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Abstract. A mathematical model for transient contaminant transport resulting from the dissolution of a 
single component nonaqueous phase liquid (NAPL) pool in two-dimensional, saturated, homogeneous 
porous media was developed. An analytical solution was derived for a semi-infinite medium under 
local equilibrium conditions accounting for solvent decay. The solution was obtained by taking 
Laplace transforms to the equations with respect to time and Fourier transforms with respect to 
the longitudinal spatial coordinate. The analytical solution is given in terms of a single integral 
which is easily determined by numerical integration techniques. The model is applicable to both 
denser and lighter than water NAPL pools. The model successfully simulated responses of a 1,1,2- 
trichloroethane (TCA) pool at the bottom of a two-dimensional porous medium under controlled 
laboratory conditions. 
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1. Notation 
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defined in (45a) and (45b), respectively 

defined in (45c) 

vector of true model parameters (n • 1) 

vector of estimated model parameters (n • 1) 

liquid phase solute concentration (solute mass/liquid volume), M/L 3 

aqueous saturation concentration (solubility), M/L 3 

dimensionless liquid phase solute concentration, equal to c/cs 
molecular diffusion coefficient, L2/t 

effective molecular diffusion coefficient, equal to D/T*, LZ/t 

longitudinal hydrodynamic dispersion coefficient, L2/t 

hydrodynamic dispersion coefficient in the vertical direction, L2/t 

random vector with zero mean (m • 1) 
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ert~x] error function, equal to (2/7r 1/2) f0 ~ e -z2 dz 

f vector of fitting errors or residuals (m x 1 ) 

Fourier operator 

f - 1  Fourier inverse operator 

g vector of model simulated data (m • 1) 

k mass transfer coefficient, L/t 

average mass transfer coefficient, L/t 

Kd partition or distribution coefficient (liquid volume/solids mass), L3/M 

pool length, L 

~o distance between the pool and the origin of the specified Cartesian coordi. 
nate system, L 

s Laplace operator 

L;-1 Laplace inverse operator 

m number of observations 

M Laplace/Fourier function defined in (38) 

n number of model parameters 

N Laplace/Fourier function defined in (39) 

p defined in (46) 

Pex P6clet number, equal to Ux~./Dx 
Pez P6clet number, equal to U~g/D~ 
q defined in (47) 

R retardation factor 

s Laplace transform variable 

S objective function 

Sh local Sherwood number, equal to k~./D~ 
Sho overall Sherwood number, equal to fcg/7)~ 
t time, t 

T dimensionless time, equal to U~t/g 
u dummy integration variable 

u vector of independent variables 

Ux average interstitial velocity, L / t  

z spatial coordinate in the longitudinal direction, L 

X dimensionless longitudinal length, equal to (z - go)/g 
y vector of observed data (m • 1) 

z spatial coordinate in the vertical direction, L 

Z dimensionless vertical length, equal to z/g 
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Fourier transform variable 

defined in (37) 

defined in (50) 

porosity (liquid volume/aquifer volume), L3/L 3 

defined in (52a) and (52b), respectively 

decay coefficient, t-1 

dimensionless decay coefficient, equal to Ag/U~ 

bulk density of the solid matrix (solids mass/aquifer volume), M/L 3 

dummy integration variable 

tortuosity 

2. Introduction 

The contamination of natural subsurface systems by nonaqueous phase liquids 
(NAPLs), such as gasoline and organic solvents, has captured the attention of 
many environmental engineers and scientists. These liquids originate from leaking 
underground storage tanks, ruptured pipelines, surface spills, hazardous waste 
landfills, and disposal sites. As the number of contaminated sites increases so does 
the need for understanding the transport and fate of toxic NAPLs in the subsurface. 

