean

aperture b = 1 × 10−4 m, variance of the log�transformed spatially variable aperture σ2ln b = 0.037,
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Figure 7.5: Snapshots of colloid positions (ßow from left to right) for (a) a monodisperse colloid
plume in a uniform aperture fracture; (b) a polydisperse colloid plume in a uniform aperture fracture;
(c) a polydisperse colloid plume in a variable aperture fracture; and (d) a polydisperse colloid plume
undergoing sorption in a variable aperture fracture. The polydisperse colloid plumes are split into
thirds based on particle size with triangles being the smallest third, squares the middle third, and
circles the largest third (here t = 17.5 hr).
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Figure 7.6: Normalized cumulative colloid breakthrough curves for a monodisperse and three polydis-
perse colloid plumes with mean diameter µdp = 1 µm in a uniform fracture with aperture b = 1×10−4
m.

correlation length of the apertures ξb = 1 m, and the identical plume of polydisperse colloids used

in the previous case. Finally, the last case (Figure 7.5d) represents the same situation as the third

case with the additional constraint that the polydisperse colloids may undergo irreversible sorption.

It should be noted that colloids sorbed onto the fracture surfaces as well as colloids in suspension

are presented in Figure 7.5d with sorbed colloids showing signiÞcant retardation. Comparison of

the four cases reveals that: polydisperse colloid suspensions spread more within the fracture than

monodisperse suspensions (see Figures 7.5a, b); larger colloids travel fastest (see Figure 7.5b); aper-

ture variability leads to preferential ßow paths (see Figure 7.5c); and that the smallest colloids of

the plume are preferentially sorbed as more of the smaller colloids lag the larger colloids (Figure

7.5d).

Normalized colloid breakthrough curves of the four colloid plumes considered in this study

are presented in Figure 7.6 for the case of transport in a uniform aperture fracture. Clearly, the
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Figure 7.7: Normalized cumulative colloid breakthrough curves for a polydisperse colloid plume in
variable aperture fractures with four different σ2ln b values (here b = 1 × 10−4 m, σdp = 0.9 µm,
µdp = 1 µm, ξb = 1 m).

earliest colloid breakthrough corresponds to the plume with largest σdp . As illustrated in Figure

7.5b, colloid separation within a plume is based on particle diameter with the larger colloids traveling

faster than the smaller colloids. Although large particles tend to remain in high velocity streamlines

near the center of the fracture longer than small particles because of ßuid�particle phases stresses,

drag, lift, and Faxen forces [McTigue et al., 1986], none of these effects are considered in this analysis.

Regardless, the largest particles travel at a velocity somewhat higher than the mean ßuid velocity.

The effect of the variance of the log�transformed aperture on the transport of polydisperse

colloids in fractures with spatially variable aperture is shown in Figure 7.7. Four different σ2ln b

values are examined: 0.0 (uniform aperture), 0.007, 0.037, and 0.125. Comparison of the normalized

cumulative colloid breakthrough curves indicate that increasing σ2ln b increases the tailing of the

colloid plume. It is well established in the literature that increasing the heterogeneity of any ßow

or transport parameter leads to increased spreading [e.g., Dagan, 1982; Chrysikopoulos , 1995].
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Figure 7.8: Normalized cumulative colloid breakthrough curves for a polydisperse colloid plume in
variable aperture fractures with three different correlation lengths of the aperture ßuctuations (here
b = 1× 10−4 m, σ2ln b = 0.037, µdp = 1 µm, σdp = 0.9 µm).

Further, Rehmann et al. [1999] have suggested that premature breakthrough of viruses (colloids)

in high variance conductivity Þelds of porous media is a result of the increase in preferential ßow

paths. A similar phenomenon occurs here where large aperture portions of the fracture allow early

colloid breakthrough while the many small aperture areas increase tailing by slowing many of the

colloids. Because solution to the cubic equation overestimates the ßow rates in low aperture areas

of the fracture [Brown et al., 1995], experimental results of colloid transport in a variable aperture

fracture may exhibit even greater tailing than shown here. Some experimental work has been done

studying colloid transport in a fracture, but selection of investigational parameters and measurement

quantities complicate comparison with this work. Bales et al. [1989] showed early breakthrough and

decreased spread of colloids when compared to solutes. Although no simulations were performed

in this work with particles diffusing into the solid matrix, it was shown in Chapter 6 that matrix

diffusion leads to increased retardation and increased tailing [James and Chrysikopoulos , 1999].
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Figure 7.9: Normalized cumulative colloid breakthrough curves for an irreversibly sorbing polydis-
perse colloid plume in variable aperture fractures with four different σ2ln b values (here b = 1× 10−4
m, σdp = 0.6 µm, µdp = 1 µm, ξb = 1 m, φ = 10kT , ν = 15).

The effect of the correlation length of aperture ßuctuations on polydisperse colloid transport

in a fracture with variable aperture is illustrated in Figure 7.8. The simulated normalized cumulative

colloid breakthrough curves indicate that colloid spreading increases with increasing ξb because larger

ξb implies a more heterogeneous Þeld (ξb = ∞ is a random, uncorrelated Þeld). Consequently, the

longitudinal dispersivity of a fracture with spatially variable aperture is dependent on both ξb and

σ2ln b. This is analogous to the increase in dispersivity for a heterogeneous porous medium caused by

an increase in the variance and correlation length of the hydraulic conductivity [Gelhar and Axness,

1983].

Figure 7.9 illustrates the effect of sorption on polydisperse colloid transport in variable

aperture fractures. Sorption causes reduction in the number of colloids suspended in the liquid phase

prohibiting the normalized cumulative colloid breakthrough curves from reaching the maximum

value of one. These results are in agreement with previous investigations by Abdel-Salam and
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Chrysikopoulos [1994]; however, it is worthwhile noting that increases in σ2ln b lead to elongated tailing

of the colloid plume as well as enhanced colloid deposition. This result is attributable to the fact that

for log�normally distributed apertures, a long tail toward larger apertures exists with the majority of

aperture elements smaller than the mean. When σ2ln b increases, the range of apertures increases as

does the number of small aperture elements. With an increased number of small aperture elements,

more particle�wall collisions are expected leading to increased colloid sorption. Furthermore, it is

clear from Figure 7.5d that, on average, it is the largest particles that travel fastest through the

fracture and the smallest ones that are being deposited. Furthermore, small particles have higher

molecular diffusion coefficients than large particles, thus small particles encounter the wall more

frequently resulting in increased attachment.

