
Vol.:(0123456789)1 3

Environmental Earth Sciences          (2019) 78:152  
https://doi.org/10.1007/s12665-019-8147-x

ORIGINAL ARTICLE

Effect of salinity on formaldehyde interaction with quartz sand 
and kaolinite colloid particles: batch and column experiments

Theodosia V. Fountouli1 · Constantinos V. Chrysikopoulos1   · Ioannis K. Tsanis1,2

Received: 22 January 2018 / Accepted: 16 February 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Formaldehyde (FA) is a highly reactive compound that is used extensively in medicine, agriculture and industrial processes 
as a disinfectant for killing bacteria and fungi. Therefore, the probability of FA release in the environment, with subsequent 
surface and ground water contamination is significant. In this study, the effect of salinity on the interaction of FA with quartz 
sand and kaolinite colloid particles under static and dynamic conditions was examined. Emphasis was given to salinity fluc-
tuations, as related to typical saltwater intrusion cases commonly encountered in coastal cultivated agricultural lands. All 
bench scale experiments were performed under controlled conditions at room temperature. The data from the batch experi-
ments were adequately fitted with a linear sorption isotherm. The transport of FA through columns packed with quartz sand 
under different salinity concentrations was also investigated. Formaldehyde was analyzed spectrophotometrically according 
to the Hantzsch reaction. The results of this study indicated that FA has a weak affinity for sand, but a relatively strong affinity 
for kaolinite colloid particles. Salinity was shown to have minor effects on FA transport.
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Introduction

Pesticide contamination of soils and water bodies is an 
important environmental issue, which has been extensively 
explored by numerous investigators (Magga et al. 2012; 
Boesten 2016; Kaur et al. 2016; Gevao et al. 2000). Thou-
sands of substances are used as pesticides. For example, for-
maldehyde (FA) is a disinfectant, fungicide or bactericide, 
which is frequently used for the surface sterilization of plant 
seeds (Tomlin 2000; Yuan et al. 2015). In agriculture, FA 
is often used as a 37–40% w/v solution in water, known 
as formalin. Formaldehyde is also used in many different 
applications due to its high reactivity, stability, purity in 
commercial form, and low cost (Lotfy and Rashed 2002). 
Formaldehyde is also used in aquaculture industry to pre-
vent external parasites, and to threat fungal infections (Bills 
et al. 1977; Lalonde et al. 2015). Industrial manufactories 

that produce or utilize FA usually generate wastewater con-
taining significant concentrations of this compound, ranging 
from a few to hundreds of milligrams per liter (Afkhami 
et al. 2011). All of these applications can lead to FA releases 
in the environment. Therefore, it is not surprising that FA 
is the most commonly found aldehyde in the environment 
(Liteplo et al. 2002). Trace levels of FA have been detected 
in several water samples (Hill et al. 2009). Concentrations of 
FA up to 30 µg/L have also been detected in ozonated drink-
ing water (Li et al. 2008). Due to its high solubility, FA has 
also been observed in natural rain, clouds, fog, steam, and 
soil (Heimlich 2008).

Formaldehyde is a polar, volatile and highly reactive 
organic compound with pungent odor, with undesirable 
adverse health effects (Yu et al. 2014). Formaldehyde is 
classified as human carcinogen, because it may cause naso-
pharyngeal cancer and possibly leukemia (IARC 2006). 
Formaldehyde is highly toxic to bacteria and other patho-
gens (TURI 2013). Exposure to FA can also cause central 
nervous system damage, blood, immune system and devel-
opmental disorders, as well as blindness, and respiratory 
disease (Afkhami et al. 2011). In general, due to its potential 
adverse health effects, FA is not well suited for use as a fun-
gicide to control plant diseases (Yuan et al. 2015). Therefore, 
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standards have been set to limit human exposure and health 
risk. The US Environmental Protection Agency (US EPA 
2006) has established a maximum daily dose reference for 
FA of 0.2 mg/kg per day.