When a NAPL spill infiltrates the subsurface environment through the vadose 
zone, a portion of it may be trapped and immobilized within the unsaturated porous 
formation in the form of blobs or ganglia, which are no longer connected to the main 
body of the nonaqueous phase liquid (Hunt et al., 1988a). Upon reaching the water 
table, NAPLs with densities heavier than that of water (sinkers, e.g., chlorinated 
solvents), given that the pressure head at the capillary fringe is sufficiently large, 
continue to migrate downward leaving behind trapped ganglia until they encounter 
an impermeable layer, where a flat source zone or pool with relatively small cross- 
section starts to form (Schwille, 1981, 1984; Anderson, 1988; Hunt et al., 1988a; 
Mackay and Cherry, 1989). On the other hand, NAPLs with densities lower than 
that of water (floaters, e.g., petroleum products) as soon as they approach the 
saturated region spread laterally and float on the water table in the form of a pool 
(Schwille, 1981; Hunt et al., 1988a). Sinker NAPL pools may further migrate 
along the formation contact only if the impermeable layer is inclined, whereas 
floater NAPL pools may move in the direction of decreasing hydraulic gradient. 

As groundwater flows through trapped ganglia, a fraction of the NAPL dissolves 
in the aqueous phase and results in concentrations leaving the ganglia at or near 
saturation (Anderson et al., 1992a). In contrast, pools have very low profiles and 
limited contact areas with respect to groundwater. If the same amount of NAPL 
is present as ganglia and as pool, ganglia dissolution is expected to proceed at 
a faster rate, because of the larger surface area available for interphase mass 
transfer (Schwille, 1988). Therefore, NAPL pools may lead to long-lasting sources 
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of groundwater contamination. If a floater NAPL pool is not stationary, NAPL 
dissolution will be influenced by the complicated flow characteristics of the two- 
phase system. 

Although several theoretical and experimental studies associated with NAPL 
behavior in saturated as well as in unsaturated porous media have been reported 
(van der Waarden et al., 1971, 1977; Fried et al., 1979; Schwille, 1988; Pinder 
and Abriola, 1986; Hunt et al., 1988a, b; Miller et al., 1990; Mackay et al., 1991; 
Powers et al., 1991; Zalidis et al., 1991; Anderson et al., 1992a, b; Conrad et al., 
1992; Johnson and Pankow, 1992, to mention a few), the literature on mathematical 
modeling, particularly on NAPL pool dissolution is rather limited. One of the few 
analytical models available has been derived by Hunt et al. (1988a). They presented 
an analytical solution to the two-dimensional steady-state advection-dispersion 
equation for NAPL pool dissolution in saturated semi-infinite homogeneous porous 
media. The model is suitable for nonreacting solutes and NAPL pools of approx- 
imately rectangular geometry. 

This work is focused on the development of a mathematical model describ- 
ing the transport of a decaying contaminant resulting from the dissolution of a 
single component NAPL pool formed at the bottom of a saturated, hydraulically 
homogeneous porous medium. Analytical procedures are employed to solve the 
two-dimensional advection-dispersion equation in conjunction with the appropri- 
ate initial and boundary conditions accounting for NAPL pool dissolution under 
uniform, steady interstitial fluid velocity. Although the mathematical solution is 
derived for denser than water NAPL pools, it can also be used for lighter than water 
NAPL pools by simply reversing the positive direction of the spatial coordinate z. 
The model is applied to an actual laboratory situation where 1,1,2-trichloroethane 
(TCA) is used to form a NAPL pool at the bottom of a two-dimensional porous 
medium. 

3. Model Development 

The transient contaminant transport from a dissolving NAPL pool denser than 
water as depicted schematically in Figure l, assuming that the organic solvent is 
sorbing under local equilibrium conditions and undergoing a first-order decay, is 
governed by the following partial differential equation 

R o (t, x, z) D x, z) 
Ot - D x  Ox 2 -~ Oz 2 

_ u  x, ARc(t, z), (1) 
Ox 

where c(t ,  x ,  z) is the liquid phase solute concentration; Ux is the average inter- 
stitial fluid velocity; z, z are the spatial coordinates in the longitudinal and ver- 
tical directions, respectively; t is time; R is the dimensionless retardation factor, 
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introduced by Hashimoto et al. (1964), which for linear, reversible, instantaneous 
sorption is defined as 

P 
o R =  l + =Kd, (2) 