7.7 Summary

The transport of polydisperse colloid plumes in a water saturated fracture with spatially

variable aperture was modeled with the new particle tracking technique. Results from model sim-

ulations show that polydisperse colloid suspensions exhibit different transport characteristics than

monodisperse suspensions. The observed spreading of colloid plumes can be attributed to variability

in both fracture aperture ßuctuations as well as colloid diameters. Small colloids tend to travel at

velocities closer to the mean ßow velocity while larger colloids travel faster, effectively increasing

the spreading of the plume. Increasing the variability and/or the correlation length of the fracture

aperture ßuctuations results in more spreading of the colloids. When surface sorption is accounted

for, it is the smallest colloids of a plume that preferentially sorb.
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Chapter 8

Application and Engineering

SigniÞcance of Results

Chapter 3 presents a complete derivation of effective transport parameters for colloids

traveling in a water saturated, uniform aperture, fracture. The Þnite size of constituents of a

colloid plume impacts how it travels through fractured media resulting in increased effective velocity

and decreased effective dispersion of the plume. As many transport models assume colloids and

contaminants to be inÞnitely small, neglecting the effects of colloidal size on transport parameters

may result in erroneous model output.

The analytical solutions presented in Chapter 4 for colloid transport in a uniform aperture

fracture with and without sorption onto the rock matrix, provide a useful tool for determining the

spatial and temporal distribution of colloidal particles in fractured systems. Although the analytical

solutions are highly idealized, they can be used for preliminary examinations of colloid transport

and for veriÞcation of numerical models for more complex systems.

The particle tracking algorithm developed in Chapter 5 provides an new and efficient nu-

merical solution to what might otherwise be a computationally costly simulation. As opposed to
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the traditional particle tracking equation where a constant time step is speciÞed, in the new particle

tracking equation a variable time step is determined from a pre�speciÞed constant spatial step. Al-

though this algorithm may not be applicable in all cases (i.e., when matrix diffusion or perfect sink

sorption is included), it is an efficient method for determining breakthrough curves for polydisperse

colloid transport in fractured media.

The particle tracking model developed in Chapter 6 is a good tool for studying colloid

transport in fractures that are not subject to high overburden pressures (where fracture aperture

variability is minimal). Colloids are allowed to diffuse into the surrounding rock matrix or to

attach irreversibly and reversibly onto the fracture walls. The fact that the colloid plume comprises

constituents of variable size (polydisperse) is enough to signiÞcantly affect transport parameters.

It is shown that the largest particles are transported fastest and furthest while the small particles

preferentially diffuse into or sorb onto the fracture walls. This could have serious implications on

the disposal of hazardous material in fractured media, and on the design of waste repositories.

In most natural fractures, fracture aperture variability is important to consider. The model

developed in Chapter 7 (an extension to the model used in Chapter 6) for colloid transport is used to

examine colloid transport in a quasi�three�dimensional variable aperture fracture. Results indicate

that variability in both the fracture aperture ßuctuations as well as size of the constituents is

enough to affect transport parameters. The model shows that when colloids are subject to ßow

channelization spreading through the system is enhanced. Again, variability in either polydispersity

or fracture aperture ßuctuations is enough to increase the spreading of a colloid plume. Large

particles are transported fastest while the smallest particles are preferentially sorbed onto fracture

walls. Again this could have signiÞcant effects on hazardous waste disposal practices, especially

if contaminant co�transport is considered. The numerical models used in this research are robust

and versatile. They are designed to be extendable to larger more general models of colloid and

contaminant transport in both saturated and unsaturated fractured media.
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Chapter 9

Summary, Conclusions and Future

Research

9.1 Summary

The modeling work presented in this study investigates the saturated transport of colloids

in fractured subsurface formations. Preliminarily, the Þnite size, or size exclusion effect, of colloids

is considered. Colloids are proven to have higher effective velocities and lower effective dispersion

rates than soluble contaminants. Because naturally occurring colloids are not inÞnitely small and

not of a single, uniform size, the effects of polydispersity on the transport properties of a colloid

plume are important to investigate. Several analytical models for polydisperse colloid transport in a

single fracture idealized as two parallel plates and surrounded by an impenetrable host rock matrix

were presented and solved. The analytical solutions were derived under both instantaneous and

constant concentration injection inlet boundary conditions and for cases of irreversible or reversible

deposition onto the fracture surfaces.
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Because mathematical models require many simplifying assumptions to obtain closed form

analytical solutions, they often do not reliably model the physical transport properties of natural

colloids in subsurface fractured formations. In an effort to model more generalized systems a novel

particle tracking algorithm is developed. Both the traditional and the new particle tracking equations

calibrate well with previously derived analytical solutions. Furthermore, the new particle tracking al-

gorithm shows a signiÞcant improvement in computational cost over the traditional particle tracking

algorithm.

In an effort to model more complicated systems, the particle tracking algorithm is extended

to incorporate the effects of polydispersity, matrix diffusion, and surface sorption. Simulation results

show that matrix diffusion and surface sorption serve to retard the breakthrough of a colloid plume.

Variation in the size of plume constituents leads to increased plume spreading as well as early plume

breakthrough. The smallest colloids of a polydisperse plume transport slowest, preferentially diffuse

into the surrounding matrix, and preferentially sorb onto the fracture surfaces. Polydispersity proves

to be an important factor to consider when examining the transport of colloid sized particles.

Because natural rock fractures have a range or distribution of apertures, colloid transport

was studied within the framework of a variable aperture fracture�rock matrix system. The variable

aperture nature of the fracture renders ßow and transport quasi�three�dimensional. The fracture

aperture is considered a stochastic variable described by a spatially correlated log�normal probability

density function. The new particle tracking algorithm is employed to simulate colloid transport in

single realizations of a variable aperture fracture. Ensemble averages of breakthrough curves are used

to analyze polydisperse colloid transport properties. Kinetic sorption of colloid onto the fracture

surfaces is incorporated into the model with results indicating that both the fracture aperture

variability and colloid polydispersity are important transport parameters.
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9.2 Conclusions

The Þnite size of the constituents of a colloid plume increase its effective ßow velocity

and decrease its effective dispersion in a water saturated, parallel plate fracture. Also, analytical

solutions for the transport of polydisperse colloid plumes in a uniform fracture subject to varied

boundary conditions show that polydispersity alone is a signiÞcant factor affecting plume transport.

Furthermore, small colloids travel slowest and preferentially sorb onto fracture walls.

A novel particle tracking algorithm with a speciÞed spatial step and a random time step

is derived and proves to be an efficient and accurate solution method when compared to analytical

and traditional particle tracking solutions.

