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ABSTRACT OF THE THESIS 

Non-Aqueous Phase Drop Formation and Migration in a Uniform Water Saturated 

Fracture 

By 

Kent Michael Pumphrey 

Master of Science in Civil Engineering 

University of California, Irvine, 2002 

Professor Constantinos Chrysikopoulos, Chair 

 

A theoretical model was developed for determining the size of a non aqueous 

phase liquid drop (NAPL) forming within a parallel wall fracture. The drop’s final 

size is dependent on the drop’s motion during its formation.  The model was 

developed by first defining the macroscopic forces acting on the drop during its 

formation within the fracture and then applying Newton’s 2nd Law to determine its 

motion.  The final drop size was determined by calculating the moment the drop 

moves far enough to separate from its NAPL source.  This calculation was done using 

a 4th order Runge-Kutta numerical method on the drop’s equations of motion.  The 

drop diameters calculated were on the order of 1.5 times the NAPL entrance aperture 

dimension.  The model was also compared to available experimental results and 

showed satisfactory agreement. 

A theoretical two dimensional model was also developed for the motion of the 

drop and the transient contaminant plume resulting from the dissolution of a single  

vii 



component NAPL drop moving within a water saturated fracture with an aperture  

much larger than the diameter of the drop.  A solution was derived for the 

longitudinal and normal terminal velocities of a single drop moving within a fracture 

and was calculated by equating the drop’s buoyancy force to the drag force acting on 

the drop.  A time and space dependant solution for the two-dimensional advection 

dispersion equation was obtained by assuming the drop, and the contaminant plume 

generated by the drop, are significantly smaller than the fracture’s aperture and 

therefore do not interact with the fracture walls.  An analytical solution was obtained 

by performing two separate Fourier transform, one with respect to the fracture’s 

longitudinal axis and the other with respect to the axis normal to the fracture’s walls.  

A TCE drop of 1 μm radius generated stable contaminant plumes dimensions, at 

solute concentrations of 5ppm, which were on the order of 600 mm.  These plumes 

are significantly larger than the drop and aperture of the fracture, therefore the 

assumption that the drop’s contaminant plume will not interact with the fracture walls 

is false and that the fracture walls must be taken into account when analyzing this 

system.   
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 1 

INTRODUCTION 

Non-aqueous phase liquids (NAPLs) have played a large role in contaminating 

aquifers through out much of the industrial world [Bellma and Kueper, 1999].  These 

contaminants typically consist of immiscible organic liquids, such as trichloroethylene 

(TCE), tetrachloroethylene (PCE), and have been in use since the 1940’s in industries 

such as dry cleaning, metal degreasing, printing and photographic operations [Bellma 

and Kueper, 1999].   Past releases of NAPLs into the sub-surface have contaminated 

thousands of sites through out the industrialized world and have created quite a concern 

among communities due to the health risks generated by contaminated public drinking 

water.  NAPLs typically have a low water solubility (PCE, for example, has a water 

solubility of 150mg/L at 25o C) and concentrations of PCE as low as 5 ppm can create a 

health hazard when contained in drinking water [Fetter, 1993].  Subsurface 

contamination coupled with the difficulties associated with removing NAPLs from any 

contaminated aquifer make it imperative that research continues in order to understand 

fully on how NAPLs interact within the subsurface so that appropriate remediation 

solutions maybe obtained.  

The movement of NAPL contaminants within a water saturated fractured media has 

become a topic of significant research in recent years.  Large portions of the 

industrialized areas of North America and Europe are located in geologic areas where 

the underlying strata is made-up of large arrays of surface or near surface fractured 

bedrock, such as sandstone or igneous rock [Parker et al., 1994].  Because of the 

industrial activities in these areas there is an increased risk of subsurface contamination 

due to accidental spills or intentional deposits of contaminants into the surrounding 

environment.  When a NAPL enters into the subsurface, it migrates as a separate phase 
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downward through the unsaturated zone and into the saturated zone.  If the subsurface 

contains an array of fractures, the contaminant will prefer to migrate into these 

fractures and use these as a means for movement within the subsurface medium. This 

preference greatly enhances the motion of the contaminant helping the NAPL to move 

quicker and deeper into the subsurface and thus contaminating larger portions of 

bedrock.  Any increase in the NAPL spreading will make it much more difficult to 

remove it from the subsurface and will create a persistent and continuous source of 

aqueous phase contamination for a long period of time [VanderKwaak and Sudicky, 

1996].  Therefore, a more thorough understanding of the mechanisms involved in 

NAPL migration within a fractured geologic medium is essential in determining the 

best means for dealing with the remediation of a contaminated fractured formation. 

Ground water movement and contaminant transport is different within a fractured 

geologic material when compared to a porous medium.  In a fractured medium, the 

ground water, and any immiscible liquids contained within, tend to move only within 

the fractures themselves and migrate throughout the fracture array.  A NAPL is less 

likely to disperse out of the fracture and into the surrounding bedrock due to a saturated 

hydraulic conductivity value that is several orders of magnitude larger than the 

saturated hydraulic conductivity value of any rock matrix [Abdel-Salam and 

Chrysikopoulos, 1996].  The fracture’s larger relative hydraulic conductivity provides 

an easier flow path for the water, plus its entrained contaminants, to move through.  

This creates a situation where the ground water and entrained NAPL will prefer to stay 

within the fractures and not migrate into the bedrock.  Also the groundwater flow rates 

are typically higher within fractures when compared to groundwater flow rates within 

aquifers.  This allows the contaminants to migrate at higher velocities when traveling in 
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a fracture array and to spread faster and consequently to migrate longer distances.  

Ground water and the entrained contaminants also have the potential of infiltrating 

a much larger bulk volume of fractured geological formation, when compared to a non-

fractured porous medium.  A typical fractured geological medium contains a volume of 

void space that can range from 1% to .001% of the total bulk volume.  This value is 

considerable less than a typical rock matrix porosity, which can range anywhere from 

34% to 60% for clays or 5% to 30% for sandstone rocks [Domenico and Schwartz, 

1990].  Therefore, a much larger volume of fractured medium, as compared to a non-

fractured porous medium, is required in order to create an equivalent amount of void 

volume [Feenstra and Cherry, 1988].  Because groundwater and contaminants can only 

move within these void spaces, a given volume of contaminant released into a fractured 

medium will penetrate deeper and spread farther than a comparable release into a 

porous medium.  

There have been several recent papers on contaminant transport in fractured rock 

with the majority focusing on the migration of contaminant plumes by means of ground 

water movement within a fracture network.  Publications by VanderKwaak and 

Sudicky [1996], Parker et al. [1994] and Rubin et al. [1997] analyze the rates of NAPL 

dissolution into the aqueous phase and subsequent contaminant movement within the 

rock fractures by means of a fracture network.  These works begin with the assumption 

that a NAPL either exists in a state of residual saturation along the fracture walls or that 

they pool at higher than residual saturation in areas which are connected to these 

fractures.  Either way, the NAPL’s only means of migration is to slowly dissolve into 

the ground water and to spread within the fractured rock by way of a contaminant 

plume which exists at either the NAPL’s aqueous saturation concentration or lower.  
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The possibility of a NAPL migrating within a fracture network as a separate phase, as 

in the form of drops, is not considered in their analysis.  