The fate and mobility of contaminants in subsurface for-
mations are controlled mainly by sorption processes. Clay 
minerals, such as kaolinite, are important components of 
soil, and they are instrumental in transporting contaminants 
in soil and sediments (Li et al. 2010; Liu et al. 2011; Behera 
et al. 2010, 2012; Wu et al. 2013; Chrysikopoulos et al. 
2017). Kaolinite is abundant in many near-surface geologi-
cal environments, and it is highly sorptive due to its small 
particle size, large surface area, and chemically active sur-
face defect sites (Polati et al. 2006; Vasconcelos and Bun-
ker 2007; Konduri and Fatehi 2017). Colloids, including 
clay minerals such as kaolinite, could change the fate and 
mobility of many types of contaminants. Under certain envi-
ronmental conditions, colloid particles could carry sorbed 
contaminants over long distances in the subsurface environ-
ment and pose a significant threat to surface and ground 
water quality. Contaminant transport can significantly be 
enhanced by colloids when the sorption process is irrevers-
ible, and colloid concentrations are high (National Research 
Council 2003.) Several experimental investigations have 
demonstrated the enhanced migration of contaminants dur-
ing co-transport of contaminants and suspended colloids 
(Grolimund et al. 1996; Karathanasis 1999; de Jonge et al. 
2004; Chen et al. 2015; Syngouna and Chrysikopoulos 2015, 
2016; Xing et al. 2015; Syngouna et al. 2017).

Salinity can influence the sorption behavior of contami-
nants (Green-Ruiz 2008; Chen et al. 2011; Zhang and Huang 
2011; Oh et al. 2016). Additionally, salinity can affect con-
taminant sorption by changing the electrical state of the 
sorbent surfaces (Higgins and Luthy 2006; Jeon et al. 2011). 
Soil salinization, due mainly to human activities, is one of 
the major soil degradation threats in coastal areas (Dalia-
kopoulos et al. 2016). The salinity of agricultural lands is 
caused mainly by continuous application of irrigation waters 
with high-salt concentration (Geeson et al. 2002), and by the 
use of fertilizers (Moreira Barradas et al. 2014). Soil salinity 
can cause serious damage to soil structure and reduction of 
soil fertility. High concentrations of some soluble salts can 
be toxic to crop growth and can also hinder the absorption of 
other mineral nutrients (Geeson et al. 2002). Salinity effects 
are more important in sandy soils, because they naturally 
have larger pores that allow for relatively rapid drainage 
(Moreira Barradas et al. 2014).

A series of laboratory batch sorption and column experi-
ments were conducted in this study to determine the effect 
of salinity fluctuations on FA fate and transport, as related 
to typical salt-water intrusion cases commonly encountered 
in coastal cultivated agricultural lands. To our knowledge, 
no previous study has examined the sorption behavior of FA 

onto quartz sand or kaolinite under salinity fluctuations, as 
well as the transport behavior of FA through columns packed 
with quartz sand.

Procedures

Materials and methods

A 1000 mg/L FA stock solution was prepared by adding 
124 µL of 37 wt% FA solution (Sigma–Aldrich ≥ 99%) to 
a 50 mL volumetric flask with a piston pipette, and diluted 
to volume with distilled deionized water (ddH2O). Standard 
working solutions were prepared by dilution of the stock 
solution with ddH2O and addition of appropriate amount of 
NaCl. The standard working solutions were stored prior to 
use in the dark, at 4 °C (US EPA 1996). All experimental 
work with FA was performed in a fume hood.

Several approaches are available for the detection of 
FA (Rivero and Topiwala 2004; Li et al. 2008; Kenessov 
et al. 2011; Shin and Lim 2011). Most of these methods 
require chemical reaction of FA with various reagents to 
form colored derivatives, which can be observed spectro-
photometrically (Jones et al. 1999; Michels 2001; Tsai et al. 
2003a, b; Soman et al. 2008; Peng et al. 2014). The most 
common derivatizing agents are dinitrophenylhydrazine 
(DNPH) (Lehotay and Hromulakova 1994; Jones et al. 1999; 
Tsai et al. 2003a, b; Peng et al. 2014, US EPA 1996, 1998), 
and the Nash reagent (Nash 1953). In this study, FA was 
analyzed using the Nash method, which has been widely 
used, and the color of the resulting complex is measured 
with UV–visible spectroscopy (Jones et al. 1999; Kaszycki 
and Koloczek 2000; Economou and Mihalopoulos 2002; 
Eiroa et al. 2004; Seyfioglu et al. 2006; Zhen et al. 2007; 
Chanarat and Benjakul 2013).