Generalizing both new and traditional particle tracking schemes to include penetration of

polydisperse colloids into the fracture matrix and to incorporate both perfect sink (irreversible) and

kinetic (reversible) reaction at the fracture walls yielded signiÞcant results. The colloid transport

model of a single parallel plate fracture was found to be sensitive to polydispersity of the colloid

plume. Large colloids travel fastest and furthest along uniform aperture fractures. Small particles

preferentially diffuse into the fracture matrix. Furthermore, smaller particles show increased attach-

ment rates under both perfect sink and kinetic sorption conditions. Increasing the aperture of the

uniform fracture serves to reduce overall colloid deposition.

When the new particle tracking algorithm is extended to model a variable aperture fracture,

several important results are realized. Both fracture aperture variability and colloid polydispersity

are important parameters, increasing either serves to increase the dispersion of the plume throughout

the system. Again, small colloid travel slowest and preferentially sorb onto fracture surfaces. This

sorption rate increases for fractures with a higher variability in aperture.
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9.3 Recommendations for Future Research

Although this work addressed many issues related to polydisperse colloid transport in

saturated fractured media, other facets of ßow, colloid, and colloid�facilitated contaminant transport

in fractured media require further investigation. The most important of these are:

� Effective transport parameters for Þnitely sized particle are derived under the assumption that

the colloids are hard spherical particles. Naturally occurring colloids may be aspherical and

have signiÞcant surface charge. Incorporation of these colloid characteristics as well as wall

effects will further generalize the results.

� Although the analytical models presented in Chapter 4 have several advantages, some of the

inherent limitations are their inability: (a) to allow for colloid deposition rates as a function

of colloid surface coverage; (b) to account for variability in the aperture that is present in

real rock fractures; and (c) to account for gravitational forces. Nonetheless, these models can

provide means for verifying the accuracy of numerical solutions to more comprehensive models

for colloid transport in fractured subsurface formations.

� It may be possible to extend the new particle tracking scheme from a diffusive equation to one

that incorporates a drift velocity, thereby further generalizing the algorithm.

� Some of the limitations inherent to the models for colloid transport presented in Chapters 6

and 7 are their inability to account for (a) gravitational effects; and (b) particle entrapment

(clogging) between the fracture surfaces. Nonetheless, these models provide a starting point

for generalization of the solution to more complicated physical systems.

� The reduction in permeability with deposition of colloids because of a decrease in fracture

aperture ultimately leads to a time dependent fracture aperture and consequently an unsteady

velocity Þeld. Particle tracking models may be extended to account for such phenomena.



CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 118

� Colloid and contaminant co�transport may easily be incorporated into any of the particle

tracking algorithms. Co�transport has been an area of increasing concern and should be

modeled by particle tracking techniques within the context of fractured media.

� The effect of anisotropy on the transport of polydisperse colloids in a variable aperture fracture

should be considered.

� Particle tracking techniques should be applied to unsaturated ßow and transport of polydis-

perse colloids in a variable aperture fracture.

� As a further step toward modeling a fracture network, ßow and transport in a bifurcating

fracture needs to be examined (see Appendices E and F). A particle tracking algorithm may

be used to this end.

� The ultimate goals of this research are incorporation of many single fractures into a saturated

and unsaturated fracture network with general modeling of reactive polydisperse colloid and

contaminant co�transport subject to matrix diffusion and surface sorption.
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Appendix A

Governing Equations for Poiseuille

Fluid Flow

The Navier�Stokes equations for polyatomic Newtonian ßuids are [Happel and Brenner ,

1965]:

ρ
∂u

∂t
+ ρu ·∇u = −∇P + µ∇2u+ 1

3
µ∇ (∇ · u) + 2 (∇µ) ·∇u+ (∇µ)× (∇× u)

−2
3
(∇µ) (∇ · u) + κ∇ (∇ · u) + (∇κ) (∇ · u) + ρF, (A.1)

where κ is the bulk or volume viscosity; µ is the kinematic viscosity; ρ is the ßuid density; P

is the local ßuid pressure; F are the body forces acting on the ßuid (e.g., gravity); and u is the

three�dimensional velocity vector. If the ßuid is incompressible (i.e., ∇ · u = 0) then (A.1) reduces

to:

ρ
∂u

∂t
+ ρu ·∇u = −∇P + µ∇2u+ 2 (∇µ) ·∇u+ (∇µ)× (∇× u) + ρF. (A.2)

If the ßow is isothermal (i.e., constant bulk and kinematic viscosities), there is no viscosity gradient

and the incompressible Navier�Stokes equations (A.2) may be reduced to:

ρ
∂u

∂t
+ ρu ·∇u = −∇P + µ∇2u+ ρF. (A.3)
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Assuming that the only body force acting on the ßuid is gravity, F = −gz, the pressure and

gravitational body forces may be combined into a reduced pressure

P = P + ρgz. (A.4)

Fracture ßow is generally deÞned under the assumption of a steady�state, uniform pressure gradient

implying that

∂u

∂t
= 0. (A.5)

Substitution (A.4) and (A.5) into (A.2) yields a simpliÞed form of the Navier�Stokes equations:

µ∇2u− ρ (u ·∇)u = ∇P. (A.6)

The presence of the advective component of acceleration, (u·∇)u, causes the equation to be nonlinear

and not always amenable to analytical solution. In general, if the ßow is very slow (i.e., Re < 1),

the advective term may be considered negligible, affording an approximate solution. For the case of

steady ßow between parallel plates, the advective term vanishes identically because there is no ßow

in the y� or z�directions and the gradient of ßow is normal to the z�direction (see Appendix B).

The Þnal reduced form of the Navier�Stokes equations becomes

µ∇2u = ∇P. (A.7)
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Appendix B

Derivation of the Parabolic

Velocity ProÞle

The derivation of the parabolic velocity proÞle for laminar ßow between parallel plates

begins by assuming that there is a uniform pressure gradient within the plane of the fracture. The

average pressure gradient, ∇P , is given as (Po − Pi)/L where Po and Pi are the pressures at the

outlet and inlet of the fracture, respectively, and L is the length of the fracture. The Cartesian

coordinate system is deÞned so that x is parallel to ∇P , z is perpendicular to the fracture walls,

and y is perpendicular to x in the plane of the fracture. The top and bottom walls of the fracture

correspond to z = ±b/2.

