

EGU2013-2108 **Session HS8.1.6 Board Number R354**

Numerical modeling of colloid facilitated virus transport in porus media

ABSTRACT

A conceptual mathematical model was developed to describe the simultaneous transport (cotransport) of viruses and colloids in three-dimensional, water saturated, homogeneous porous media with uniform flow. The model accounts for the migration of individual virus and colloid particles as well as viruses attached onto colloids. Viruses can be suspended in the aqueous phase, attached onto suspended colloids and the solid matrix, and attached onto colloids previously attached on the solid matrix. Colloids can be suspended in the aqueous phase or attached on the solid matrix. Viruses in all four phases (suspended in the aqueous phase, attached onto suspended colloid particles, attached onto the solid matrix, and attached onto colloids previously attached on the solid matrix) may undergo inactivation with different inactivation coefficients. The governing coupled partial differential equations were solved numerically by employing finite difference methods, which were implemented explicitly or implicitly so that both stability and accuracy factors were satisfied. Furthermore, pertinent experimental data published by Synguna and Chrysikopoulos (2013) were satisfactorily fitted by the newly developed cotransport model.

Model development

The colloid facilitated virus transport model assumes that the colloids partition between the aqueous phase and the solid matrix, while viruses attach onto colloid particles and the solid matrix. Consequently, colloid particles can be suspended in the aqueous phase, or attached onto the solid matrix. Viruses can be suspended in the aqueous phase, directly attached onto the solid matrix, attached onto suspended colloid particles (virus-colloid particles), and attached onto colloid particles that are already attached onto the solid matrix (or equivalently virus-colloid particles attached onto the solid matrix). A schematic illustration of the various types of concentrations considered in the present mathematical model is given in Fig. 1. To simplify the notation, the various masses are indicated as follows: M_c is the mass of colloids, M_v is the mass of viruses, and M_s is the mass of the solid matrix.

Figure 1: Schematic illustration of the various concentrations accounted for in the cotransport mathematical model.

- C_{c} colloid particles suspended in the aqueous phase [M_c/L³]
- colloid particles attached onto the solid matrix :
- b) Due to deposition $C_c^{*(i)}$ [M_c/M_s] (i= irreversible)
- C_v Viruses suspended in the aqueous phase [M_v/L³]
- C_v^* Viruses Directly attached onto the solid matrix $[M_v/M_s]$

Mathematical Model

G	Governing partial differential ec		
3-D Colloid transport equation (Sim and Chrysikopoulos, 1998, 1999; Fabrice Comper-) e et al., 2001)	Reversit	
$\frac{\partial C_{c}(t, x, y, z)}{\partial t} + \frac{\rho_{b}}{\theta} \left(\frac{\partial C_{c}^{*(r)}(t, x, y, z)}{\partial t} + \frac{\partial C_{c}^{*(i)}(t, x, y, z)}{\partial t} \right) - D_{yc} \frac{\partial^{2} C_{c}(t, x, y, z)}{\partial y^{2}} - D_{zc} \frac{\partial^{2} C_{c}(t, x, y, z)}{\partial z^{2}} + U \frac{\partial C_{c}(t, x, y, z)}{\partial x} + U \frac{\partial C_{c}(t, y, y, z)}{\partial x} + U \partial C_$	$D_{xc} \frac{\partial^2 C_c(t, x, y, z)}{\partial x^2}$ $\frac{y, z}{\partial t} = F_c$	<u>ρ</u> _b ∂Ccc θ Irrevers	
Adsorbed colloid-virus complex mass as (Bekhit et al., 2009) $\frac{d}{dt}(C_cC_{vc}) = r_{v-vc}(C_{vc_{eq}} - C_{vc})^2C_c - r_{vc-v}(C_cC_{vc}) + \frac{d}{dt}(C_cC_{vc}) - r_{vc-v^*c^*}(C_cC_{vc}) - \lambda_{vc}C_cC_{vc}$	Susp $\frac{D_b}{\theta} r_{v^*c^*-vc} (C_c^* C_{vc}^*)$	pended co $\frac{D_b}{\Theta} \frac{d}{dt} (C_c^* C_{vc}^*)$ $- \frac{\rho_b}{\Theta} r_{v^* c^* - vc} (C_c^*)$	
Colloid facilitated virus transport e (Vasiliadou and Chrysikopoulos, 2011)	quation		
$\frac{\partial}{\partial t} (C_v + \frac{\rho_b}{\theta} C_v^* + C_c C_{vc} + \frac{\rho_b}{\theta} C_c^* C_{vc}^*) = D_{xv} \frac{\partial^2 C_v}{\partial x^2} + D_{xvc}$ $+ D_{zv} \frac{\partial^2 C_v}{\partial z^2} + D_{zvc} \frac{\partial^2}{\partial z^2} (C_c C_{vc}) - U \frac{\partial}{\partial x} (C_v + C_c C_{vc}) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c C_v + C_c C_v) - D \frac{\partial}{\partial x} (C_v + C_c $	$\frac{\partial^2}{\partial x^2} (C_c C_{vc}) + D_{yv} \frac{\partial^2 C_v}{\partial y^2} + D_{yvc} \frac{\partial^2 C_v}{\partial y^2} + $	$\frac{\partial^2}{\partial y^2} (C_c C_{vc})$ $= \frac{\rho_b}{\theta} C_c^* C_{vc}^* + \frac{\rho_b}{\theta} C_c^* C_c^* + \frac{\rho_b}{\theta} C_c^* C_c^* + \frac{\rho_b}{\theta} C_c^* C_c^* + \frac{\rho_b}{\theta} C_c^* $	