The Nash reagent was prepared by dissolving 15 g of 
ammonium acetate, 0.3 mL of acetic acid, and 0.2 mL of 
acetyl acetone in ddH2O to make 100 mL of reagent solu-
tion, which was stored in a brown bottle. The Nash reagent 
was mixed with an equal volume of solution containing FA 
at a maximum concentration of 8 mg/L. A yellow colored 
product, diacetyl dihydrolutidine (DDL), was formed by the 
reaction of Nash reagent with FA, which was determined by 
spectrophotometry at 412 nm (Nash 1953).

Various standard FA solutions (8, 6, 4, 3, 2, 1 mg/L) were 
prepared by diluting appropriate volumes of the FA stock 
solution (1000 mg/L). For each 5 mL of standard FA solu-
tion, 5 mL of the Nash reagent were added. These mixtures 
were used to measure DDL concentrations in duplicates. The 
absorbance of each sample was measured using a UV–Vis 
spectrophotometer (Shimadzu, UV-1900) at a wavelength of 
412 nm). Finally, a calibration curve of peak area versus FA 
concentration was constructed by linear regression.
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Quartz sand

Quartz sand was employed in this study, because quartz is 
the most common mineral found on the surface of the earth 
(Chrysikopoulos and Aravantinou 2014). The grain diam-
eter of quartz sand used was in the range 0.425−0.600 mm 
(sieve no. 30/40), obtained with the procedures reported 
by Chrysikopoulos and Aravantinou (2014). The chemical 
composition of the quartz sand was: 96.2% SiO2, 1.75% 
Al2O3, 0.78% K2O, 0.46% Fe2O3, 0.15% Na2O, 0.11% 
CaO, 0.06% SO3, 0.03% P2O5, 0.02% BaO, 0.02% MgO, 
0.01% Mn3O4, and 0.28% loss on ignition, as reported 
by the manufacturer (Filcom, Netherlands). The quartz 
sand was cleaned following well-established procedures 
(Chrysikopoulos and Aravantinou 2012; Fountouli and 
Chrysikopoulos 2018). Briefly, the sand was cleaned with 
0.1 M HNO3 (70%) for a period of 3 h, rinsed with ddH2O, 
soaked in 0.1 M NaOH for 3 h, and subsequently rinsed 
again with ddH2O. Finally, the sand was dried and steri-
lized at 80 °C.

Kaolinite

Kaolinite powder (KGa-1b, well crystallized kaolin, from 
Washington Country, Georgia), purchased from Clay Min-
erals Society (Columbia, MO, USA), was used to make a 
colloidal kaolinite suspension (Pruett and Webb 1993). 
Only the < 2 µm KGa-1b fraction was used in this study, 
which was separated by sedimentation (Chrysikopou-
los et al. 2017), and was purified following procedures 
described by Rong et al. (2008). Briefly, 12.5 g of KGa-1b 
were mixed with 50 mL distilled deionized water (ddH2O) 
in a 1 L beaker. Sufficient (about 5–10 mL) hydrogen per-
oxide (30% solution), was added to oxidize the organic 
matter, while the pH was adjusted to 10 with 0.1 M NaOH. 
The suspension was diluted to 1 L and the < 2 µm colloid 
fraction was separated by sedimentation for a time period 
of 1 h. The size of the colloids was confirmed using a 
ZetaSizer analyzer (Nano ZS90, Malvern). The separated 
colloid suspension was flocculated with the addition of 
a 1 M NaCl solution. The colloid particles were washed 
with ddH2O and ethanol and dried at 60 °C. The initial 
KGa-1b concentration, CKGa−1b [M/L3], used for the batch 
experiments was CKGa−1b = 100 mg/L. The zeta potential 
and hydrodynamic diameter of the suspended KGa-1b 
particles were determined to be 1.81 mV and 1833 nm, 
respectively, based on triplicate measurements conducted 
with a ZetaSizer analyzer. Although significant variations 
may exist in zeta potential and hydrodynamic diameter of 
suspended KGa-1b particles, these values are in general 
agreement with published vales (Yukselen and Kaya 2013; 
Syngouna and Chrysikopoulos 2013; Sun et al. 2016).