The pressure gradient lies entirely in the plane of the fracture and has no z component. If

gravitational effects are considered, no change on the overall solution method will be affected as P

may be deÞned as p+ ρgz. The velocity Þeld has no component in the z�direction, necessitated by

the no ßow conditions at the boundary, z = ±b/2. Because the geometry of the system is constant

in x and y, the pressure gradient is uniform in the fracture. As such, the velocity vector can only be

a function z. Consequently, the advective component of the Navier�Stokes equation, (u ·∇)u can
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be expressed as:

(u ·∇)u = (u ·∇) (ux, uy, uz) = [u · (∇ux) ,u · (∇uy) ,u · (∇uz)] (B.1)

Because there are no velocity components in the y� and z�directions, and the velocity itself has only

an x component, the dot products above are 0. This removes the nonlinearity from the Navier�Stokes

equation (A.6) and reduces it to:

µ∇2u (z) = ∇P. (B.2)

∇P has already been deÞned as:

∇P =
µ
∂P

∂x
,
∂P

∂y
,
∂P

∂z

¶
=
¡∇P , 0, 0¢ (B.3)

Equating (B.2) and (B.3) indicates that the velocity components must satisfy:

∇2ux (z) = ∇P
µ
, ∇2uy (z) = 0, ∇2uz (z) = 0 (B.4)

The no slip boundary condition requires that u = 0 when z = ±b/2. Using these boundary conditions

and integrating the preceding equations twice yields:

ux (z) =
∇Pb2
2µ

∙
4
³z
b

´2
− 1
¸
, uy (z) = 0, uz (z) = 0 (B.5)

If the velocity along the centerline of the system (z = 0) is called Umax, then Umax can be deÞned

as −∇Pb2/2µ. Finally, this reduces to the standard Poiseuille equation:

ux (z) = Umax

∙
1− 4

³z
b

´2¸
. (B.6)
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Appendix C

Effective Parameters for

Irreversible Sorption

Consider two�dimensional, unsteady, advection and diffusion of reactive particles within a

uniform aperture fracture. The governing equation for polydisperse particle transport is given by:

∂ndp (x, z, t)

∂t
= Ddp

∙
∂2ndp (x, z, t)

∂x2
+
∂2ndp (x, z, t)

∂z2

¸
− ux (z)

∂ndp (x, z, t)

∂x
, (C.1)

where ndp is the temporally and spatially varying number density (concentration) of polydisperse

particles with diameter dp; Ddp is the molecular diffusion coefficient; ux (z) is the ßow proÞle within

the fracture; x is the coordinate in the axial or ßow direction; z is the coordinate perpendicular

to the fracture wall; and t is time. Fully developed Poiseuille ßow is assumed to exist within the

semi�inÞnite, uniform aperture fracture created by the no�slip boundary conditions. Furthermore,

it is assumed that the ßuid density and dynamic viscosity are constant and that gravitational effects

as well as particle�particle interactions are negligible.
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One boundary condition imposed on the system is that the particles are neutrally buoyant,

thereby eliminating the ßux of particles across the fracture centerline,

∂ndp (x, 0, t)

∂z
= 0. (C.2)

A second boundary condition states that there is a ßux of particles at the fracture walls due to

attachment expressed as

Ddp

∂ndp (x,±b/2, t)
∂z

= −kfndp (x,±b/2, t) . (C.3)

The transverse average colloid concentration is deÞned by integrating the particle concentration

across the fracture aperture and dividing by the aperture as follows

ndp (x, t) =
1

b

Z b
2

− b
2

ndp (x, z, t) dz. (C.4)

Upon averaging equation (C.1) across the fracture and substituting the boundary condition (C.3)

into the result, the governing transport equation becomes

∂ndp (x, t)

∂t
= Ddp

∂2ndp (x, t)

∂x2
−
Z b

2

− b
2

ux (z)
∂ndp (x, z, t)

∂x
dz − kfndp (x,±b/2, t) . (C.5)

In constructing a dispersion approximation to equation (C.1), the primary goal is to transform the

preceding equation into a form resembling

∂ndp (x, t)

∂t
= Deff

∂2ndp (x, t)

∂x2
− Ueff

∂ndp (x, t)

∂x
dz +Keffndp (x, t) , (C.6)

and in the process to identify the effective dispersion, advection, and reaction coefficients Deff , Ueff ,

and Keff , respectively.

For systems where transverse variation of colloid concentration is slight, the following

approximation to the governing equation (C.1) may be entertained

∂2ndp (x, z, t)

∂z2
=

1

Ddp

∙
∂ndp (x, t)

∂t
−Ddp

∂2ndp (x, t)

∂x2

¸
+
Umax
Ddp

∙
1− 4

³z
b

´2¸ ∂ndp (x, t)

∂x
, (C.7)

where ux (z) was replaced by the expression for the parabolic Poiseuille velocity proÞle. Integrating

both sides of (C.7) with respect to z and assuming that all derivative terms are very nearly constant
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with respect to z yields

∂ndp (x, z, t)

∂z
=

z

Ddp

∙
∂ndp (x, t)

∂t
−Ddp

∂2ndp (x, t)

∂x2

¸
+
Umaxb

Ddp

∙
z

b
− 4
3

³z
b

´3¸ ∂ndp (x, t)

∂x
+C, (C.8)

where C is an integration constant. Upon application of the non�dispersive ßux boundary condition

(C.2) across the centerline due to neutral particle buoyancy, the integration constant is eliminated.

A second integration of (C.7) yields

ndp
(x, z, t) =

z2

2Ddp

∙
∂ndp

(x, t)

∂t
−Ddp

∂2ndp
(x, t)

∂x2

¸
+
Umaxb

2

2Ddp

∙³z
b

´2
− 2
3

³z
b

´4¸ ∂ndp (x, t)

∂x
+ ncl (x, t) , (C.9)

where ncl (x, t) is an integration constant representing the concentration at the centerline of the

fracture.

Averaging the colloid concentration in (C.9) across the fracture aperture yields

ndp (x, t) =
b2

24Ddp

∙
∂ndp (x, t)

∂t
−Ddp

∂2ndp (x, t)

∂x2

¸
+
3Umaxb

2

80Ddp

∂ndp (x, t)

∂x
+ ncl (x, t) . (C.10)

Rearranging (C.9) to solve for ncl (x, t) and substituting the result into (C.10) allows ndp (x, t) to be

expressed in terms of the average concentration across the fracture rather than the concentration at

the centerline:

ndp (x, z, t) =
b2

2Ddp

∙³z
b

´2
− 1

12

¸ ∙
∂ndp (x, t)

∂t
−Ddp

∂2ndp (x, t)

∂x2

¸
+
Umaxb

2

2Ddp

∙³z
b

´2
− 2
3

³z
b

´4
− 3

40

¸
∂ndp (x, t)

∂x
+ ndp (x, t) , (C.11)

Substituting (C.11) into the boundary condition (C.3) and evaluating the entire expression at the

fracture wall, z = b/2, results in a modiÞed differential equation for average colloid concentration

given by

∂ndp (x, t)

∂t
−Ddp

∂2ndp (x, t)

∂x2
= −Umax

4 + 4
5Da

6 +Da

∂ndp (x, t)