Recent research has also been conducted on the effects of colloid suspensions in 

aiding the movement of NAPL solutes within a fractured medium.  In a water saturated 

fracture, dissolved NAPL may sorb onto any solid surface, such as the solid particles 

which may be entrained within the water flowing through the fracture.  The work by 

James and Chrysikopoulos [1999, 2000], Abdel-Salam and Chrysikopoulos [1994] and 

Chrysikopoulos and Abdel-Salam [1997] examine the effects of the various colloid 

interactions within a fractured medium and how these interactions change the rate of 

solute migration.  Solute migration can be either enhanced by the action of the solute 

sorbing onto a moving particle or retarded if the colloids collect large quantities of 

solute and either are sorbed onto the fracture walls or diffuse into the solid matrix at a 

high rate.  All of these mentioned works examine the motion of a solute after the NAPL 

source has dissolved into the groundwater, creating a migrating plume whose existence 

is measured by the water’s solute concentration.  These works neglect the possibility 

that the NAPL itself, by forming drops, can migrate as a separate phase within the 

confines of a fracture and contribute to significant contamination deep within the rock 

matrix. 

One additional means of contaminant migration within a fractured medium is by the 

migration of NAPL drops contained within the moving groundwater.  A NAPL source 

can enter into a fracture either from pore channels or other smaller fractures that are 

connected to the main fracture.  The contaminant may enter into a fracture as long as 

the net macroscopic force acting on the NAPL is directing it into the fracture.  Once the 

NAPL enters the fracture it can do one of two things: form a thin layer which spreads 
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along the wall of the fracture or form a drop which detaches from the fracture’s wall 

and enters into the fracture’s interstitial flow field.  The final form that the NAPL 

eventually takes is dependent on both the magnitude and direction of the various forces 

acting on the NAPL as it enters into the fracture.  The more these forces direct the 

NAPL away from the fracture wall the more likely a drop will be created.   

If a drop does form it will continue to grow in size so long as it stays connected to 

its NAPL source, and will reach its final size when it finally detaches from this source.  

The longer the drop is attached to its source location the larger the drop becomes.  How 

long a drop stays attached to its source depends on several physical properties 

including the fracture’s interstitial flow rate, NAPL density, NAPL inflow rate and 

surface tension.  Small drops, once they become detached, will begin to migrate within 

the fracture driven by the buoyancy of the drop and the interstitial fluid flow moving 

within the fracture and eventually landing somewhere deep within the fractured 

bedrock.  Drops, which are as large as the fracture’s aperture or larger, will move 

differently than the smaller drops because the larger drops cannot completely separate 

themselves from the fracture walls and will all but block the interstitial fluid moving 

within the fracture.  Drops of this size will travel as a slug flow and can be examined as 

such.  Regardless of the drop’s final size, the formation and detachment of drops within 

fractures can provide an additional means of transporting a significant amount of NAPL 

as a separate phase within a geologic formation and greatly add to the contamination of 

the medium.  Not only is the NAPL migrating within the fracture as a separate phase it 

is also increasing the amount of contamination by dissolving into the moving interstitial 

fluid and creating a contaminant plume.  NAPL drop formation, motion and the 

contaminant plume these drops generate within the domain of a fracture medium has 
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not been analyzed in the literature, therefore it is the intent of this work to explore this 

combined physical problem.  

1.  Drop formation in a fractured medium      

 The formation of a liquid drop contained within a moving fluid is a complicated, 

three-dimensional process involving moving and evolving two-phase fluid interfaces 

[Kim et al., 1994].  Typically a problem such as this is usually examined from a 

microscopic viewpoint using Navier-Stokes equation so that all effects created by any 

small fluctuations at the drop’s interface are captured.  However, if both fluids are at 

Reynolds numbers of approximately one or less the analysis of this process can be 

simplified greatly.  The reason for the simplification is that at these flow conditions a 

drop’s surface will not distort, and the drop will act as if it where a solid sphere with no 

detectable deformation of its shape [White, 1991].  This allows the drop formation 

process to be modeled within a macroscopic reference frame by using Newton’s 2nd 

Law of Motion as the drop’s final size is fully dependent on the drop’s motion during 

the formation stages.  By assuming the drop’s shape remains spherical throughout the 

life of the drop, all of the forces acting on the forming drop can be defined and the 

drop’s motion can be determined from Newton’s 2nd Law. 

NAPL drop formation occurs in two distinct phases beginning with the expansion 

stage and ending with the detachment phase [Kuloor and Kumar, 1990].  The 

expansion stage of drop development begins when the NAPL initially enters the 

fracture and starts to form a drop.  The growing drop will form a neck connecting the 

body of the drop to the NAPL entrance point as shown in Figure 1.  This enables the 

NAPL to continuously feed into the drop allowing the drop to grow.  If there is any 

moving water inside the fracture, the drop will migrate along the fracture wall driven 
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by the flowing water.  The expansion stage continues as long as the drop’s neck 

remains intact with its NAPL source and the drop’s base remains in constant contact 

with the fracture wall as the drop moves along it.  This stage ends when either the drop 

severs its neck or, with the neck still intact, the drop’s base begins to lift from the 

fracture wall. 
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Figure 1.   Schematic illustration of a NAPL drop forming within a uniform, 
       water saturated fracture. 

 

The detachment stage begins when a drop either severs its neck or when the drop, 

which is sill connected to its material source, begins to lift from the fracture wall.  The 

lifting of the drop away from the fracture wall occurs when the normal component of 

the net macroscopic forces acting on the drop is directed into the fracture and away 

from the fracture wall.  During this stage the drop begins to move away from its source 
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and continues to grow because it is still connected to the NAPL source point by its 

thinning neck.  Drop formation and the detachment stage are complete when the drop 

severs its connecting neck and enters into the main fracture’s flow regime.   

2.  Definition of forces acting on a forming drop 

The final size of a forming NAPL drop is dependent the macroscopic forces acting 

on the drop, therefore these forces need to be defined.  The definition of these forces 

are as follows (see Figure 2) 

BF
r

 ≡  Buoyancy Force due to the differences in fluid densities,  

DF
r

 ≡  Viscous Drag Force acting on the drop generated by the shearing interactions  

occurring at the drop/water interface, 

IF
r

  ≡  Induced Inertial Force generated by the encroaching drop into the water  

     phase, 

MF
r

≡  Added Momentum due to the NAPL influx, 

SF
r

 ≡  Surface Tension Force acting at the drop/fracture wall interface. 

Newton’s 2nd Law will be used in determining the motion of the drop during both the 

expansion stage and the detachment stages.  Newton’s 2nd Law is defined as 

SMIDB FFFFFF
rrrrrr

++++= ,         (1) 

where F
r

 represents the drop’s inertial force.  In order to use Newton’s 2nd Law each 

individual force shall be defined in detail. 
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Figure 2.  Macroscopic forces acting on a NAPL drop 
 
 
2A.  Buoyancy Force, BF

r
 

A buoyancy force is created when the NAPL density differs from the density of the 

interstitial fluid.  This force is defined as 

( )ygF wddB ˆρρ −∀=
r

,         (2) 

where d∀  is the drop volume, dρ  is the NAPL drop density, wρ  is the water density, g 

is the gravitational acceleration constant and ŷ  is the unit vector in the y direction.  At 

low Reynolds numbers, a NAPL drop will assume a spherical shape and remains so 

through out both the expansion and detachment phase of the growth process.  

Experiments have shown that a NAPL drop maintains a spherical shape for drop-to-

containment ratios as large as 0.60 [Borhan and Pallinti, 1998].  Therefore, the radius 

of a drop can be calculated, once the volume is known, by using the equation of a 

sphere’s volume.  Determining the drop’s volume at any time during the drop’s 

formation process can be calculated from the following equation 

tQdd =∀ ,          (3) 

θ 
 

y

x 

η 

α 

FB

FD

dro

F μ φ 

FS

FI
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where dQ  is the constant NAPL volumetric flow rate and t is time.  This model’s 

coordinate system will be aligned with the main fracture therefore the buoyancy force 

must be transformed to this system.  The following equation performs this 

transformation 

ŷ  = θαθη sinˆcosˆ − ,          (4) 

where η̂  is the unit vector in the η  direction, α̂  is the unit vector in the α  direction 

and θ  is the fracture’s angular offset.  The coordinate η is the spatial coordinate 

normal to the fracture wall and α  is the spatial coordinate in the longitudinal direction.  