Batch experiments

Static and dynamic batch experiments were performed under 
controlled conditions at room temperature, to examine the 
interaction of FA with quartz sand or kaolinite. Three dif-
ferent FA concentrations (3, 5 and 8 mg/L) as well as four 
different salt concentrations (0, 1, 2 and 3 g/L NaCl) were 
examined. It should be noted that FA concentrations in the 
range 0.9–7.1 mg/L have been observed in environmental 
systems (Lalonde et al. 2015). Additionally, the range of 
NaCl concentrations used in this study was similar to the 
range employed by Oh et al. (2016). All batch experiments 
were performed in 20 mL Pyrex glass screw-cap tubes 
(Fisher Scientific). The tubes were washed with detergent, 
rinsed in ddH2O, autoclave sterilized, and oven dried at 
80 °C overnight. For the dynamic batch experiments the 
tubes were attached to a tube rotator (Selecta, Agitador 
orbit), which was operated at 12 rpm, to allow the sand or 
kaolinite to mix within the FA solution with the appropriate 
NaCl concentration.

For each experiment with quartz sand, 11 glass tubes 
were employed. The glass tubes contained 14 mL of FA 
solution with the appropriate NaCl concentration and 14 g 
of sand. All glass tubes were filled to the top. One tube was 
selected for analysis and removed from the pack randomly 
at several pre-determined time intervals. This 7-day time-
period was shown to be sufficient for the FA-sand systems 
to reach equilibrium. Similarly, FA sorption onto kaolinite 
was conducted using glass tubes filled with 10 mL of sorbent 
solution (100 mg/L kaolinite) and 10 mL of FA solution with 
the appropriate NaCl concentration. One tube was selected 
for analysis and removed from the pack randomly at several 
pre-determined time intervals.

A liquid sample collected from each tube was centrifuged 
at 4000 rpm for 15 min (Rotofix, 32A, Hettich), to remove 
sand or kaolinite particles. Exactly 5 mL of the supernatant 
were added to 5 mL of Nash reagent and the resulting mix-
ture was analyzed by UV–visible spectroscopy.

Column experiments

Column experiments were conducted to investigate the effect 
of salt concentration on the transport behavior of FA in a 
column packed with quartz sand. The glass column was 
30 cm long with 2.5 cm inside diameter. For each experi-
ment, the column was packed wet with quartz sand under 
vibration to minimize any layering. The column was satu-
rated vertically with ddH2O injected from the bottom of the 
column to remove any air pockets. Then the column was set 
horizontally. A peristaltic pump was used to control the flow 
in the column at the constant specific discharge of 1 mL/
min. First, ddH2O was pumped through the column for about 
2 h to remove impurities. Then, four pore volumes (PV) of 
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FA solution (2 mg/L) with the appropriate NaCl concentra-
tion was injected into the column at the same flow rate, and 
subsequently the column was flushed with 3 PVs of ddH2O. 
Effluent from the column was collected at certain interval 
times. To each one of the effluent samples collected an equal 
volume of Nash reagent was added, and the resulting mix-
tures were analysed by UV–visible spectroscopy.

Three sets of FA transport experiments were conducted 
with 0, 1, and 3 g/L NaCl solutions and a flow rate of 
Q = 1 mL/min. The experimental conditions of each column 
experiment are listed in Table 3.

Theoretical considerations

Sorption

The sorption of FA onto solids (quartz sand or kaolinite) at 
equilibrium was successfully described by a simple linear 
isotherm model:

where Ceq [MFA/L3] is the concentration of the FA at equi-
librium, in units of [mg FA/mL], C∗

eq
 [MFA/Ms] is the con-

centration of the FAorbed onto the adsorbent at equilibrium, 
in units of [mg FA/g solids], and Kd [L3/Mp] is the distribu-
tion coefficient, in units of [mL/mg FA]. Note that MFA rep-
resents the mass of FA, and Ms the mass of solids (quartz 
sand or kaolinite). The equilibrium concentration of FA 
sorbed onto quartz sand or kaolinite was determined in units 
of [mg FA/g solids] as follows:

where C0 [MFA/L3] is the initial liquid-phase FA concentra-
tion, in units of [mg FA/L], Ceq [MFA/L3] is the liquid-phase 
FA concentration at equilibrium, in units of [mg FA/L], V 
[L3] is the solution volume, and W [Ms] is the dry mass of 
the adsorbent, in units of [g solids].