U 

Kd is the partition or distribution coefficient and is expressed as the ratio of solute 
concentration on the adsorbent to solute aqueous concentration at equilibrium; p 
is the bulk density of the solid matrix; 0 is porosity; D~ is the longitudinal hydro- 
dynamic dispersion coefficient; Dz is the hydrodynamic dispersion coefficient in 
the vertical direction and A is a first-order decay constant. It should be noted that 
the decay term ARc indicates that the total concentration (aqueous plus sorbed 
solute mass) disappear due to possible biological transformation. If the retardation 
factor is not included in the decay term the decay of the sorbed solute concentration 
is' not accounted for. The governing two-dimensional partial differential equation 
considered is valid only for pools which are considerably wide in comparison to 
their length g. Assuming that the thickness of the pool is insignificant relative to 
the thickness of the aquifer, and NAPL dissolution is described by the following 
mass transfer relationship, applicable at the NAPL-water interface 

_ 9  x,  o) _ k ( t ,  x, (3) 
Oz 

where D~ = D/T* is the effective molecular diffusion coefficient, D is the molec- 
ular diffusion coefficient, 7-* is the tortuosity [introduced by Carman (1937)], 
k(t, x) is the mass transfer coefficient dependent on time and distance along the 
NAPL-water interface, ca is the aqueous concentration at the interphase and for a 
pure organic liquid equals the liquid's aqueous saturation (solubility) concentra- 
tion (Geller and Hunt, 1993), and c(t, x, oo) ~_ 0 corresponds to the contaminant 
concentration outside the boundary layer, the appropriate initial and boundary 
conditions for this system are 

c(O, x, z ) =  O, (4) 

o, (5) 

0 X<~o,  

D~Oc(t' x, O) _ - k ( t ,  x)c~ ~o < x < go + g, (6) 
Oz 

0 x >_ go + f., 

c(t, x, o c ) =  O, (7) 

where go is the distance between the pool and the origin of the specified Cartesian 
coordinate system, and g is the pool length. 
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Fig. I. Schematic representation of (a) the conceptual physical model showing the unidirec- 
tional groundwater velocity, U~, the location with respect to the origin of a Cartesian coordinate 
system of a denser than water NAPL pool with aqueous saturation concentration, Cs, and (b) 
an x-z  cross-section showing the NAPL pool of length e and the dissolved concentration 
c(~, x, z). 

It is generally more convenient  to work with models written in dimensionless 
variables. By employing  the fol lowing definitions 

c 
C = m  5 

Cs 

X - -  ~ ' 0  
X - -  - -  g , 

z 
Z=-[ ,  

U~t 
T -  g ' 

u~  
Pez - D x  ' 

u~  
Pe~ - D~ ' 

Ag 
A - - ~ - ,  

Sh (T ,  X ) -  k ( t ,  x)g  
D e  

model equations (1) and (4)-(7) become 

R OC(T, x ,  z) _ 1 02C(T, x ,  z) 
OT Pe~ O X  2 

10ZC(T, X, Z) " 
+ - -  

Pez O Z 2 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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OC(T, X, Z) _ ARC(T, X, Z), 
OX 

(16) 

c(0, x,  z) = 0, (17) 

C(T, • Z ) :  O, (18) 

OC(T, x,  o) 
OZ 

0, 

= -Sh(T,  X),  

O, 

X < O ,  

0 < X <  1, 

X _ > I ,  

(19) 

C(T, X, oo) = O. (20) 

It should be noted that the dimensionless variable Sh(T, X)  can be considered as 
a local Sherwood number. 

Taking Laplace transforms with respect to the variable T of Equations (16), 
(19) and (20) yields 

R[~d(,, x,  z ) - c ( 0 ,  x,  z)] 

1 020(8, X, Z) 1 6920(8, X, Z) 
Pex OX 2 + Pe~ OZ 2 

eg~(vv,~, X, Z) _ ARC(s, X, Z), (21) 
OX 

OC(s, X, 0) _ -Sh(s ,  X),  0 < X < 1, (22) 

O Z O, otherwise, 

C(s, X, o c ) =  0, (23) 

where the following definitions were employed for the Laplace transformations 
(Spiegel, 1990) 

f0 ~ C(8, X, Z)= C(T, X, Z)e -sT dT, (24) 