Substitution of the time relationship for the drop volume and transforming the 

buoyancy force equation to the desired coordinate system gives 

( )( )θαθηρρ sinˆcosˆ −−= wddB tgQF
r

.      (5) 

2B.  Momentum Flux Force, mF
r

 

During the drop’s formation period, momentum is constantly added to the drop by 

virtue of the steady influx of the NAPL.  This momentum flux acts on the drop in the 

direction of influx and is assumed constant because the volumetric flow rate of the 

NAPL is assumed constant.  The equation for the momentum flux force can be written 

as [Kim et al., 1994] 

( )φαφη
ρ sinˆcosˆ2 +=

f

d
dm A

QF
r

,       (6) 

where fA  is the area of NAPL entrance point and φ  is the NAPL entrance angle.  If 

the NAPL’s entrance into the fracture is approximately circular, this area becomes 

2

4
dAf

π
= ,         (7) 
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where d is the diameter of the NAPL entrance point.  Substituting equation (7) into (6) 

gives 

( )φαφη
π

ρ
sinˆcosˆ4

2

2

+=
d

Q
F dd

m

r
.       (8) 

2C.  Viscous Drag Force, DF
r

 

The viscous drag force acting on the drop is generated by the difference in 

velocities between the flowing water inside the fracture and the nearly stationary drop 

attached to the fracture wall.  The generated velocity gradient, coupled with the fluid’s 

viscosity, provide the necessary elements needed to generate the drag force.  This force 

acts along the water/drop interface and in the direction of relative fluid motion.  The 

expression for this force is [Kim et al., 1994] 

effeffeffwdwD AUUCF
rr

ρ
2
1

= ,       (9) 

where dwC  is the drag coefficient for a bounded flow, effU
r

 is the effective velocity 

vector, effU  is the magnitude of the effective velocity between the water and the drop 

and effA  is the effective area of the drop.  The effective velocity can be stated as 

αα ˆ⎟
⎠
⎞

⎜
⎝
⎛ −=

dt
dUU D

weff

r
,        (10) 

where 
dt

d Dα
 is the drop’s center velocity in the α direction and wU  is the average 

water velocity in the fracture.  The effective velocity does not have a component in the 

η  direction because the water velocity is assumed to have only a longitudinal 

component and the drop does not have a vertical velocity component since it is attached 

to the fracture wall during its formation.  The effective area of the drop is defined as 
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2rAeff π= ,          (11) 

where r is the drop’s radius.  The drag coefficient used by this model is a curve fitted 

value determined for an unbounded flow regime around a solid sphere and adjusted for 

use in a bounded flow problem.  This adjustment is necessary since the confining walls 

of a fracture have an effect on total drag force exerted on an object.  The value for the 

curve fitted drag coefficient for an unbounded flow about a sphere is [White, 1991] 

4.0
Re1

6
Re
24

+
+

+=DC   510Re0 ≤≤ ,     (12) 

where Re  is the Reynolds number for the interstitial fluid flowing within the fracture.  

This Reynolds number is defined as 

w

effw rU
μ

ρ 2
Re = ,          (13) 

where wμ  is the absolute viscosity of water.  The drag coefficient for a bounded flow is 

defined by [Kim, 1992] 

( )321 r

CC D
dw

−
= ,         (14) 

where 
D
rr =  and D is one half the fracture aperture.  Substituting the values for effA  

(11) and effU  (10) into (9) gives the desired expression for the viscous drag force 

α
αα

ρπ ˆ
2

2

dt
d

U
dt

d
UrCF D

w
D

wwdwD −⎟
⎠

⎞
⎜
⎝

⎛ −=
r

.     (15) 

2D.  Surface Tension Force, SF
r

 

The surface tension force acts on the drop at the drop/fracture wall connection point 

and tries to keep the drop attached to the fracture wall.  This force is directed from the 
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center of the drop towards the drop/fracture connection point.   Assuming that the 

drop’s connection to the fracture wall is circular, the expression for this force is 

[ ]Ψ−= fFS

rr
μ ,          (16) 

where μ  is the surface tension coefficient and [ ]Ψf  is a vector function which takes 

into account the angle of inclination between the drop’s neck, Ψ , and the η  axis which 

is normal fracture wall (see Figure 3).  The function [ ]Ψf  can be expressed as follows 

[Kim et al., 1994]  

[ ] ηπα
π

π ˆsinˆ
4

4cos 22 Ψ
Ψ

+
Ψ−

Ψ
Ψ=Ψ ddf ,      (17) 

where Dα  and Dη  are the coordinates of the drop’s center and 

22

2

cos
DD

D

ηα
η

+
=Ψ ,         (18) 

22

2

sin
DD

D

ηα
α

+
=Ψ .              (19) 

Substituting equation (17) into (16) yields the final equation for the surface tension 

force 

α
π

μπημπ ˆcos
4

4ˆsin
22 Ψ

Ψ−
Ψ

−
Ψ

Ψ
−= ddFS

r
.     (20) 
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Figure 3.  Schematic representation of the drop neck geometry at the  

      neck/fracture wall interface. 
 

2E.  Induced Inertial Force, IF
r

 

As the drop expands into the fracture, it displaces water by accelerating the nearby 

water away from the drop.  This acceleration imposes a reaction force onto the drop 

acting in a direction opposite to the drop’s motion.  This force can be generated from 

Newton’s 2nd Law 

⎟
⎠
⎞

⎜
⎝
⎛−=

dt
sdM

dt
dF rI

rr
.        (21) 

The reduced mass constant, rM , quantifies the amount of water mass that is 

accelerated by the moving drop and is proportional to the mass of water displaced by 

the drop.  This constant is defined by 

tQCM dwmr ρ= .         (22) 

The reduced mass coefficient, mC , is derived from analyzing the kinetic energy added 

to a fluid when a body passes through it [Kim, 1992].  The value of mC  used for a drop 

ψ 

α 

drop 
neck 

d

fracture 
wall 

η 
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expanding from a plate orifice is generally taken as 
16

11  [Kim et al., 1994].  The 

drop’s center position vector, sr , is defined as 

ααηη ˆˆ DDs +=
r .          (23) 

Taking the time derivative of equation (23) and substituting the resulting expression 

into equation (21) yields 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−= ααηη ˆˆ

dt
d

dt
dM

dt
dF DD

rI

r
.      (24) 

Inputting equation (22) into (24) gives 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−= ααηηρ ˆˆ

dt
d

dt
dt

dt
dQCF DD

dwmI

r
.      (25) 

Taking the time derivative in equation (25) gives the final expression for he induced 

inertial force 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 2

2

dt
dt

dt
dQCF DD

dwmI
ηηρ

r
η̂ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− 2

2

dt
dt

dt
dQC DD

dwm
ααρ α̂ .  (26) 

2F. Drop’s Inertial Force, F
r

 

Following the same derivation method outlined in section 3E and using  

tQM ddρ=          (27) 

to represent the drops mass yields the following expression for the drop’s inertial force  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 2

2

dt
dt

dt
dQF DD

dd
ηηρ

r
η̂ + ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 2

2

dt
dt

dt
dQ DD

dd
ααρ α̂ .    (28) 

 

3.  Drop motion during formation stages 

The final drop size depends on the motion of the drop while its neck is still attached 
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to the NAPL source.  The growth cycle of a drop begins when the NAPL enters the 

fracture and ends when the drop’s neck severs the tie between NAPL source and the 

drop.  The drop’s final size can be determined if one knows the length of this growth 

cycle and the NAPL flow rate entering into drop.  The moment at which the drop severs 

its connection to the NAPL source depends on both the size of the drop and how far the 

drop has moved away from its source point.  Regardless of which formation stage the 

drop is in, when the distance from the center of the drop is great enough for separation 

to occur the formation process ends and the drop has reached its final size. 