∂x
− 12kf
b (6 +Da)

ndp (x, t) , (C.12)

where the Damköhler number, a dimensionless measure of the tendency for reaction versus the

tendency for diffusive transport that is a function of particle size through Ddp , is deÞned as

Da =
kfb

Ddp

. (C.13)
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Note that for kf = 0 the one�dimensional advection diffusion equation for average colloid concen-

tration results

∂ndp (x, t)

∂t
= Ddp

∂2ndp (x, t)

∂z2
− 2
3
Umax

∂ndp (x, t)

∂x
. (C.14)

Eliminating ∂ndp (x, t) /∂t−Ddp∂
2ndp (x, t) /∂x

2 by equating the equations (C.11) and (C.12) yields

the following expression for the colloid concentration

ndp (x, z, t) =

½
1− 6Da

6 +Da

∙³z
b

´2
− 1

12

¸¾
ndp (x, t)

+

½³z
b

´2
− 2
3

³z
b

´4
− 3

40
− 4 +

4
5Da

6 +Da

∙³z
b

´2
− 1

12

¸¾
Umaxb

2

2Ddp

∂ndp (x, t)

∂x
. (C.15)

The preceding equation can be used to approximate all of the effective parameters in equa-

tion (C.6). In particular, using equation (C.15) to evaluate terms− R b/2−b/2 ux (z) [∂ndp
(x, z, t) /∂x]dz−

kfndp (x,±b/2, t) in (C.5) (ignoring higher order derivative terms) yields the following one�dimen-

sional advection�diffusion equation with decay

∂ndp (x, t)

∂t
=

∙
Ddp +

2

945

U2maxb
2

Ddp

µ
1− 7

10

Da

6 +Da

¶¸
∂2ndp (x, t)

∂x2

−2
3
Umax

µ
1 +

3

10

Da

6 +Da

¶
∂ndp (x, t)

∂x
dz − 12Ddp

b2
Da

6 +Da
ndp (x, t) . (C.16)

From the preceding equation the appropriate effective parameters are speciÞed:

Deff = Ddp +
2

945

U2maxb
2

Ddp

µ
1− 7

10

Da

6 +Da

¶
, (C.17)

Ueff =
2

3
Umax

µ
1 +

3

10

Da

6 +Da

¶
, (C.18)

Keff =
12Ddp

b2
Da

6 +Da
. (C.19)
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Appendix D

Derivation of the Harmonic Mean

The harmonic mean equation is an exact expression for the equivalent hydraulic aperture

corresponding to the pressure drop and ßow between adjacent fracture aperture elements. Consider

two elements of equal size ∆x × ∆y with aperture bi,j and bi,j+1, respectively. Employing the

Bousinnesque or �cubic law� equation to approximate the ßow between these elements as linear ßow

between �equivalent� parallel plates, the ßow in the x�direction may be expressed as:

q = − ∆P

12µ∆x
b3eq∆y, (D.1)

where µ is the kinematic viscosity; ∆P = Pi,j+1−Pi,j is the pressure drop between adjacent element

centers; and beq is the equivalent aperture. Conservation of mass states that the ßow out of element

i, j in the x�direction is equal to ßow into adjacent element i, j+1. Applying the cubic law equation

to element i, j produces:

qi,j = −PB − Pi,j
12µ∆x2

b3i,j∆y, (D.2)

where PB is the pressure at the boundary of the adjacent elements. For element i, j +1, the ßow is:

qi,j+1 = −Pi,j+1 − PB
12µ∆x2

b3i,j+1∆y, (D.3)
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Conservation of mass requires that (D.2) and (D.3) be equal. Solving for PB yields:

PB =
Pi,jb

3
i,j + Pi,j+1b

3
i,j+1

b3i,j + b
3
i,j+1

. (D.4)

Substituting (D.4) into (D.2) yields an expression for the ßow rate between cells

qi,j = −
Pi,jb

3
i,j+Pi,j+1b

3
i,j+1

b3
i,j
+b3

i,j+1
− Pi,j

12µ∆x2
b3i,j∆y. (D.5)

Equation (D.5) may be simpliÞed to

qi,j = −Pi,j+1 − Pi,j
12µ∆x

2b3i,j b
3
i,j+1

b3i,j + b
3
i,j+1

∆y. (D.6)

Equation (D.6) is identical in form to (D.1) with the equivalent hydraulic aperture given by:

beq =

Ã
2b3i,jb

3
i,j+1

b3i,j + b
3
i,j+1

! 1
3

. (D.7)
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Appendix E

Conformal Mapping

As most practical problems of interest have solutions over irregular domains, generation of

a boundary�Þtted coordinate system for the purpose of modeling systems with curved boundaries is

an essential part of many Þnite difference numerical problems. In most partial differential systems

the boundary conditions exert the dominant inßuence on the character of the solution, and the use of

grid points not coincident with the boundaries places the most inaccurate difference representation

in precisely the region of greatest sensitivity. The generation of a curvilinear coordinate system with

coordinate lines coincident with all boundaries is a critical part of a general numerical solution of

an irregularly shaped partial differential system.

The method of generating boundary�Þtted coordinate systems begins by assuming that the

curvilinear coordinates in (ξ, η) are solutions of an elliptic partial differential system in the physical

plane with Dirichlet (constant value) boundary conditions on all boundaries. That is, ξ and η are

speciÞed as functions of x and y on all boundaries. This so�called conformal mapping transforms

the irregularly shaped (x, y) domain into a rectangular (ξ, η) domain where gridlines are assigned

according to the solution of the elliptical differential equations presented below. Control of the

spacing of the coordinate lines on the original (x, y) domain is easily accomplished because these

points are speciÞed a priori. Typically these points are clustered (have higher density) near region
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where large gradients in the solution are expected. In the case of bifurcating ßow, the grid points

should be grouped near the bifurcation itself.