( dC(T, X, Z) ) 
-=  c(8, x ,  z ) -  c(o, x ,  z), s 

dT k J (25) 

the tilde signifies Laplace transform, s is the Laplace operator and s is the trans- 
formed time variable. Employing (17) in (21) and then taking Fourier transforms 
with respect to space variable X of the resulting equation as well as of Equations 
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(22) and (23) leads to the following second-order ordinary differential equation 
and boundary conditions 

RsC(s, 7, Z ) -  7 &(s, 7, Z ) +  1 d2wts, ~'~ 7, Z) 
Pex Pez d Z  2 

% 

dC(s, 7, O) 
dZ 

-iTC(s, 7, Z ) -  ARC(s, 7, Z), (26) 

- (27r)l/2Sh( s, 7) * ~(7) 

__ - 1  / _ 2 ~ ( s  ' (27r)1/2 7 - w)O(w) dw, (27) 

where 

% 

C(s, 7, oo)= O, (28) 

1 - e - ' ' y  

~ ( 7 ) -  i7,27r,1/2 , ~  ) "  (29) 

and the following definitions were employed for the Fourier transformations 
(Kreyszig, 1988) 

~(s, 7, Z) - 1 f_~o C(s, X, Z) e -i'~X dX, (30) 
(2~)1 /2  oo 

~{dO(S,dxX, Z)}  =iT&(s,  7 ' Z), (31) 

d2C(s, X, Z) } = _72&(s ' Z), (32) 

1 O < X < I  

0 otherwise 

.T{f(X)g(X)} = 

1 - e -i'Y 
- i7~ ~r--3772, (33) 

1 ^ 

(29r)1/2 f(7) * 0(7) 

1 fff (2re)l/2 ~ f (7  - co)O(w) dw, (34) 
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the hat signifies Fourier transform, the asterisk indicates convolution, 5 is the 
Fourier operator, 7 is the transformed spatial variable and i = v/-~. Rearranging 
(26) yields 

dZ 2 - Pez ~ + i 7 + Rs + RA ~(s,  7, Z) = 0. (35) 

The solution to the preceding ordinary differential equation is 

~(~, 7, Z ) =  M(s,  7) e Cz + X(s, 7)e  -r (36) 

where 

( 7 2  i.y )1/2 
( - ( P e z R )  1/2 ~ + ~ - + A + s  , (37) 

and M(s,  3'), N(s,  3') are Laplace/Fourier functions which must be evaluated 
from boundary conditions. Applying boundary condition (27) in (36) yields that 

7) = O. (38) 

In view of (27), (36) and (38) the unknown N(s, 7) is evaluated to be 

1 f] '~ Sh(s, w)~,(w) dw. (39) X(8, 7 ) -  ((27r)1/2 ~o 3 ' -  

Substituting (38) and (39) into (36) leads to 

3', Z ) -  e-(Z / ~  Sh(s, w)~(w)dw. (40) 
~(271" ) 1/2 ~ ")' __ 

The inverse Laplace transformation of the preceding equation is 

7r ~ 2 Pez Rr • 

x exp 727" iTr Ar • 
Pe~g R 4r j 

• Sh(T - r, 3' - w)q)(w) dw dr, (41) 

where the following definitions and general properties of Laplace transforms were 
employed (Roberts and Kaufman, 1966; Spiegel, 1990) 

s {f(s  _ b)} = f (T) exp[bT], (42) 
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s ~ exp[-as____~ 1/2] ~ 1 
L als 1/z J -  al(TrT)l/2 

= rio r l:-I 

a = (PezRZ2) 1/2, 
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exp ~ , (43) 

f (T  - 7-)g(7-) dT, (44) 

al = (PezR) 1/2, (45a,b) 

b = -  + ~ - + A  , (45c) 

s is the Laplace inverse operator, and 7- is a dummy variable. In order to 
determine the inverse Fourier transformation of (41) with respect to 7, define the 
functions p( X)  and q( X)  as follows 

p ( X ) = . F - i { e x p [  727-] 