At low flow rates in a fracture a drop will sever its neck when the neck length 

becomes greater than or equal to the diameter of the NAPL entrance [Kuloor and 

Kumar, 1970].  This relationship is given as follows  

drDD ≥−+ 22 αη .        (29) 

In order to determine when a drop will separate from its source, the drop’s 

displacement during formation must be calculated.  The motion of the drop can be 

determined by solving equation (1) in both the α and the η directions.  Inserting 

equations (5), (8), (15), (20), (26) and (28) into (1) and simplifying gives 
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η - direction: 
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Equations (30) and (3) describe the motion of the drop’s center as it exists in its 

developmental stages and are used together in order to calculate the center’s 

coordinates.  These coordinates are then used to check the validity of equation (29).  

The instant equation (29) becomes valid the drop has severed its neck and has reached 

its final size for the model parameters.  The final drop size is calculated from 

3

4
3

f
d

f t
Q

r
π

= ,          (32) 

where fr is the final drop radius and ft  is the time when drop severs its neck. 

4. Dimensionless variables 

Generally, it is more convenient to work in dimensionless variables.  In the present 

work the following definitions will be employed 

D
D

D 2
α

=Α ,         (33) 

D
D

D 2
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=Η ,         (34) 

D
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T w
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D
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The model equations (29) - (32) become 

drDD ≥−Α+Η
2
122 ,        (45) 
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3
2

3
fdf Qr Τ= .         (48) 

The fracture coordinates, the drop radius and the NAPL entrance diameter were all  
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normalized to the fracture’s aperture.  Time was scaled by the amount of time it takes 

the flowing water to traverse a distance equal to the fracture’s aperture and the drop’s 

density was normalized against the water’s density.  The NAPL flow rate was scaled by 

the water flow rate.  The Froude number expresses the magnitude of the water’s inertial 

force relative to the buoyancy force generated by the drop and the Weber number 

expresses the magnitude of the water’s inertial force relative to the drop’s surface 

tension force. 

5. Final drop size analysis 

For this analysis, it is assumed that the drop initially begins its formation process in 

the expansion stage.  The expansion stage begins when the NAPL initially enters into 

the fracture.  This stage is characterized mainly by the drop’s base remaining in 

constant contact with the fracture wall.  The base does not lift from the wall due to the 

normal component of the net force acting on the drop, ηF
r

, is less than zero.  Therefore, 

the drop’s center coordinate DΗ  is equivalent to the radius of the drop (see Figure 4).  

This simplifies equation (47) as both the first and second derivatives of DΗ  can now be 

obtained analytically by taking these derivatives of the following expression for DΗ   

3
2

3
2
1

Τ=Η dD Q ,        (49) 

where DΗ  was derived from the equation for the volume of a sphere.  Utilizing the first 

and second derivatives of equation (49) and setting the sum of the forces in equation  
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Figure 4. Schematic representation of a drop during the expansion stage 
 

(47) to less than or equal to zero gives a relationship which holds true throughout the 

expansion stage of a forming drop 
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This relationship is only valid during the expansion stage.  Once equation (50) is 

violated the drop has begun to lift from the fracture wall and the drop has entered into  

the detachment stage.  During these initial steps of analysis, equation (50) must always  

be checked to make sure that it is still valid so that equation (49) can still be used for  

this portion of the computations.     

The goal of this analysis is to determine the specific time during the drop formation 

process when equation (45) becomes valid.  To do this the coordinates DΑ  and 

DΗ must be determined at each time step used in the calculation.  During the expansion 

stage equation (49) can be used to determine the value of DΗ .  DΑ  can be calculated 

η 

α 

drop
base
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from equation (46) and this is done by the use of a fourth-order Runge-Kutta numerical 

method [Kreyszig, 1993].  DΗ  and DΑ  are calculated from these equations at each time 

step until either equation (45) becomes true or equation (50) becomes invalid.  If 

equation (45) is becomes true first then the drop has severed its neck and has completed 

its growth cycle, thus reaching its final size.  If equation (50) becomes invalid before 

(45) becomes valid then the drop has entered into the detachment stage and DΗ  must 

now be calculated from equation (47) using the same fourth-order Runge-Kutta 

numerical method used for calculating DΑ .  New values are calculated for DΑ  and  

DΗ  at each time step until equation (45) is validated and at this point in time the drop 

has severed its neck and has reached its final size. 

6. Drop size results and discussion 

The drop sizing model presented in this work, equations (45) through (48), is 

similar to a model derived by Kim et al., 1994 for a bubble forming in a flowing liquid.  

The significant difference between the models is that equation (46) uses a curve fitted 

drag coefficient, equation (12), compared to the drag coefficient for a drop free falling 

through a continuous phase used by Kim.  This coefficient is given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
μ
μ

1
32

Re
8

DC  4Re ≤ ,       (51) 

where μ  is the viscosity ratio given by 
w

D

μ
μμ = .  Dμ  is the absolute viscosity of the 

NAPL.  At Reynolds numbers much less than one both of these drag coefficients are 

approximately the same, however equation (51) tends toward zero significantly quicker 

as Re increases much above one.  Equation (46) was chosen over equation (51) because 
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it follows very closely the experimental data used in determining the value for this drag 

coefficient over a much larger range of Reynolds numbers [White, 1991].  This work is 

also modeling a different physical system than Kim team model.  The physical system 

modeled in this work is of a two phase liquid drop formation into a rather narrow 

channel of flowing water as compared to the Kim team, which focused on air bubble 

formation in a rather large container of moving water.   

 In order to test the capabilities of this model, an analysis was performed comparing 

the drop sizes predicted from this model and data generated from experiments 

performed by Itoh et al. [1980].  This experiment consisted of a small nozzle, which 

was used to inject benzene into a fluid contained within a large open container.  The 

experiment was configured so that water could be put into motion within the container 

while the small nozzle injected the benzene into the moving water from the bottom of 

the container.  Both the benzene and water flow rates were adjustable while the 

injection nozzle diameter and the depth and width of the flowing water remained 

constant through out the extent of each experiment.  Measurements were taken 

comparing the drop sizes created at the different water and benzene flow rates.  

Comparing the drop sizes calculated from equations (45) through (48) with the 

experimental data requires that the variables used in the equations are set to match its 

equivalent experimental parameter.  For example the NAPL entrance diameter variable 

was set to match the nozzle diameter and the fracture aperture dimension was set to the 

depth of the water within the open container.  The appropriate values for the density of 

benzene and the water-benzene surface tension were also used in the calculations.  

Figure 5 shows the comparison between the calculated drop diameters and the drop 

diameters generated by the experiment performed by Itoh et al., 1980. 
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The comparison shows that in the regions of low or high water flow rates the results 

from equations (45) through (48) match well with the experimental data.  In the region 

of intermediate water velocities, these equations predict drop sizes, which are 

somewhat larger than the Benzene drops obtained experimentally.  The smaller 

experimental drop sizes are believed to be due to a non-spherical drop shape at this 

stage of the experiment [Kim et al., 1994].  Because equations (45) through (48) 

provide good agreement with  

 
Figure 5. Comparison of model predictions and experimental data.  
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these experimental results, these equations are adequate for predicting drop sizes in a 

flowing liquid system. 