(1)C∗
eq
= KdCeq,

(2)C∗
eq
=

(

C0 − Ceq

)

W
V ,

Fig. 1   Effect of initial FA 
concentration on kinetic sorp-
tion onto quartz sand under: 
(a–c) static conditions, and 
(d–f) dynamic conditions. 
Three different initial FA 
concentrations were exam-
ined: a, b CFA(0) = 3 mg/L, c, 
d CFA(0) = 5 mg/L, and (e, f) 
CFA(0) = 8 mg/L, at 23 °C
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The sorption kinetics data were best fitted with a pseudo-
second-order kinetics model (Tsai et al. 2003a, b; Ho 2006; 
Wu et al. 2013):

where t[t] is time, C∗
t
 [MFA/Ms] is the concentration of the 

FA sorbed onto the soil at time t, and kp2 [Ms/(MFA⋅t)] is the 
rate constant of the pseudo-second order sorption model. It 
should be noted that the pseudo-second-order kinetic sorp-
tion model has been employed in numerous sorption studies 
of environmental interest (Vasiliadou and Chrysikopoulos 
2011; Upadhyayula et al. 2009; Sotirelis and Chrysikopoulos 
2017), and is used to describe physicochemical interactions 
such as chemisorption (Ho 2006; Wu et al. 2013).

(3)dC∗
t

dt
= kp2

(

C∗
eq
− C∗

t

)2

⇒ C∗
t
=

(

C∗
eq

)2

kp2t

1 + C∗
eq
kp2t

,

Fig. 2   Effect of salinity 
on kinetic sorption of FA 
(CFA(0) = 2 mg/L) onto quartz 
sand under: (a–c) static condi-
tions, and (d–f) dynamic condi-
tions. Three different concentra-
tions of NaCl were examined: 
(a, b) 1 g/L, (c, d) 2 g/L, and (e, 
f) 3 g/L, at 23 °C

Table 1   Fitted parameters for FA sorption onto quartz sand (kinetic 
pseudo-second order sorption model)

CFA(0) (mg/L) CNaCl (mg/L) kp2 (g sand/(mg 
FA⋅d))

C
∗
eq

 (mg 
FA/g 
sand)

Static
 2 1 0.165 0.053
 2 2 0.049 0.135
 2 3 0.358 0.054
 3 0 0.054 0.090
 5 0 0.046 0.147
 8 0 0.056 0.154

Dynamic
 2 1 5.735 0.023
 2 2 7.685 0.019
 2 3 4.490 0.021
 3 0 1.762 0.024
 5 0 4.292 0.024
 8 0 3.945 0.027
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Transport modeling

The transport of FA through one-dimensional, homogeneous 
porous media is governed by the following partial differen-
tial equation (Sim and Chrysikopoulos 1995):

where CFA [MFA/L3] and C∗
FA

 [MFA/Ms] are the aqueous 
phase concentration and solid phase concentration of FA, 
respectively, t [t] is time, x [L] is the Cartesian coordinate, 

(4)

�CFA(t, x)

�t
+

�b

�

�C∗
FA
(t, x)

�t
= −U

�CFA(t, x)

�x
+ D

�2CFA(t, x)

�x2
,

ρb [Ms/L3] is the dry bulk density, θ [-] is the porosity of the 
porous medium, U [L/t] is the interstitial velocity, and D 
[L2/t] is the hydrodynamic dispersion coefficient. The sec-
ond accumulation term in Eq. 4 can be described as follows 
(Sim and Chrysikopoulos 1999):

where rf [1/t] is the rate coefficient of FA sorption onto 
quartz sand, and rr [1/t] is the rate coefficient of FA desorp-
tion from quartz sand.