( P e z R )  l/z [ P e z R (  ~ ) 2 ]  
= \ 27- ] exp ~ X -  , (46) 

q(X) = 5c_ 1 (27r) 1/21 ~ S h ( T -  r, 3' - w )  [i/o~r---~z ] dw 

_- ~ S h ( T -  7-, X)  0 < X < 1, (47) 

t 0 otherwise, 

where the following shifting property is used 

�9 7 -  

r {f(3')e-~-ye} = f(X-d), with d= R' (48) 

U-1 is the Fourier inverse operator, and the inverse Fourier transforms were 
obtained from the tabulation of Kreyszig (1988). Direct application of the convo- 
lution theorem to p(X ) and q(X) yields 

U-1{i~ - (27r)U2 oo p(X - u)q(u) du 

1 [ I ( p e x R ~ I / 2  exp [ P e x R ( X - u - - ~ ) 2 ] •  
(27r)l/2ao \--2T--r ] [ -  47" 

• - % u) du, (49) 
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where u is a dummy variable. Substituting the following expression 

(Pe xR)  1/2 

into (49) yields 

-1  f~z  f-l{~(~)0('Y)}- ~1/2 i 

where 

~1= (X_-~) (PezR) 1/2 

u= X R r~ 

exp[-r/2] S h ( T -  7-, u) dr/, 

(5o) 

(51) 

and the last formulation is derived from (50). In view of (41), (46), (47), and 
(51)-(53) the desired expression for C(T, X, Z) is 

~2f 1 ,1/2 [ pezRZ2 ] C(T'X'Z)=-I~Tj(r , ~P~Rr) exp - A t  4 7 - j  x 

• Sh(T - v, u) dr/dT-. (54) 

For the special case of an averaged mass transfer coefficient k(t, x) = k, the local 
Sherwood number Sh can be replaced by the overall Sherwood number 

kg 
Sho = V--~' (55) 

and (51) reduces to 

7rl/2 exp[-r/2] dr/= {erf[~l] - eff[~2]}, (56) 
1 

where the definition and fundamental properties of the error function have been 
applied (Gantschi, 1972). In view of (55) and (56) the solution for a constant mass 
transfer coefficient is 

C(T,X,Z)= S h O f o T ( ~ ) ' / 2  [ Pez RZ2 
exp - A t  47- x 

• (PezR)ID] 

- e r f [ ( X - 1 - - ~ )  (PezR~ 1/2] 67-. \~j } (57) 

(53) 

N2 = X -  1 - \ - - ~ T  J , (52a,b) 
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Schematic diagram showing the model aquifer and network of sampling ports. 

4. Experimental Methods 

4.1. DESIGN OF THE EXPERIMENTAL AQUIFER 

A two-dimensional model aquifer (see Figure 2) was built to study the dissolution 
of a 1,1,2-trichloroethane (TCA) pool. The internal dimensions of the aquifer box 
were 75 cm in length, 37 cm in height, and 21 cm in width. The dimensions of 
the porous medium inside the aquifer were 65 cm in length, 34 cm in height, and 
21 cm in width. In order to allow visual observation of the dissolution process, the 
walls of the model aquifer were constructed from 0.64 cm thick glass. The glass 
box was supported on an iron frame. In order to prevent leaking, all seams were 
caulked with silicone caulk. Two wells were constructed on the inlet and outlet 
of the glass tank to assist in the flow formation. Screens were installed inside the 
tank, 5 cm from each end, in order to prevent spilling of sand into the wells. Each 
screen consisted of 80 mesh stainless steel wire cloth, supported on a metal frame. 

A two-dimensional network of sampling ports was located in one of the side 
glass walls as shown in Figure 2. The location of the ports was decided on the basis 
of preliminary dissolution experiments conducted on a different tank. A series of 
4 inch long 18 gauge stainless steel needles was inserted into the holes and pushed 
into the porous medium. Cleaning wires were kept inside the needles to prevent 
entrance of sand during the insertion step. The needles were caulked with silicone 
caulk. The Luer hubs of the needles were plugged with removable Teflon sampling 
valves. 