Reversible colloid adsorption 1st order equation

(Sim and Chrysikopoulos, 1998)

 $\frac{\rho_{b}}{\rho} \frac{\partial C_{v}^{*}(t, x, y, z)}{\partial t} = r_{v-v^{*}}C_{v}(t, x, y, z) - r_{v^{*}-v} \frac{\rho_{b}}{\rho}C_{v}^{*}(t, x, y, z) - \lambda_{v}^{*} \frac{\rho_{b}}{\rho}C_{v}^{*}(t, x, y, z)$

Vasileios E. Katzourakis and Constantinos V. Chrysikopoulos University of Patras, Civil Engineering Department, Environmental Engineering Laboratory, Patras, 26500 Greece (billiskatz@yahoo.gr, gios@upatras.gr)

a) Due to adsorption $C_c^{*(r)}$ [M_c/M_s] (r=reversible)

 C_{vc} Viruses attached onto suspended colloid particles (virus-colloid particles) [M_v/M_c],

 C_{vc}^* Viruses attached onto colloid particles that are already attached onto the solid matrix (or equivalently virus-colloid particles attached onto the solid matrix) [M_v/M_c]

uations

ble colloid adsorption 1st order equation (Sim and Chrysikopoulos, 1998)

 $\frac{r_{c+c}(t,x,y,z)}{2} = r_{c+c}(t,x,y,z) - r_{c+c} \frac{\rho_{b}}{\rho_{c}} C_{c}(t,x,y,z)$

sible colloid adsorption 1st order equation (Fabrice Compere et al., 2001)

 $\frac{\rho_{b}}{\rho} \frac{\partial C_{c}^{*(i)}(t, x, y, z)}{\partial t} = r_{c - c^{*(i)}} C_{c}(t, x, y, z)$

olloid-virus complex mass accumulation rate (Bekhit et al., 2009)

 $f_{y} = \frac{\rho_{b}}{\theta} r_{v-v^{*}c^{*}} (C_{vc_{eq}}^{*} - C_{vc}^{*})^{2} C_{c}^{*} - \frac{\rho_{b}}{\theta} r_{v^{*}c^{*}-v} (C_{c}^{*} C_{vc}^{*}) + r_{vc-v^{*}c^{*}} (C_{c} C_{vc})$

$$C_{c}^{*}C_{vc}^{*}) - \lambda_{vc}^{*}\frac{\rho_{b}}{\theta}C_{c}^{*}C_{vc}^{*}$$