For a broad pulse type of source, the appropriate initial 
and boundary conditions are:

where CFA(0) is the source concentration, and tp is the dura-
tion of solute pulse. Condition (6) establishes that there is 
no initial FA concentration within the porous medium. The 
flux-type boundary condition (7) for a broad pulse injec-
tion implies FA concentration discontinuity at inlet and pre-
serves conservation of mass (Chrysikopoulos et al. 1990). 

(5)
�b

�

�C∗
FA
(t, x)

�t
= rfCFA(t, x) − rr

�b

�
C∗
FA
(t, x)

(6)CFA(0, x) = 0

(7)−D
𝜕CFA(t, 0)

𝜕x
+ UCFA(t, 0) =

{

UCFA(0), t ⩽ tp

0, t > tp

(8)
�CFA(t,∞)

�x
= 0,

Fig. 3   Equilibrium sorption 
isotherms under: a, b static, and 
d, e dynamic conditions. The 
NaCl concentrations examined 
were: a, c CNaCl=0 g/L, b, d 
CNaCl = 3 g/L. The slope of each 
fitted solid line is equal to Kd

Table 2   Parameter values for equilibrium FA sorption onto quartz 
sand (linear isotherm model)

Experimental condi-
tions

NaCl (mg/L) Kd (L/mg) R2

Quartz sand
 Static 0 0.0021 0.90
 Dynamic 0 0.0032 0.88
 Static 3 0.0024 0.90
 Dynamic 3 0.0038 0.91

Kaolinite
 Static 0 21.5 0.99
 Dynamic 0 23.7 0.92
 Static 3 28.7 0.92
 Dynamic 3 31.9 0.90
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The analytical solution to the transport model (4) and (5), 
subject to conditions (6)–(8) has been developed by Sim and 
Chrysikopoulos (1995).

The mass recovery (Mr [%]) of the injected FA is quanti-
fied by the following equation (Chrysikopoulos and Kat-
zourakis 2015):

where m0 [t·MFA/L3] is the total mass of the concentration 
breakthrough curve, and Min [MFA/L2] is the mass injected 
over the void portion of the cross-sectional area of the col-
umn. The various model parameters have been estimated by 
fitting the analytical solution to the experimental data with 
the nonlinear least squares regression software ColloidFit 
(Katzourakis and Chrysikopoulos 2017).

(9)Mr =
m0

Min∕U
,

Results and discussion

The data from the kinetic batch experiments of FA sorption 
onto quartz sand at 23 °C with three different initial FA con-
centrations (CFA(0) = 3, 5 and 8 mg/L), under both static and 
dynamic conditions, are presented in Fig. 1. Furthermore, 
the effect of salinity on FA sorption onto quartz sand under 
static and dynamic conditions was investigated at 23 °C for 
three different NaCl concentrations (1, 2 and 3 g/L), and the 
experimental data are shown in Fig. 2. All kinetic experi-
ments of FA sorption onto quartz sand were conducted over 
a time period of 7 days. All the kinetic FA sorption experi-
mental data were fitted with a pseudo-second order sorption 
model (Eq. 3), using the autonomous multipurpose fitting 
software ColloidFit (Katzourakis and Chrysikopoulos 2017). 
The pseudo-second-order kinetic sorption model is used to 
describe physicochemical interactions such as chemisorp-
tion (Ho 2006; Wu et al. 2013), because FA sorption was 
assumed to involve a chemical reaction. The fitted model 
simulations were presented together with the experimental 

Fig. 4   Effect of initial FA 
concentration on kinetic sorp-
tion onto kaolinite particles 
under: a–c static conditions, 
and d–f dynamic conditions. 
Three different initial FA 
concentrations were exam-
ined: a, b CFA(0) = 3 mg/L, 
c, d CFA(0) = 5 mg/L, and e, f 
CFA(0) = 8 mg/L, at 23 °C
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data (see Figs. 1, 2), and the corresponding fitted parameter 
values are listed in Table 1.