4.2. FORMATION OF THE TCA POOL 

A cooking pyrex pan with internal dimensions 28 x 18 x 4.5 cm was used to confine 
the TCA pool at the bottom of the experimental aquifer. The empty aquifer box 
was filled with water to a depth of 5 cm and the empty pyrex pan was placed at the 
appropriate position at the bottom of the box. The pan was filled under water with 
aquarium gravel to a depth of 1.6 cm. At the top of the gravel, 20 to 30 mesh of 
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silica sand (ds0 = 690 #m) was added under water, until the pan was filled. The 
purpose of the gravel was to assist in the formation of a uniform pool, extending all 
the way to the bottom of the pan, which would not form if only sand was present 
in the pan. The pool formation technique was perfected after numerous trial and 
error experiments. A vertical glass pipet was inserted in the sand/gravel layer and 
was connected to a TCA reservoir with a pump. Then, the aquifer box was filled 
with sand by applying about 0.5 kg at a time with a beaker, under a water head of 
5 cm maximum. The sand used in these experiments was silica sand. Two glass 
plates were placed horizontally at 5 cm from the bottom of the tank to provide a 
well-defined boundary at the bottom of the flow zone. 

Tap water was used in all experiments and was stored in a large plastic container. 
The influent water contained 200 mg/L of sodium azide as a biocide to prevent 
biodegradation of TCA during the experiment. The flow of water into the aquifer 
was controlled with a variable speed pump. The water inlet was at the inlet well 
of the aquifer at 11.4 cm from the bottom of the well. The depth of the water table 
was controlled with an adjustable constant head reservoir connected with Teflon 
tubing to the outlet well of the model aquifer, with three connections at heights 4.5, 
13.5, and 22.5 cm from the well bottom. 

After the tank was flooded with water, the flow was stopped and the TCA 
pool was formed at the bottom of the aquifer by pumping TCA from the reservoir 
through the vertical pipet to the glass pan that was placed at the bottom of the tank. 
The TCA contained 1 g/L of water insoluble dye (Oil Red EGN dye) to assist in 
the visual observation of the pool during the tank excavation. The volume of TCA 
was calculated so that the TCA would fill the void space of the gravel layer and 
enter 2 cm inside the sand. Approximately 500 mL of TCA were used for the pool 
formation. 

4.3. SAMPLE COLLECTION AND ANALYSIS 

Interstitial water samples were collected from the syringe-needle sampling ports 
of the glass tank using Hamilton gas-tight syringes. After purging the needles with 
0.3 mL of pore water, 1 mL of sample was withdrawn from each port and was 
immediately analyzed or stored in a headspace-free sample glass vial, sealed with 
teflon-lined septa. Storage time did not exceed 3 hours. The samples were ana- 
lyzed by the 'purge-and-trap' procedure (EPA, 1982), using a gas chromatograph 
equipped with a flame ionization detector. 

5. Nonlinear Regression Procedure 

The two-dimensional transient NAPL dissolution model (Equation 57) is a non- 
linear function of  the dimensionless model parameters R, Pe~, Pez and A. Thus, 
fitting the experimental data is a nonlinear estimation problem and iterative meth- 
ods must be employed to compute the parameter estimates. There are several 
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approaches available for nonlinear parameter determination (Beck and Arnold, 
1977). Here the nonlinear least squares regression method is adopted. In general, 
the objective of the nonlinear least squares method is to obtain estimates of the 
model parameters which minimize the residual sum of squares between simulated 
and observed data. The objective function may be written as 

S(b) --- [y - g(u, i~)]Z[y -- g(u, !~)] = fTf, (58) 

where y = g(u, b) + e is an m x 1 observation vector, g is an m x 1 vector of 
model simulated data, u is a vector of independent variables, e is an m x 1 random 
vector with zero mean and known covariance matrix, f is m x 1 vector of fitting 
errors or residuals. 