F,	general form of speci- configuration. [M:/L ³ t
$r_{c-c^{*(r)}}$	attachment rate coefficient colloids onto the solid
$\mathbf{r}_{c^{\star(r)}-c}$	detachment rate coeff colloids from the solid
$\mathbf{r}_{\mathbf{c}\cdot\mathbf{c}^{\star(i)}}$	deposition rate coeffic colloids onto the solid
r *	attachment rate coefficient viruses onto the solid
r *-v	detachment rate coef
λ_i	decay rate of species suspended in the liqu
λ_i^*	decay rate of species onto the solid matrix
D _{ij}	hydrodynamic dispers of species i, at the j o

packed columns, conducted by Syngouna and Chrysikopoulos (2013), were fitted by the newly developed model. MS2 (exp. 1-3) and Φ X174 (exp. 4-6) were used as model viruses, and kaolinite (kGa-1b) as model clay colloids. Interstitial velocity was set to 0.38 (exp. 1 and 4), 0.74 (exp. 2 and 5), and 1.21 (exp. 3 and 6) cm/min. Finally all cotransport experiments were conducted using a 30 cm long glass column with 2.5 cm diameter, which was packed with 2 mm diameter glass beads and placed horizontally.

Vasiliadou, I.A., and C.V. Chrysikopoulos, Water Resources Research, 47, W02543, doi:10.1029/2010WR009560, 2011. Sim, Y., Chrysikopoulos, C.V., Advances Water Resources, 22, 507-519, 1999. Sim, Y., Chrysikopoulos, C.V, Transport in Porous Media, 30(1), 87-112, 1998. Fabrice Compere, Gilles Porel, Frederick Delay, Journal of Contaminant Hydrology 49 (2001) 1-21 Bekhit, H.M., M.A. El-Kordy, A.E. Hassan, J. Contam. Hydrol., 108: 152–167, 2009. Syngouna, V.I., and C.V. Chrysikopoulos, Physicochemical and Engineering Aspects, 416, 56-65, doi:10.1016/j.colsurfa.2012.10.018, 2013.

Model Simulations and fittings

RAt	arar	100C
		1663

1610 1610 Fixed Ackn This research has been co-financed by and Greek National Funds through Learning" under the action Aristeia between members of the BioMet netwo

Fitted 2.1±1.5 0.2±1.1

0.1±0.1

0.26±0.5

0.740

0.42

0.006

Fitted 0.1±0.3

Fitted

Fixed

fixed

Fixed

.iterature

0.1±0.1

0.380

0.42

0.07

Fitted 0.12±0.1 0.021±6.2

0.014±0.1 0.014±0.01

D_{xc}

 D_{xv}

 $\mathsf{D}_{\mathsf{xvc}}$

Bo**Fate**

d ФX174-KGa-1b (Exp. 4-6) Fitted parameters							
	Exp. 3	Exp. 4	Exp. 5	Exp. 6	Units		
	0.18±0.8	1.8E-3±1.1	0.038±0.2	0.036 ±0.8	8 cm²/min		
	0.17±0.2	0.1±0.2	0.53±0.2	0.5±0.3	cm²/min		
	0.6±0.1	0.1±0.1	0.63±0.2	0.1±0.4	cm²/min		
	1.210	0.380	0.740	1.210	cm/min		
	0.42	0.42	0.42	0.42	1/min		
	0.03±0.02	0.7E-02±0.2	0.028±0.002	0.058±0.0	2 1/min		
	0.045	0.01	0.078	0.081	1/min		
	0.138±1.2	4.2E-2±0.2	0.112±0.1	0.12±1.1	1/min		
	1610	1610	1610	1610	mg/cm ³		
1	owled	ament		-			
		3					
the European Union (European Social Fund-ESF) ne Operational program "Education and Lifelong (Code No. 1185). This work is a collaboration rk, University of Patras.							
	PERATIONAL PROG DUCATION AND LIFELONG In the second second second second Second second second N G A U T H O	RAMME LEARNING Society RE&SPORTS R I T Y	SRF 7-2013 Inf development IAL FUND		niversity of atras nvironmental ngineering aboratory		