The spacing of the coordinate lines in the transformed Þeld may be controlled by varying the

elliptic generating system for the coordinates. One method for controlling the (ξ, η) grid spacing is

to add inhomogeneous terms, P (ξ, η) and Q (ξ, η), transforming the Laplace equations into Poisoon

equations, so that the generating system becomes,

∇2ξ = P (ξ, η) , (E.1)

∇2η = Q (ξ, η) . (E.2)

The numerical solutions of (E.1) and (E.2) map the coordinates (x, y) onto the gridpoints

(ξ, η). However, ξ = ξ (x, y) and η = η (x, y) are known while x = x (ξ, η) and y = y (ξ, η) are

not. Because both coordinate systems are monotonically increasing, the Laplace equations (E.1)

and (E.2) are invertible and can be transformed by the chain rule. Any function f (x, y) may be

represented as a function of ξ and η as follows

f (x, y) = f (x (ξ, η) , y (ξ, η)) = f (ξ, η) . (E.3)

The chain rule applied to f(ξ, η) yields Þrst derivative terms of

∂f

∂ξ
=

∂f

∂x

∂x

∂ξ
+
∂f

∂y

∂y

∂ξ
, (E.4)

∂f

∂η
=

∂f

∂x

∂x

∂η
+
∂f

∂y

∂y

∂η
. (E.5)

Solving these equations for ∂f/∂x and ∂f/∂y yields

∂f

∂x
=

1

J

µ
∂f

∂ξ

∂y

∂η
− ∂f
∂η

∂y

∂ξ

¶
, (E.6)

∂f

∂y
=

1

J

µ
∂f

∂η

∂x

∂ξ
− ∂f
∂ξ

∂x

∂η

¶
, (E.7)

where the quantity J is the Jacobian transformation given by

J =
∂x

∂ξ

∂y

∂η
− ∂x
∂η

∂y

∂ξ
. (E.8)

Similarly, the second derivatives of f(x, y) are
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∂2f

∂x2
=

1

J2

"µ
∂y

∂η

¶2
∂2f

∂ξ2
− 2∂y

∂ξ

∂y

∂η

∂2f

∂ξ∂η
+

µ
∂y

∂ξ

¶2
∂2f

∂η2

#

+
1

J3

(∙µ
∂y

∂η

¶2
∂2y

∂ξ2
− 2∂y

∂ξ

∂y

∂η

∂2y

∂ξ∂η
+

µ
∂y

∂ξ

¶2
∂2y

∂η2

¸µ
∂x

∂η

∂f

∂ξ
− ∂x
∂ξ

∂f

∂η

¶

+

"µ
∂y

∂η

¶2
∂2x

∂ξ2
− 2∂y

∂ξ

∂y

∂η

∂2x

∂ξ∂η
+

µ
∂y

∂ξ

¶2
∂2x

∂η2

#µ
∂y

∂ξ

∂f

∂η
− ∂y
∂η

∂f

∂ξ

¶)
(E.9)

∂2f

∂y2
=

1

J2

"µ
∂x

∂η

¶2
∂2f

∂ξ2
− 2∂x

∂ξ

∂x

∂η

∂2f

∂ξ∂η
+

µ
∂x

∂ξ

¶2
∂2f

∂η2

#

+
1

J3

½"µ
∂x

∂η

¶2
∂2y

∂ξ2
− 2∂x

∂ξ

∂x

∂η

∂2f

∂ξ∂η
+

µ
∂x

∂ξ

¶2
∂2f

∂η2

#µ
∂x

∂η

∂f

∂ξ
− ∂x
∂ξ

∂f

∂η

¶

+

"µ
∂x

∂η

¶2
∂2f

∂ξ2
− 2∂x

∂ξ

∂x

∂η

∂2x

∂ξ∂η
+

µ
∂x

∂ξ

¶2
∂2f

∂η2

#µ
∂y

∂ξ

∂f

∂η
− ∂y
∂η

∂f

∂ξ

¶¾
. (E.10)

Replacing arbitrary function f(x, y) with ξ(x, y) in (E.9), and with η(x, y) in (E.10) allows

substitution of the preceding equations into the Laplace equations (E.1) and (E.2). Rearranging

yields, in non�conservative form,

α
∂2x

∂ξ2
− 2β ∂

2x

∂ξ∂η
+ γ

∂2x

∂η2
+ J2

µ
P
∂x

∂ξ
+Q

∂x

∂η

¶
= 0, (E.11)

α
∂2y

∂ξ2
− 2β ∂

2y

∂ξ∂η
+ γ

∂2y

∂η2
+ J2

µ
P
∂y

∂ξ
+Q

∂y

∂η

¶
= 0, (E.12)

where

α =

µ
∂x

∂ξ

¶2
+

µ
∂y

∂ξ

¶2
, (E.13)

β =
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η
, (E.14)

γ =

µ
∂x

∂η

¶2
+

µ
∂y

∂η

¶2
. (E.15)

All derivatives in (E.11) and (E.12) are approximated by the following second�order central

Þnite difference expressions with ∆ξ = ∆η:

αi,j (xi+1,j − 2xi,j + xi−1,j)− 1
2βi,j (xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1)

+γi,j (xi,j+1 − 2xi,j + xi,j−1)

+J2i,j [(xi+1,j − xi−1,j)Pi,j + (xi,j+1 − xi,j−1)Qi,j ] = 0, (E.16)
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αi,j (yi+1,j − 2yi,j + yi−1,j)− 1
2βi,j (yi+1,j+1 − yi+1,j−1 − yi−1,j+1 + yi−1,j−1)

+γi,j (yi,j+1 − 2yi,j + yi,j−1)

+J2i,j [(yi+1,j − yi−1,j)Pi,j + (yi,j+1 − yi,j−1)Qi,j ] = 0. (E.17)

The second order accurate Þnite difference forms for the coefficients αi,j , βi,j , γi,j , and Ji,j for each

grid element are,

αi,j =
1

4

h
(xi+1,j − xi−1,j)2 + (yi+1,j − yi−1,j)2

i
, (E.18)

βi,j =
1

4
[(xi+1,j − xi−1,j) (xi,j+1 − xi,j−1) + (yi+1,j − yi−1,j) (yi,j+1 − yi,j−1)] , (E.19)

γi,j =
1

4

h
(xi,j+1 − xi,j−1)2 + (yi,j+1 − yi,j−1)2

i
, (E.20)

Ji,j =
1

4
[(xi+1,j − xi−1,j) (yi,j+1 − yi,j−1)− (xi,j+1 − xi,j−1) (yi+1,j − yi−1,j)] . (E.21)

The Þnite difference forms of the Poisson equations, (E.16) and (E.17), are solved numerically on the

grid ξ = i, η = j for i = 0, 1, · · · , Imax and j = 0, 1, · · · , Jmax after the one�to�one correspondence

between (x, y) and (ξ, η) points is speciÞed. The parameters, P and Q, that control the deformation

of the grid in (ξ, η) are set to zero for this problem because such Þne grid control is not necessary. The

set of nonlinear simultaneous difference equations is solved by point successive overrelaxation (SOR)

iteration [Press et al., 1992, pg. 857]. SOR iteration is a modiÞcation to Gauss�Seidel iteration where

an initial guess is chosen for the solutions to (E.16) and (E.17), and subsequent reÞned solutions are

determined according to standard iteration equations [Hoffman, 1992, p. 57]. The locally optimized

overrelaxation parameter is [Thompson et al., 1977]:

Ωi,j =
2

1 +
¡
1− τ2i,j

¢1/2 , (E.22)

where

τi,j =
αi,j

αi,j + γi,j
cos

µ
π

Imax + 1

¶
+

γi,j
αi,j + γi,j

cos

µ
π

Jmax + 1

¶
. (E.23)

For the bifurcating fracture, the system is divided into four regions as shown in Figure E.1.