Minimization of the objective function is not trivial, owing to the nonlinearities 
in g(u, b). Several techniques have been developed for unconstrained nonlinear 
estimation. Simple iterative minimization algorithms, such as trial and error or 
exhaustive search, are seldom used due to inefficiency. However, there is a wide 
selection of nonlinear estimation methods which can be used for the least-squares 
estimation problem. The most frequently employed methods can be classified 
in two major categories, the modified Newton and Gauss-Newton linearization 
approaches. The first approach to the nonlinear estimation problem utilizes a Taylor 
series expansion to linearize the objective function, whereas the second approach 
for the nonlinear estimation problem is to expand the nonlinear model in a Taylor 
series around the initial parameter estimates. An advantageous modification of 
Gauss-Newton which is based on the work of Levenberg (1944) and Marquardt 
(1963), and eliminates potential numerical difficulties when a nonfull column rank 
Jacobian matrix is encountered. Here, the procedure known as the Levenberg- 
Marquardt method is employed. 

6. Results and Discussion 

6.1. MODEL SIMULATIONS 

Consider a NAPL pool of length s =- 5 m at the bottom of a homogeneous aquifer 
under steady, unidirectional flow. Furthermore, assume that the up-gradient or 
front end of the pool is located at a distance ~o = 2 m from the origin of a 
preselected Cartesian coordinate system, as shown in Figure 1. To predict dimen- 
sionless concentrations of the dissolved solvent in the vicinity of the pool, Equation 
(57) is employed. The integral over time is evaluated numerically by the extended 
Simpson's rule (Press et al., 1986). The range of model parameters used in the 
figures is chosen to encompass most of the commonly encountered groundwater 
conditions. 

To illustrate the expected transient solvent distribution in the interstitial fluid 
of the hypothetical aquifer previously described, contours of dimensionless con- 
centrations for a conservative solvent (nonsorbing, nonreacting) in the vertical 
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Fig. 3. Lines of equal dimensionless concentration plotted in the XZ plane for (a) T = 0.5, 
(b) T = 1 and(c) T = 2 (R = 1, Pex = 125, Pez = 500, Sho = 20, A = 0). 

to the pool plane for three different points in time are presented in Figure 3. It 
should be noted that for the dimensionless coordinate system employed here the 
nonaqueous phase liquid pool is located at 0 _< X _< 1. Careful inspection of 
these contours reveals that predicted dissolved dimensionless concentrations at a 
given vertical height increase with distance from the up-gradient end of the pool; 
at some distance beyond the down-gradient end of the pool a peak concentration is 
reached and further downstream the longitudinal and vertical dispersion cause the 
concentrations to decline with distance. Figure 4 illustrates the effect of normalized 
vertical distance from the pool on dissolved dimensionless concentrations. As the 
distance from the pool gets larger, concentration levels decrease and the position 
of the point of maximum concentration shifts away from the pool. 

The effect of Pex on dimensionless dissolved concentration profiles at a nor- 
malized vertical height of Z = 0.02 and T = 1 is shown in Figure 5. The higher 
the value of  Pex the higher the dimensionless peak concentration and the smaller 
the spreading of the solute. This result was expected because an increase in Pex 
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Fig. 4. Variation of  dimensionless concentration with normalized distance in the direction of 
flow for different normalized distances in the vertical direction (R = 1, Pe~ = 125, Pez = 
500, Sho = 20, A = 0, T = 10). 

implies a decrease in the longitudinal dispersion coefficient. Similarly, in Figure 6 
we have presented dimensionless concentration profiles for three values of Pez. It 
is evident from this illustration that increasing Pez or equivalently decreasing the 
hydrodynamic dispersion coefficient in the vertical direction, the dimensionless 
concentration decreases. By comparing Figures 5 and 6 it is clear that the dissolved 
concentration is sensitive to the value of Pez. 

The effect of retardation factor on dissolved dimensionless concentration pro- 
files for two values of A is illustrated in Figure 7. The solid lines correspond to 
A = 0 and the dotted lines to A = 0.15. At early time (T = 0.5), dissolved dimen- 
sionless concentrations decrease with increasing retardation factor; however, for 
the case of A r 0 the concentrations are slightly lower due to solute decay (see 
Figure 7a). At large time (T = 20), the magnitude of the retardation factor, as 
shown in Figure 7b, has no longer an effect on dimensionless concentration distri- 
butions within the homogeneous aquifer for the case where A = 0, but for A r 0 
the dissolved concentrations are dependent on R. Thus, for a decaying solvent the 
dissolved concentration distributions are dependent on the retardation factor at all 
time. 