The kinetic sorption experimental data (see Figs. 1, 2) 
suggested that the amount of FA sorbed onto quartz sand 
progressively increased over the experimental duration of 
7 days, which means that FA reached equilibrium relatively 
slowly. It should be noted that the time to reach equilibrium 
is controlled by several factors including solute concentra-
tion, adsorbent particle size, and degree of agitation (Moore 
et al. 1981). Similar trends were shown for all initial FA 
concentrations (CFA(0)) examined. However, as expected, 

the amount of FA mass sorbed onto quartz sand increased 
with increasing CFA(0). Furthermore, it was shown that the 
sorption rate of FA onto the quartz sand is slightly faster 
for dynamic conditions than static conditions for all three 
concentrations examined in this study, because agitation 
improves the contact of adsorbent solids with the liquid 
(Syngouna and Chrysikopoulos 2010). Furthermore, it 
is evident from Fig. 2 that the amount of FA sorbed onto 
quartz sand was slightly reduced with increasing salinity or 
equivalently increasing ionic strength. This is probably due 
to increased competition of positively charged FA species 

Fig. 5   Effect of salinity on 
kinetic sorption of FA onto kao-
linite particles under: a–d static 
conditions, and e–h dynamic 
conditions. Three different con-
centrations of NaCl were exam-
ined: a, e CNaCl = 0 g/L, b, f 
CNaCl = 1 g/L, c, g CNaCl = 2 g/L 
and d, h CNaCl = 3 g/L, at 23 °C
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and electrolyte cations for sorption sites. This observation 
is consistent with other studies of sorption of organics onto 
soils (Laak et al. 2006).

The experimental data from the equilibrium sorp-
tion experiments of FA onto quartz sand under static and 
dynamic conditions with and without the presence of NaCl 
are presented in Fig. 3. The equilibrium sorption data were 
fitted with linear, Freundlich, and Langmuir isotherm mod-
els using ColloidFit (Katzourakis and Chrysikopoulos 
2017). However, the data were best fitted with the linear 
isotherm (see Fig. 3). The fitted parameter values together 
with the corresponding coefficients of determination, R2, 
which ranged between 0.88 and 0.91, are listed in Table 2. 
Based on the Kd values of Table 2 it is evident that FA sorp-
tion is higher under dynamic than static conditions, and the 
presence of NaCl increased only very slightly the sorption 
of FA onto quartz sand.

The data from the kinetic batch experiments of FA sorp-
tion onto kaolinite (KGa-1b) particles at 23 °C with three 
different initial FA concentrations (CFA(0) = 3, 5 and 8 mg/L), 
under both static and dynamic conditions, are presented in 
Fig. 4, together with the fitted model simulations. Further-
more, the effect of salinity on FA (CFA(0) = 5 mg/L) sorption 
onto KGa-1b particles under static and dynamic conditions 
was investigated at 23 °C for three different NaCl concentra-
tions (1, 2 and 3 g/L), and the experimental data are shown 
in Fig. 5, together with the fitted model simulations. All fit-
ted parameter values are listed in Table 1. The experimental 
duration of all experiments of FA sorption onto KGa-1b was 

72 h (3 days). It was evident from the experimental data (see 
Figs. 4, 5) that the sorption of FA onto KGa-1b particles was 
a very fast process. A rapid increase in sorption of FA onto 
KGa-1b was observed within a few minutes. This fast sorp-
tion equilibrium is in agreement with previous studies (Yang 
et al. 2016; Salman et al. 2012). As for the experiments of 
FA sorption onto quartz sand, the amounts of FA sorbed 
onto KGa-1b increased with increasing CFA(0) (see Fig. 4). 
However, it was shown that salinity had a very minor effect 
on FA sorption onto KGa-1b (see Fig. 5). The amount of FA 
mass sorbed onto KGa-1b was practically the same for all 
CNaCl concentrations used.

The experimental data from the equilibrium sorption 
experiments of FA onto KGa-1b under static and dynamic 
conditions with and without the presence of NaCl were 
presented in Fig. 6, together with the fitted linear isotherm 
model. The linear isotherm provided better fits than the Fre-
undlich and Langmuir models. The fitted parameter values 
are listed in Table 2. It should be noted that the Kd values 
for FA sorption onto KGa-1b were much greater that the Kd 
values for FA sorption onto quartz sand (see Table 2), sug-
gesting that kaolinite is a good sorbent for FA removal from 
aqueous solutions. Based on the Kd values of Table 2, it is 
evident that FA sorption is higher under dynamic than static 
conditions, and the presence of NaCl increased considerably 
the sorption of FA onto KGa-1b. Similar results have been 
reported in the literature (Salman et al. 2012; Yang et al. 
2016), suggesting that the sorption capacity of FA onto kao-
linite can be used as a non-hazardous formaldehyde remover 