Two different scenarios were analyzed with the use of the drop-sizing equations 

(45) through (48).  The first system examined was how the final drop radius ratio, r , 

changed while varying the aperture ratio, d .  This comparison was done using two 

different NAPLs, trichloroethylene (TCE) and dichloromethane (DCM).  The flow rates 

for both the NAPL intrusion and the water inside the fracture were held constant. The 

results of this analysis are presented in Figure 6 and show that for each variation of 

r the drop sizes generated were on the same order as r .  The drop radius ratios the 

 

Figure 6. Comparison of the drop ratio, r , with a changing aperture ratio, d , for 
          TCE and DCM.  21027.1 −×=dQ , o90=φ , 68.5=eW  and o0=ϑ  
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model generated were approximately 1.5 times the NAPL entrance ratios used.  This, in 

essence, means that the size of the drops created within a fractured medium are to be on 

the order of 1.5 times the size of the NAPL’s entrance dimension.  Also of interest is 

that both TCE and DCM generated the same size drops under the given conditions of 

the analysis.  This seems to indicate that drag force probably contributes the most in 

determining the final size of drop as it appears the different NAPL densities and surface 

tension values had little effect on final drop radius. 

The next system examined was the variance in the drop radius ratio, r , while 

changing the NAPL flow rate ratio, dQ .  This comparison was done using two different  

NAPL’s, trichloroethylene (TCE) and dichloromethane (DCM) while holding the 

aperture ratio, 01.=d , constant.  The results of this analysis are presented in Figure 7 

and suggest that the drop ratio r increases with increasing dQ .  What is most 

interesting is that the drop ratio for both TCE and DCM increases only slightly even 

though the NAPL flow rate is increased by a magnitude of 4.  This seems to indicate 

that increasing the momentum of the incoming NAPL has a minimal effect on the final 

size of the drop.  Also lower NAPL densities will generate larger drops.  This is 

because the denser drops will detach from the fracture wall sooner due to the larger 

buoyancy force acting on the drop trying to pull the drop away from the fracture wall.   

What is clear when looking at the two scenarios previously outlined is that the two 

most important forces driving the final sizing of these drops are the drag force and the 

buoyancy force, as the other forces play a minor, if not insignificant role in creating a 

drop within a flowing fluid.  The size of the drops generated within the fracture are 

approximately the size of their entrance aperture and therefore will most likely be quite   
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Figure 7.  Comparison of  r  with a changing NAPL flow rate ratio, dQ , for TCE 

     and DCM.  01.=d , o90=φ , 68.5=eW , o0=ϑ  
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7. Drop motion within a fracture 

Once a drop detaches from a fracture wall, it will enter into the interstitial fluid 

contained within the fracture.  If this fluid is moving the drop will migrate along the 

fracture following a path similar to the one the interstitial fluid takes as it moves 

through the fracture array.  The buoyancy and drag forces have the most effect on the 

drop and these are the driving forces in dictating the drop’s movement within the 

fracture.  The other forces that aided in the formation of the drop, such as the surface 

tension and  momentum forces, no longer have an effect on the drop’s motion because 

the drop is either no longer attached to its initial source of material or the wall of the 

fracture. Inertial forces still act on the drop however these forces are active only when 

the drop is accelerating within the interstitial fluid itself, such as when the drop is either 

detaching from, or attaching to, the fracture walls.  However once the drop has entered 

into the main flow of the fracture it will reach a terminal velocity within the moving 

water and these inertial forces will no longer exist. 

The drop’s two-dimensional terminal velocity vector can be calculated by using 

Newton’s 2nd Law of motion.  When the drop reaches this velocity the drop is no longer 

experiencing any acceleration and the net force acting on the drop is zero.  The only 

forces acting on the drop at this time are the drag and buoyancy forces and because 

their net sum is zero they must be balancing each other (see Figure 8).   Newton’s 2nd 

Law  

gives the following relationship 

BD FF
rr

−= .         (52) 

The expressions for these two forces are obtained from equations (9) and (5) 
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respectively.  This leads to the following expressions  

( )( )θαθηρρπ sinˆcosˆ
3

4 3

−−= wdB grF
r

,      (53) 

 { }ηαρπ
ηα ˆˆ

2
222 UUrCF wdwD −=

r
,      (54) 

where αU  is the effective velocity in the α  direction and ηU  is the effective velocity 

in the η  direction.  The drop’s effective area, effA , used in deriving equation (54) is 

defined by equation (11) and the angular offset angle, θ , is to be kept between °0 and 

°90 .  This eliminates the absolute value sign required by equation (15), because effU
r

 

   

 

Figure 8.  Macroscopic forces acting on a drop moving within a fracture. 
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valid due to the fact the amount of mass transferring from the drop into the interstitial 

fluid is negligible because of the extremely small value for the mass transfer rate 

constant that non- aqueous phase liquids possess.  Also the drop can not grow larger 

because it is no longer attached to its NAPL source.  The drop’s volume is set equal to 

the volume of a sphere with a radius of r.   

The effective velocity, ηα ηα ˆˆ UUUeff +=
r

, is equal to the water velocity in the 

fracture, wU
r

, minus the drop velocity, DU
r

, where 

ηα ηα ˆˆ DDD UUU +=
r

,        (55) 
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αU  is the effective velocity in the α  direction, ηU  is the effective velocity in the η  

direction and maxU  is the maximum water velocity.  It is assumed that the water 

velocity within the fracture is idealized as a Poiseuille Flow, which gives a parabolic 

velocity profile.  Subtracting equation (55) from (56) yields the effective velocity 

equation  
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Inserting the vector components of equation (57) into (54) and then inserting this 

equation plus equation (53) into (52) yields 
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Breaking equation (58) into its separate coordinates and simplifying give the final drop 

velocity equations 

α̂  direction:   
( ) ( )

θρη
α sin

3
181 2

2

max
dw

D C
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DUU −
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η̂  direction:   
( ) θρ

η cos
3

18

dw
D C

grU −
= .     (60) 

8.  Advection dispersion equation for a migrating NAPL drop 

When a NAPL drop enters into the main flow stream, not only does the drop travel 

within the fracture array, it also creates a contaminant plume that migrates along with 

it.  The plume is created by NAPL dissolving from the drop’s surface and into the 

surrounding interstitial fluid with diffusion and advection driving the growth and 

movement of the plume.  Therefore, an advection dispersion equation can be employed 

to describe the movement and fate of a contaminant plume as it migrates and grows 

within the fracture.  The advection dispersion equation is a mass balance equation and 

can be expressed as [Bear and Verruijt, 1987] 

peff CDUC
t
C ξ+⎥⎦

⎤
⎢⎣
⎡ ∇•−•∇−=

∂
∂ rrr ~~ ,      (61) 

where C is the solute concentration within the water phase, D
~~  is the hydrodynamic 

dispersion coefficient matrix and pξ  is the solute source function.  This equation 

equates the change, with respect to time, of the NAPL concentration within the 

interstitial fluid to the contributions created by diffusion, movement of the fluid and a 

NAPL source.   

In order to create a working model, the system to be analyzed needs to be defined.   
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The NAPL drops created within a fracture have diameters of approximately 1.5 times 

NAPL entrance aperture, therefore a small NAPL entrance point will create small 

drops.  The majority of entrance points into a fracture are from the pores contained 

within the medium where the fracture exists and there are a significant number of pores 

which can line the fracture wall.  These pore sizes are typically on the order of 

micrometers or smaller.  Fractures, on the other hand, can have aperture which measure 

in the millimeter range with lengths and depths which can be several meters wide.  The 

majority of the drops formed within a fracture will be several orders of magnitude 

smaller than the fracture’s dimensions.  Because the size of these NAPL drops can 

become quite small what is of initial interest is determining the potential size a 

contaminant plume generated from one of these drops can grow to.  Equation (61) is 

going to be used to develop a model which will determine the contaminant plume 

generated from a small drop which exists in a fracture which is significantly larger than 

the drop.      