6.2. MODEL CALIBRATION 

Due to experimental difficulties, TCA breakthrough data were observed only at 
sampling ports P31, located 8.1 cm from the front end of the pool at a vertical 
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of flow for Pe~ = 10, 25, 125 (R = 1, Pez = 500, Z = 0.02, Sho = 20, A = 0, T = 1). 
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Fig. 6. Distribution of dimensionless concentration vs normalized distance in the direction of 
flow for Pez = 400, 500, 800 (R = 1, Pe~ = 125, Z = 0.02, Sho = 20, A = 0, T = 1). 

distance of 2.75 cm from the pool surface, or in dimensionless notation (X, Z) = 
(0.289, 0.098), P41 (0.643, 0.088) and P51 (1.004, 0.088). The pool length was 

= 0.28 m, and the solubility of TCA at 20~ is 4,500 mg/L (Verschueren, 1983). 
Only three model parameters are unknown because a retardation factor of R = 1.1 
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Fig. 7. Variation of dimensionless concentration with normalized distance in the direction of 
flow for different retardation factors with A = 0 (solid lines) and A = 0.15 (dotted lines) at 
(a) T = 0.5, and (b) T = 20 (Pe~ = 125, Pez = 500, Z = 0.02, Sho = 20, A = 0). 

was obtained from batch sorption experiments with TCA and aquifer sand, and A is 
zero because TCA is practically a nondecaying organic [its environmental half-life 
for abiotic decomposition is 170 years (Vogen et al., 1987)]. The best estimates 
of the three unknown parameters were obtained by the estimation methodology 
previously described as follows: Pex = 85.6, Pez = 213.4, and Sho = 13.4. 
Given that the average interstitial velocity was measured in the experiment as 
Ux = 0.00349 m/h, the molecular diffusion coefficient for TCA in bulk water was 
estimated by the Wilke-Chang equation as 77 = 2.92 • 10 -6 m2/h (Lyman et al., 
1982), and for sands r* = 1.43 (de Marsily, 1981, p. 233), in view of (12), (13) 
and (55) we can evaluate Dx = 1.14 x 10-5 m2/h, Dz = 4.59 x 10-6 m2/h, and 

= 9.78 x 10 -5 m/h. 
The actual TCA data observed at sampling ports P31, P41 and P51 together 

with the model simulated profiles are shown in Figure 8. Good agreement between 
the experimental data and simulated concentration history is shown for all cases. 
Clearly, the observed data incorporate some experimental error, caused mainly by 
slight fluctuations in U~. Such variations in the observed data cannot be simulated. 
Due to the relatively small size of the experimental data set available, only model 
calibration was performed and a verification of the analytical solution based on 
'blind' prediction was not carried out. 

7. Summary and Concluding Remarks 

An analytical solution to a two-dimensional transient model describing contam- 
inant transport from NAPL pool dissolution has been developed, and some of 
the features of the solution have been illustrated. The model assumes that the 
porous medium is homogeneous, the interstitial groundwater velocity steady and 
the organic solute may undergo linear reversible, instantaneous sorption. Although 



M O D E L I N G  O F  C O N T A M I N A N T  T R A N S P O R T  

0.4 , , 

143 

C 

0.3 

0.2 01 i 
0.0 

1 

0 0 
0 

El [ ]  
El 

A A A 
I i I i I i ! I ! 

2 3 4 5 6 

O 

[ ]  

T 
Fig. 8. TCA concentration experimental data observed at sampling ports P31 (triangles), P41 
(squares), P51 (circles) and simulated concentration history (solid curves). 

the model presented has many advantages due to its analytical nature, some of the 
limitations inherent to the model are its inability: (a) to allow for spatially variable 
velocity field; (b) to account for the more realistic case of spatially variable sorp- 
tion or geochemical characteristics; and (c) to allow for multicomponent NAPL 
dissolution. 

TCA concentration profiles, obtained from controlled laboratory experiments, 
were used to calibrate the model. Parameter estimates for Pez, Pe~ and Sho were 
determined by nonlinear least squares regression. Good agreement was shown 
between the experimental data and the simulated concentration profiles. 
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