The geometry in the (x, y) plane is deÞned by assigning a value to the angle θ and by prescribing

the lengths r, t, and u of JH, HF, and FE, respectively. In Figure E.1 AC is the line y = 1, CE is
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Figure E.1: Coordinate mapping of the bifurcating fracture considered in this study.

y = x tan θ+u sec θ, FE is y = −x cot θ+t csc θ. BC and CD are given lengths 0.5 and 1, respectively,

and GH has length s = csc θ− u cot θ+1 so that GD is parallel to FE. The parameters are selected

such that r = t = 10 and u = 1.

The grid generation algorithm uses Þve prescribed integers to describe grid spacing: MI,

MII, MIII, MIV, and N . It is of note that Jmax = N and Imax = MI +MII +MIII +MIV . Along

JI and AB points are placed with separations 1/2MII + %, 1/2MII + 2%, · · · , 1/2MII +MI% moving

from BI to AJ, with % chosen such that the sum of the widths of the MI intervals is equal to the

length of AB. The points on JI and AB provide nodal values at η = 0 and η = Jmax, respectively, for

ξ = i, where i = 0, 1, · · · ,MI − 1. Along the grid boundary BC points are selected to form equally

spaced intervals of width 1/2MII and the positions of these points give x and y at the boundary

nodes ξ = i for i = MI,MI + 1, · · ·MI +MII, η = Jmax. Similarly, equally spaced points along
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IH provide the values of x and y at the nodes ξ = i for i = MI,MI + 1, · · ·MI + MII, η = 0.

Along CD the points are selected to form MIII equally spaced intervals of width 1/MIII. HG is

also divided into MIII equally spaced intervals. On DE and GF points are selected with separations

1/MIII+ ς, 1/MIII+2ς, · · · , 1/MIII+MIVς, with ς chosen such that the sum of the widths of theMIV

intervals is equal to the length of GF. The upstream boundary AJ and the downstream boundary FE

are divided into N equal subintervals to provide boundary values ξ = 0 and ξ = Imax, respectively

for η = j, j = 0, 1, · · · , Jmax.

To assign initial values to x and y at interior nodes for the SOR algorithm, suppose that

for i = 1, 2, · · · , Imax − 1 the points in Figure E.1 corresponding to ξ = i, η = 0 are joined by a

straight line to the point that corresponds to ξ = i, η = Jmax. Initial values at ξ = i, η = j for

j = 1, · · · , Jmax − 1 are given by points on this line. For i = 0, 1, · · · ,MI +MII the points are the

intersections of the straight line with the horizontal lines through boundary points on AJ and for

i = MI +MII + 1,MI +MII + 2, · · · , Jmax the points are the intersections of the straight line with

lines of gradient tan θ through the boundary points on FE.

To avoid singularities (inÞnite vorticity) at boundary locations with slope discontinuity,

boundary Þtted coordinates are used to remove the corner at C and the corner at H is replaced by

a blunt stagnation point. To remove the corner at C, points are selected on BC and CD that are

situated 0.2 units distant from C and a unique cubic polynomial is speciÞed that matches position

and boundary slope at each of these points. That is, the y component of a boundary node with

a corresponding x location between the two points is replaced by the y value yielded when that x

value is substituted into the cubic. To introduce a blunt nose at the branching point, H is moved

from the origin to a location of (0.2, 0). The line IH is then subdivided into MII equally spaced

intervals to give boundary values at η = 0, ξ = i for i =MI,MI+1, · · · ,MI+MII. Boundary points

corresponding to η = 0, ξ > (MI +MII) where x < 0.4 are replaced by points on the upper branch

of the parabola y2 = 0.8 (x− 0.2) tan2 θ. This parabola passes smoothly through the boundary
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Figure E.2: Nodal mapping of the bifurcating fracture considered in this study. Here, MI = 40,
MII = 20, MIII = 20, MIV = 40, and N = 20.

point (0.4, 0.4 tan θ) with gradient tan θ. A typical grid for this smoothed region, generated by the

coordinate mapping algorithm is shown in Figure E.2.
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Appendix F

Bifurcating Flow Equations

Finite difference forms of the Navier�Stokes equations are solved to specify the laminar ßow

Þeld in a bifurcating fracture. Because of the symmetric nature of the system, only the top half of

the fracture need be modeled as the bottom half has the mirror image ßow Þeld. The Navier�Stokes

equations in two dimensions in a Cartesian coordinate system for incompressible ßow are:

ρ

µ
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

¶
= ρgx − ∂P

∂x
+ µ

µ
∂2u

∂x2
+
∂2u

∂y2

¶
(F.1)

ρ

µ
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

¶
= ρgy − ∂P

∂y
+ µ

µ
∂2v

∂x2
+
∂2v

∂y2

¶
, (F.2)

where ρ is the ßuid density; u is the velocity in the x�direction; v is the velocity in the y�direction;

gx and gy are the components of gravitational acceleration in the x� and y�directions, respectively;

P is the pressure; and µ is the dynamic viscosity. Taking the derivative of (F.2) with respect to x

and subtracting the derivative of (F.1) with respect to y eliminates the pressure and gravity terms

in each and allows the recasting of these equations in terms of vorticity, ω, and stream function, ψ.

Recall that the stream functions and vorticity are given by:

u =
∂ψ

∂y
, (F.3)

v = −∂ψ
∂x
, (F.4)
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ω =
∂v

∂x
− ∂u
∂y
. (F.5)

The Navier�Stokes equations become:

∂ω

∂t
+
µ

ρ

µ
∂ψ

∂y

∂ω

∂x
− ∂ψ
∂x

∂ω

∂y

¶
= ∇2ω, (F.6)

Because there are two unknowns, ψ and ω, a second equation is necessary. Substituting

(F.3) and (F.4) into (F.5) produces:

∇2ψ = −ω. (F.7)

Equations (F.6) and (F.7) must be solved simultaneously to describe the ßow Þeld.

The strength of using boundary Þtted coordinates lies in the ability to use coordinate map-

ping to transform a complex domain into a simple rectangular domain. Although this leads to more

complex forms of the governing partial differential equations, it allows the use of traditional Þnite

differencing to solve the problem in its entirety. Coordinate mapping was described in Appendix E.