In order to analyze equation (61) all of the system boundaries and assumptions must 

first be defined.  The first assumption to be made is that once the drop has entered into 

the fracture’s flow stream that the drop will tend to stay in the flow path and develop a 

contaminant plume before it reattaches somewhere else within the fracture.  It is also 

assumed that the fracture is significantly larger than the drop and that drop, with its 

contaminant plume, does not interact with the fracture walls.  This assumption is based 

on the belief that the plume generated from these small drops is also very small a will 

be significantly smaller than the fracture’s aperture.  The depth of the fracture is 

neglected and this model will only be considered in two spatial dimensions using the 

fracture coordinate system of α and η.  The interstitial fluid is water and the water’s 
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velocity is assumed to flow only in the α direction and have a magnitude of maxU .  The 

diffusion matrix D
~~  is assumed to be constant in all directions and the fracture is 

orientated in the horizontal.   

With the physical system now defined the next step is integrate the assumptions 

made into equation (61).  Expanding equation (61) into the fracture’s coordinates and 

applying these assumptions  yields  

( ) ( ) pCUCUCDCD
t
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∂
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2

2

2

,    (62) 

where pξ  is the NAPL source function and D/  is the constant hydrodynamic dispersion 

coefficient.  The function pξ , is required in order to account for the only NAPL source 

considered within the fracture which is the diffusing drop.  This function shall state the 

source location and the rate at which a NAPL concentration is input into the water 

moving within the fracture.   To determine this function, specific assumptions are 

required in order as to define pξ .  Because the drop size is assumed to be significantly 

smaller than the domain in which it interacts, the diffusing drop is assumed to be a 

point source of NAPL solute.  The geometry of a small drop can be approximated to be 

the size of a square of dimensions αΔ x ηΔ where r2≈Δ=Δ ηα  (see Figure 9).  This 

allows the perimeter of the drop to be approximated by 8r and the drop’s area by 

ηα Δ×Δ .  These dimensions are used in determining the NAPL source function, pξ . 

The NAPL concentration at the edge of the drop is assumed to be the aqueous 

saturation concentration, sC .  The rate of NAPL mass diffusing from the drop can now 

be calculated by first multiplying sC  by the drop’s perimeter, 8r, and by the mass 



 33 

transfer rate coefficient, κ .  Dividing this quantity by the area surrounding the drop, 

 

 
Figure 9.  Drop geometry used for modeling the NAPL source.  
 

ηα Δ×Δ , yields the NAPL source concentration flow rate equation  
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= ,        (63) 

where ( )DDf ηα ,  is a function which locates the drop in two-dimensional space.  

To complete the source function analysis, a function ( )DDf ηα ,  needs to be 

determined.  This function must locate the drop within the fracture’s coordinate system, 

be dimensionless and have a magnitude of one.  A unit step function is used to 

accomplish this task.  The unit step function, ( )0xxu − , is a dimensionless function 

which is equal to one for all values of x greater than or equal to 0x  and zero everywhere 

else.  By combining two of these functions in each dimension and multiplying them 

together a function ( )DDf ηα ,  can be created which has a value of one over the spatial 

area contained by the drop and zero everywhere outside the drop.  This function 
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becomes   
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Equation (64) can be further simplified by dividing ( )DDf ηα ,  by the drop area ηαΔΔ  

and using the definition of the Dirac delta function 
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Applying equation (65) to (64) and inserting into equation (63) yields the final form of 

the NAPL source function 

( )DDsp Cr ηηααδκξ −−= ,8 .       (66) 

Substituting (66) into equation (62) gives the final form of the Advection-Dispersion 

equation 
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C ηηααδκ

ηαηα η −−+
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∂
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2

2

2

.  (67) 

In order to simplify the analysis of equation (67) a change to a different coordinate 

system is adopted.  The new coordinate system’s origin is centered on the drop’s center 

and moves with the drop as it migrates within the fracture (see figure 10).  The new  

drop coordinate system variables are defined as 

 tU Dααω −= ,         (68) 

tU Dηηλ −= .         (69) 
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Figure 10.   Coordinate system centered and moving with the drop.  

  

The effective velocities, maxU  and ηU , do not change in the new coordinate system.      

Converting equation (67) into the new coordinate system yields   
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Initially, there is no NAPL concentration anywhere within the fracture.  This initial 

condition can be stated as 

( ) 0,,0 =λωC .          (71) 

Also, it is assumed that there is no NAPL flux at large distances away from the drop.   

These boundary conditions are defined by 

( ) 0,,
=

∂
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ω

λtC ,         (72) 
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ωtC .          (73) 
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The complete Advection-Dispersion model for a migrating diffusing NAPL drop 

consists of equations (70) through (73) and can now be solved.    

9. Solution of the advection dispersion equation for a moving drop 

The first step in obtaining a transient solute concentration model solution is to 

perform two transformations on the governing equations (70) through (73).  The first 

transformation performed on these equations is a Fourier Transform with respect to the 

spatial coordinate,ω , by utilizing the following definitions [Farlow, 1993] 

( ) ( ) ωλω
π

λγ γω detCtC i−
∞

∞−
∫= ,,

2
1,,~

,     (74) 

( ) ( )λγγ
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d
tdC

=
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( ) ( )λγγ
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⎩
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( ){ }
π

ωδ
2
1

=ℑ .         (77) 

Applying these definitions to equations (70) through (73) yields 

( )λδκ
πλ
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( ) 0,,0~
=λγC ,         (79) 

( ) 0,,~
=

∂
±∞∂

λ
γtC .         (80) 

The next step is again to perform a Fourier Transform with respect to the spatial 

coordinate, λ , by utilizing the following definitions [Farlow, 1993] 
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Applying these definitions to equations (78) through (80) yields 

sCrCZ
dt
Cd κ

π
4

1 +−=
)

)

        (85) 

where 

( ) ( )εγεγ ηUUiDZ +++/= max
22

1 ,       (86) 

( ) 0,,0 =εγC
)

.         (87) 

The resulting transformed equation (85) is a non-homogeneous ODE with equation (87) 

as its initial condition.  The general solution for a non-homogeneous ODE of the form  

( ) ( )trytp
dt
dy

=+  is [Kreyszig, 1988] 

( ) ( )( )∫ += − cdttreety hh          (88) 

where  

( )∫= dttph .         (89) 

Using equations (88) and (89) to solve equation (85) and applying the initial condition 

equation (87) gives 
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Z
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Now equation (90) can be rewritten by utilizing the following relationship 

( ) ∫ −− =−
t

ZtZ dee
Z 01

1111 ττ .       (91) 

Inserting equation (91) into (90) will help in performing the inverse transformations 

needed to get to the final solution.  Inserting this equation and (86) into (90) yields 

( ) ( ){ }∫ +/−+/−=
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π η

)
.   (92) 

The next step in finding the solution to the model is to perform two inverse Fourier 

Transforms on equation (92).  For the first inverse transformation the following 

definitions are used [Farlow, 1993] 
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Applying equations (93) and (94) to the appropriate portions of equation (92) gives the 

following 
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{ } ( )τλδπ η
τεη Ue iU −=ℑ −− 21 .       (97) 

To complete the first initial transformation the convolution of equations (96) and (97) 
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must be calculated. 
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Using the results from equation (98) and applying them to (92) yields 
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The final step in determining the solution to the model is perform another inverse 

Fourier Transforms on equation (99).  For the final inverse transformation the 

following definitions are used [Gradshteyn, 1980] 
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Applying equations (100) and (101) to the appropriate portions of equation (99) gives 

the following 
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To complete the final transformation the convolution of equations (103) and (104) must 

be calculated. 
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Using the results from equation (105) and applying them to (99) yields  
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Expanding the square terms in the exponents and simplifying yields the final solution in 

the drop’s coordinate system 
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where 
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Equations (107) and (108) can be converted from the drop coordinates, ω  and λ , into 

the fracture coordinates,α  and η  by replacing the ω  and λ  by equations (68) and 

(69), respectively. 