Fig. 6   Equilibrium sorption 
data (isotherms) under static (a, 
b) and dynamic (c, d) condi-
tions with CNaCl =0 g/L NaCl 
(a, b), and CNaCl = 3 g/L NaCl 
(c, d). The solid lines are fitted 
lines with slope equal to Kd (R2 
in the range 0.90–0.99)
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from wastewaters and industrial effluents to avoid potential 
adverse effects to aquifers and human health.

The breakthrough data from FA flow-through experi-
ments are presented in Fig. 7, together with the fitted trans-
port model predictions. The breakthrough curves were 
plotted in the form of normalized concentrations (C/C0) 
as a function of exchanged pore volumes. The parameters 
D, rf, and rr were estimated by fitting the analytical solu-
tion to the experimental FA breakthrough concentrations 
using the values of ρb, θ and U and the fitted D values are 
listed in Table 3. As it is shown in Fig. 7, the FA con-
centration decreased quickly to zero when the columns 
flushed with ddH2O. Additionally, the normalized effluent 

FA concentrations for all three different salt concentra-
tions (0, 1, 3 g/L NaCl) were stabilized at approximately 
CFA/CFA(0) = 1.0, suggesting that there was practically no 
FA retention by the quartz sand. The FA retained by the 
packed column, for each of the transport experiment, was 
estimated with ColloidFit (Katzourakis and Chrysikopou-
los 2017), and the corresponding mass recoveries are listed 
in Table 3. This result is in agreement with the results 
from the batch experiments of FA sorption onto quartz 
sand conducted in this study. Therefore, FA can be con-
sidered as relatively mobile in water-saturated sandy soil 
column systems, at least under the experimental conditions 
of this study. Worthy of note is that very little FA reten-
tion occurred by the cleaned (acid washed) quartz sand. 
Possibly, the surfaces of sand grains in (oxic) sediments, 
which commonly contain coatings of oxides and clay min-
erals, may lead to greater FA retention than measured in 
this study.

Conclusions

The experimental results of this study suggested that FA 
was weakly sorbed onto quartz sand, whereas it was more 
significantly sorbed onto kaolin particles. The experimental 
data suggested that the sorption process involved a chemi-
cal reaction (chemisorption). More FA was sorbed onto the 
quartz sand and kaolinite particles under dynamic condi-
tions than static conditions. Salinity (presence of NaCl) had 
minimum effect on FA sorption onto quartz sand, but some-
what more significant effect on FA sorption onto kaolinite 
(KGa-1b). The equilibrium sorption of FA onto quartz sand 
and kaolinite, with and without the presence of NaCl, was 
adequately described by a linear isotherm. The migration 
of FA in water-saturated columns packed quartz sand was 
shown to be unaffected by salinity. Therefore, FA could be 
relatively mobile in natural soil and sediments, and could 
potentially pollute the aquatic environment with possible 
undesirable effects on living organisms and human health. 
Certainly, FA interaction with quartz sand would have been 
somewhat different if the sand was not cleaned. Our findings 
suggested that kaolinite could be a promising sorbent mate-
rial for removal of FA from aqueous solutions and industrial 
effluents.

Fig. 7   Breakthrough data (symbols) and fitted model simulations 
(curves) for the transport of FA in a column packed with quartz sand 
with the addition of various NaCl concentrations: a CNaCl = 0 g/L, b 
CNaCl = 1 g/L, and c CNaCl = 3 g/L

Table 3   Parameters for 
FA transport experiments 
(Q = 1 mL/min)

NaCl (g/L) ρb (g/cm3) θ (−) U (cm/min) D (cm2/min) rf (1/min) rr (1/min) Mr (%)

0 1.79 0.37 0.54 0.128 0.0126 0.853 97.5
1 1.79 0.37 0.54 0.234 0.0718 0.818 97.9
3 1.78 0.39 0.53 0.162 0.0815 0.826 100
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