Instead of specifying the more complex (x, y) coordinates, coordinates in (ξ, η) are given. Further-

more, as there is a unique one to one correspondence between system points, conformal mapping

produces ξ = ξ (x, y) and η = η (x, y). Because both coordinate values are monotonically increasing,

these relationships are invertible and x = x (ξ, η) and y = y (ξ, η). Any value of a stream line at a

point can therefor be written as a function of ξ and η as

ψ (x, y) = ψ (x (ξ, η) , y (ξ, η)) = ψ (ξ, η) . (F.8)

In Appendix E, the complex region in the (x, y) plane was mapped onto a rectangle, with boundaries

that coincide with coordinate lines (see Figure E.1). However, the governing partial differential

equations, (F.6) and (F.7), must be described in terms of ξ and η instead of x and y. Before the

complete Navier�Stokes equations in terms of ξ and η are given, the individual derivative terms are

presented. Using the chain rule to take derivatives of (F.8) produces

∂ψ

∂ξ
=

∂ψ

∂x

∂x

∂ξ
+
∂ψ

∂y

∂y

∂ξ
(F.9)

∂ψ

∂η
=

∂ψ

∂x

∂x

∂η
+
∂ψ

∂y

∂y

∂η
. (F.10)
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Solving these equations for ∂ψ/∂x and ∂ψ/∂y yields

∂ψ

∂x
=

1

J

µ
∂ψ

∂ξ

∂y

∂η
− ∂ψ
∂η

∂y

∂ξ

¶
(F.11)

∂ψ

∂y
=

1

J

µ
∂ψ

∂η

∂x

∂ξ
− ∂ψ
∂ξ

∂x

∂η

¶
, (F.12)

where the quantity J is the Jacobian transformation given by (E.8). Similarly the second derivatives

are given by

∂2ψ

∂x2
=

1

J2

"µ
∂y

∂η

¶2
∂2ψ

∂ξ2
− 2∂y

∂ξ
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#
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1
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, (F.13)

∂2ψ
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1
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The transformed Laplace equation for the stream function in non�conservative form is:

∇2ψ =
1

J2

∙µ
∂x

∂η

2

+
∂y

∂η

2¶ ∂2ψ
∂ξ2

− 2
µ
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η

¶
∂2ψ

∂ξ∂η
+

µ
∂x

∂ξ

2

+
∂y

∂ξ

2¶ ∂2ψ
∂η2

¸
+∇2ξ ∂ψ

∂ξ
+∇2η ∂ψ

∂η
. (F.16)

Recall that the Laplacians of ξ and η were set to zero in the grid generation step as described in

Appendix E thereby eliminating the terms involving ∇2ξ and ∇2η.
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The governing equations, (F.6) and (F.7), may now be expressed on the transformed rec-

tangular grid as:

∂ω

∂t
+
1

J

µ
∂ψ

∂η

∂ω

∂ξ
− ∂ψ
∂ξ

∂ω

∂η

¶
=
ν

J2

µ
α
∂2ω

∂ξ2
− 2β ∂

2ω

∂ξ∂η
+ γ

∂2ω

∂η2

¶
, (F.17)

1

J2

µ
α
∂2ψ

∂ξ2
− 2β ∂

2ψ

∂ξ∂η
+ γ

∂2ψ

∂η2

¶
= −ω, (F.18)

respectively, where α, β, and γ are deÞned by (E.13), (E.14), and (E.15), respectively.

In addition to the preceding governing equations, boundary conditions must be speciÞed

for both ψ and ω on all four sides of the (ξ, η) grid. There is half�parabolic inßow at ξ = 0 and

parabolic outßow at ξ = Imax. The stream function and vorticity at the inßow boundary take the

forms [Bramley and Dennis, 1984; Bramley and Sloan, 1987; Lonsdale et al., 1988]:

ψ0,j =
1

2

µ
j

Jmax

¶"
3−

µ
j

Jmax

¶2#
, (F.19)

ω0,j =

µ
12b2

d2

¶µ
j

Jmax

¶
. (F.20)

Along the outßow boundary the stream function and vorticity are:

ψImax,j =

µ
j

Jmax

¶2 ∙
3− 2

µ
j

Jmax

¶¸
, (F.21)

ωImax,j =
6

d2

∙
2

µ
j

Jmax

¶
− 1
¸
. (F.22)

As seen in Figure E.1, 0.5b = 1 is the half�aperture of the parent fracture and d = u is the aperture

of the daughter fractures.

Along η = 0, the stream function is assigned a value of ψ = 0 and along η = Jmax, the

stream function has a value of ψ = 1. Further, all order derivatives of the stream function in the ξ

direction are zero along solid boundaries as are Þrst derivatives in the η direction.

At the lower wall given by η = 0 there is no vorticity before the bifurcation. After this

point, along η = 0 and for the whole of the length of η = Jmax the no�slip boundary condition is

enforced. The vorticity at solid boundaries is determined by Þrst rewriting the stream function in a
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Figure F.1: Contour plot of the steamlines in a bifurcating fracture.

Taylor Series Expansion (TSE) from the boundary into the fracture. The TSE about η = 0 in the

positive η direction is:

ψi,0 = ψi,1 +∆η
∂ψi,1
∂η

+
(∆η)

2

2

∂2ψi,1
∂η2

+O (∆η)3 . (F.23)

Recalling that derivatives terms of ψ with respect to ξ are zero, using (F.7) the vorticity at the wall

can be rewritten as

ωi,0 =
1

J2

"µ
∂2x

∂ξ2

¶2
+

µ
∂2y

∂ξ2

¶2#
∂2ψ

∂η2
. (F.24)

Using the fact that ∂ψ/∂ξ = ∂ψ2/∂ξ2 = ∂ψ/∂η = 0 at the wall and substituting ∂2ψi,1/∂η
2 from

(F.23) yields the following boundary vorticity

ωi,0 =
2

J2

"µ
∂2x

∂ξ2

¶2
+

µ
∂2y

∂ξ2

¶2#
(ψi,0 − ψi,1) , (F.25)

for the bottom wall after the bifurcation and by a similar expression for the whole of the top wall

of the fracture where η = Jmax.

The coupled partial differential equations (F.17) and (F.18) are solved for ψ and ω. Vorticity

is initially assumed to be zero everywhere in the system and (F.18) is solved subject to the previously

deÞned boundary conditions using a fully implicit compact matrix solver [Press et al., 1992, p. 1020].
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The stream functions obtained from the solution (F.18) are used in an explicit scheme marching in

time to solve for the vorticity in (F.17). The vorticity is then substituted back into (F.18) and the

process is repeated until a steady state is reached for the vorticity. The resulting streamlines for the

top half of a bifurcating fracture are shown in Figure F.1.
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