10. Drop and contaminant plume motion results and discussion 

A moving NAPL drop and its associated contaminant plume provide an additional 

means for spreading a contaminant within a porous medium that contains fractures.  

When a drop enters into a horizontal fracture it will obtain a longitudinal velocity, 
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αDU , equal to the water’s velocity, 
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
− 2

2

max 1
D

DU η
, and a buoyancy driven velocity, 

ηDU , which is directed normal to the fracture’s walls and is given by equation (60), 

with θ  set equal to zero.  As the fracture changes its orientation the longitudinal and 

normal velocities also change in magnitude as part of the buoyancy driven motion is 

transferred from the normal direction into the longitudinal direction.  When a fracture is 

orientated purely in the vertical direction the drop will only translate in the longitudinal 

direction, driven by both the flowing water and the buoyancy force, which now directed 

entirely along the fracture’s longitudinal axis.  

The drop’s normal velocity for a horizontal fracture can be determined by starting 

from equation (60) and setting θ  = 0.  An expression for dwC  is required in order to 

determine the normal velocity ηDU  and this expression is obtained from equation (14).  

Because we are assuming that the drop radius is much smaller than the fracture’s 

aperture the quantity 2r  is much smaller than 1 and therefore dwC  can be approximated 

by 

Ddw CC ≈ .          (110) 

dwC  can be further simplified by assuming that the Reynolds number for the drop’s 

motion is also much less than 1.  Applying this assumption to equation (12), 

simplifying and inserting into equation (110) yields     

Re
24

≈DwC  for 1Re << .        (111) 
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Because there is no water velocity normal to the fracture wall the effective velocity 

required in the Reynolds number equation (13) is equal to the drop’s normal velocity 

ηDU .  Utilizing this relationship, equation (13) now becomes  

w

Dw rU
μ

ρ η 2
Re = .          (112) 

Inserting equation (112) into (111) gives 

rU
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w
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ηρ
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≈ .         (113) 

Substituting equation (113) into equation (60) yields  
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ρ η

η .       (114) 

Squaring both sides of equation (114) and solving for ηDU  gives the final result 

( )grU
w

w
D 1

9
2 2 −= ρ
μ
ρ

η .        (115) 

The result obtained in equation (115) show that the drop’s normal velocity within a 

two-dimensional horizontal fracture is proportional to the cross sectional area of the 

drop.  As the size of a drop increases, its normal velocity will also increase by an equal 

amount.  The driving mechanism behind this is the buoyancy force.  The buoyancy 

force, as defined by equation (53), is proportional to drop’s volume.  Because of this, a 

larger drop will generate a larger buoyancy force acting on the drop and this induces a 

larger velocity directed inline with the buoyancy force.  In a horizontal fracture this 

force is directed perpendicular to the fracture walls and therefore only affects the drop’s 

normal velocity.  As the fracture deviates from the horizontal the drop’s normal 
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velocity will begin to decrease as the buoyancy force now gains a longitudinal 

component and begins to affect the drop’s longitudinal velocity.   

The longitudinal velocity of a drop is given by equation (59) and is equal to the 

water velocity within the fracture when the fracture’s orientation is horizontal.  This 

velocity also is dependent on the orientation of the fracture and can either increase or 

decrease depending on the angle of inclination of the fracture and the direction of flow.  

It is possible for a NAPL drop to move in the opposite direction of the fracture’s water 

flow if the component of the buoyancy force, which points in the opposite direction of 

the flowing water, is strong enough to overcome the moving water.  This may happen 

when water is flowing upward in a severely inclined fracture at a low velocity and a 

strong buoyancy force, such as the force generated by a large drop, is directed 

downward.  However, a small NAPL drop normally will move along the direction of 

water flow and follow along as the water moves within the fracture.      

Not only will a NAPL drop move as a separate phase inside a fracture but it will 

also diffuse into the water itself and create a contaminant plume that further enhances 

the spreading of the NAPL.   The rate at which NAPL diffuses from the drop is 

governed by these four items: the mass transfer coefficient, κ , the drop’s radius, r, the 

hydrodynamic dispersion coefficient, D/  and the aqueous saturation concentration, sC .  

The drop’s radius determines the amount of water/drop surface interface area there is 

available to contribute to the diffusion process and aqueous saturation concentration 

determines the amount of NAPL solute that is available to be dispersed.  Also the mass 

transfer coefficient value dictates the given rate at which the NAPL mass leaves the 

drop’s surface.  How quickly the NAPL spreads into the surrounding water is driven by 
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the hydrodynamic dispersion coefficient.  The large the value for D/ , the quicker the 

NAPL solute migrates throughout the water’s domain.  These four parameters coupled 

together within equation (107) determine the amount and the rate at which NAPL 

leaves the drop and migrates into it’s surrounding area.     

The extent that the NAPL migrates away from the drop and into the aqueous phase 

is governed by equation (107) as the solute concentration gradient can be determined 

from this equation for any given time.  Figure 11 shows the expansion of a contaminant 

plume generated from a single TCE drop calculated at four separate time frames.  Each 

contour line shown in Figure 11 represents the extent the plume has migrated away  

 

Figure 11.  TCE plumes generated from a single drop within a horizontal fracture 
        at four specific times. 

         r = 1μm, αU = 0, ηU  = -3.63 mm/h, C = 5 μg/L, k = 0.1 mm/h,  
       sC  = 1.1 g/L, D/   = 3.60mm2/h, TCEρ =1.46 kg/L 
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from the drop, which is located at coordinates [0,0].  The solute concentration measured 

at these contours is 5 μg/L, which is the maximum limit of TCE allowed in drinking 

water.  The drop has a radius of 1 μm and is moving within a horizontal fracture.  The 

effective normal velocity of the drop is -3.63mm/hr while the effective longitudinal 

velocity is 0 since the drop will move at the same velocity as the flowing water in the  

longitudinal direction in a horizontal fracture.  This figure shows that the plume 

remains symmetrical along the normal axis of the fracture, expanding outward from the 

drop as time increases.  As time approaches approximately 3 hours the drop’s plume  

size has stabilized with the furthest distance traveled by the 5 μg/L plume of nearly 13 

mm away from the drop.  The extent of a stabilized plume can be determined from 

equation (107) by increasing the time limit in the integral to infinity.  This integral is 

defined as [Gradshteyn and Ryzhik, 1980] 
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∞
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,      (116) 

where 0K  is the modified Bessel function of the second kind and zero order.  

Substituting (116) into equation (107) yields the final expression for stabilized plume 
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This result is similar to the results obtained by Bear [1972] for a stationary point source 

with continuous injection into a two-dimensional porous medium that has stabilized.   

The plume generated from a single NAPL drop can grow significantly when it is 

experiencing effective velocities in both the λ  and the ω  directions.  Figure 12 shows 



 46 

the extent of the plumes generated from a NAPL drop moving within a fracture and is 

experiencing effective velocities in both directions.  Again, the solute concentration 

measured at these contours is 5 μg/L, the drop radius is held at 1 μm and the effective 

normal velocity of the drop is -3.63mm/hr.  Each contour represents the extent of the 

plume after the plumes have stabilized and are no longer growing.  If a drop 

experiences an additional longitudinal velocity, such as when the drop is traveling 

within a fracture which is not in the horizontal position, the extent of the NAPL plume    

 
Figure 12. TCE plumes generated from a single drop within a fracture at four  

       specific longitudinal velocities, αU  . 
         r = 1μm, ηU  = -3.63 mm/h, C = 5 μg/L, k = 0.1 mm/h, sC  = 1.1 g/L, 

       D/   = 3.60mm2/h, TCEρ =1.46 kg/L 
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grows considerable, as compared to the plume generated from a drop that is 

experiencing an effective velocity in the normal direction only.  The plume generated 

from the system with the largest longitudinal velocity of 5 mm/h created a plume that 

experiencing an effective velocity in the normal direction only.  The plume generated 

from the system with the largest longitudinal velocity of 5 mm/h created a plume that 

spread more than 40 mm in ω  direction and nearly 30 mm in the λ  direction.  These 

distances are significantly larger than the plume generate from the drop experiencing 

no longitudinal velocity.  This larger plume size is driven by the increase in the total 

effective velocity the drop is experiencing by helping the NAPL solute to move away 

from the drop quicker.  This increases the solute concentration gradient the NAPL drop 

experiences which enables the drop to diffuse more contaminant at a quicker rate.  

SUMMARY AND CONCLUSIONS 

The analysis provided in this research focused on the growth, the movement and the 

diffusion of one NAPL drop contained within the confines of one fracture.  The drop 

sizes generated by equations (45) through (51) were on the order of 1.5 times the NAPL 

entrance and the two most influential forces driving the final sizing of the drop are the 

drag force and the buoyancy force acting on the drop during its formation.  The surface 

tension force, the momentum flux force and the induced inertial force have little or no 

effect on the outcome of the final drop size.  NAPLs can enter into a fracture either 

from another connecting fracture or through the pores contained within the porous 

medium that connect to the fracture walls.  The drops generated from the connecting 

pores will be very small with diameters that are on the order of microns.  Though these 

drops are extremely small the potential exists that a significant number of these drops 

can be created due to the fact that there are several pore channels lining the walls of the 
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fracture.  Once the NAPL enters into the fracture it can form several drops which 

separate from the fracture walls and enter into the fracture’s flow stream.  These drops 

can now move deeper into the fractured medium driven by the buoyancy of the drop 

and the flowing water contained within the fracture array.  This mechanism provides 

another means for a NAPL to migrate within a geologic medium and helps to increase 

the spreading of the contaminant.   

When a NAPL drop enters into the fracture’s flow stream it will move within the 

fracture at velocities given by equations (59) and (60).  The drop’s velocity is 

dependant on the NAPLs density, drop size and the velocity of the flowing water.  

During the drops migration the drop will also diffuse into the water and create a 

contaminant plume.  This plume travels along with the drop and spreads within the 

fracture.  The size and concentration of the contaminant plume is dictated primarily by 

the size of the drop and the effective velocities the drop sees as it moves through out 

the fracture.   

A two-dimensional advection dispersion equation, equation (70), was derived for a 

NAPL point source which assumed that the drop and its contaminant plume were so 

small that they did not interact with the fracture boundaries.  This equation, and its 

associated boundary and initial conditions, was solved using a Fourier Transform and 

an analytical solution was obtained (equation 107).  From this equation two systems 

were examined with the first being an analysis of the transient plumes generated from a 

TCE drop with a radius of 1μm moving within a significantly larger horizontal fracture.  

The second analysis examined the effect different longitudinal velocities had on the 

growth of the contaminant plume generated from the same drop.  Both systems 

generated stable plumes with concentration contours, representing a 5ppm solute 
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concentration, traveling from 90mm to over 600mm from the drop.  These plume 

dimensions are significantly larger than the size of a typical fracture where an aperture 

of 1mm is considered large.  Because these plumes are significantly larger than what 

was anticipated, the initial assumption, which neglected the lack of interaction between 

the NAPL plume and the fracture walls, was in error.  Further study of this system must 

consider the affect the fracture walls will have on the plume as it is generated from the 

drop and grows within the fracture.  This is accomplished by assuming the boundary 

condition, equation (73), at the fracture walls is one in which there is no contaminant 

flux across these boundaries.  An analytical solution to equation (70) can then be 

obtained by first taking a Fourier Transform in the longitudinal direction and then a 

Finite Cosine Fourier Transform in the normal direction.             
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NOTATIONS 
 

DΑ   dimensionless variable, drop’s center in the longitudinal 
direction 

effA    effective area of the drop, [ ]2L  

fA    area of NAPL entrance point, [ ]2L  

C    solute concentration within the water phase, [ ]3LM  

C~    Fourier transformed solute concentration w. r. t. γ    

C
)

   Fourier transformed solute concentration w. r. t. ε    

DC    curve fit unbounded flow drag coefficient 

dwC   drag coefficient for a bounded flow 

mC    reduced mass coefficient 

sC    aqueous saturation concentration (solubility), [ ]3LM  

D    one half the fracture aperture, [ ]L  

D
~~    hydrodynamic dispersion coefficient matrix, [ ]tL2  

D/    constant hydrodynamic dispersion coefficient, [ ]tL2  

d   diameter of the NAPL entrance point, [ ]L  

d    dimensionless NAPL entrance point diameter 
ℑ    Fourier operator 

1−ℑ   Fourier inverse operator 

rF    Froude number 

g   gravitational acceleration constant, [ ]2tL   

DΗ   dimensionless variable, drop’s center in the vertical direction 

0K    modified Bessel function of the second kind and zero order  

rM   reduced mass constant, [ ]M  

dQ    constant NAPL volumetric flow rate, [ ]tL3  

dQ    dimensionless NAPL volumetric flow rate 

r   drop radius, [ ]L  
r    dimensionless drop radius 
Re    Reynolds number 

fr     final drop radius, [ ]L  
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T   dimensionless time 
sr    drop’s center position vector, [ ]L  

 t   time, [ ]t  

ft     time when drop severs its neck, [ ]t  

DU
r

  drop velocity vector, [ ]tL  

αDU   drop velocity in the longitudinal direction, [ ]tL  

ηDU   drop velocity in the vertical direction, [ ]tL  

effU
r

  effective velocity vector, [ ]tL  

effU   magnitude of the effective velocity, [ ]tL   

maxU   maximum water velocity at the center of the fracture, [ ]tL  

wU
r

   water velocity vector within the fracture, [ ]tL  

wU   average water velocity in the fracture, [ ]tL  

αU   effective velocity in the α  direction, [ ]tL  

ηU    effective velocity in the η  direction, [ ]tL  

d∀    drop volume, [ ]3L  

eW    Weber number 

x   spatial coordinate in the longitudinal direction, [ ]L  

x̂     unit vector the x direction, [ ]L  

y   spatial coordinate in the vertical direction, [ ]L  

ŷ    unit vector in the y direction, [ ]L  

Greek Letters 

α    spatial coordinate in the longitudinal direction, [ ]L  

α̂    unit vector in the α  direction, [ ]L  

Dα    drop’s center longitudinal coordinate, [ ]L  
γ    Fourier transform variable 

( )00, yyxx −−δ  Two dimensional Dirac delta function, [ ]2−L  

Δ    Effective fracture aperture, [ ]L  
ε    Fourier transform variable 

pξ    solute source function, [ ]tLM ⋅3  

η    spatial coordinate in the vertical direction, [ ]L  
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η̂     unit vector in the η  direction, [ ]L  

Dη    drop’s center vertical coordinate, [ ]L  
θ    fracture angular offset 
κ     mass transfer coefficient, [ ]tL  

λ    drop spatial coordinate in the vertical direction, [ ]L  

μ    surface tension coefficient, [ ]2tM  
μ     viscosity ratio  

Dμ    absolute viscosity of NAPL [ ]LtM  

wμ    absolute viscosity of water [ ]LtM  

ρ    dimensionless density 

dρ    NAPL drop density, [ ]3LM  

wρ    water density, [ ]3LM  

τ    dummy integration variable, [ ]t  
φ    NAPL entrance angle 

Ψ    angle of inclination between the drop’s center and the η  axis 
Ψ    dimensionless angle 
ω    drop spatial coordinate in the longitudinal direction, [ ]L  
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