Metal nanoparticles: Phytotoxicity on tomato and effect on symbiosis with the *Fusarium solani* FsK strain

Anastasios A. Malandrakis a,b,⁎, Nektarios Kavroulakis c, Marianna Avramidou d, Kalliopi K. Papadopoulou d, Georgios Tsaniklidis c, Constantinos V. Chrysikopoulos a

a School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
b Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece
c Hellenic Agricultural Organization “ELGO-Dimitra”, Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, 73164 Chania, Greece.
d Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece

HIGHLIGHTS

- Nanoparticles (NPs) and counterparts were differentially phytotoxic to tomato plants.
- Oxidative stress levels, growth and photosynthesis were affected by NP treatments.
- NPs and counterparts did not affect FsK colonization of tomato roots.
- A mutual protection from NPs was observed in plants colonized with FsK.

GRAPHICAL ABSTRACT

Abstract article info

Article history:
Received 19 March 2021
Received in revised form 23 April 2021
Accepted 5 May 2021
Available online 8 May 2021

Editor: Charlotte Poschenrieder

Keywords:
Solanum lycopersicon
Endophytes
Heavy metal toxicity alleviation
Nanoagroparticles

ARTICLE INFO

The effect of copper (Cu-NPs, CuO-NPs), silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticles (NPs) on plant growth, physiological properties of tomato plants and their symbiotic relationships with the endophytic *Fusarium solani* FsK strain was investigated. Fungitoxicity tests revealed that the FsK strain was significantly more sensitive to Cu-NPs and ZnO-NPs than CuO-NPs and Ag-NPs both in terms of mycelial growth and spore germination. All NPs were more toxic to FsK compared to their bulk counterparts except for AgNO3, which was 8 to 9-fold more toxic than Ag-NPs. Apart from AgNO3, NPs and bulk counterparts did not affect the number of germinated tomato seeds even in higher concentrations, while root length was significantly reduced in a dose dependent way in most cases. Dry weight of tomato plants was also significantly reduced upon treatment with NPs and counterparts with most pronounced effects in the cases of AgNO3, Cu-NPs, ZnO-NPs, and ZnSO4. Root and shoot length of grown tomato plants was also affected by treatments while differences between NPs and bulk counterparts varied. A marked oxidative stress response was recorded in all cases of NPs/bulk counterparts as indicated by increased MDA and H2O2 levels of treated plants. Treated plants had significantly reduced chlorophyll-a and carotenoid levels compared to the untreated control. NPs and counterparts did not affect FsK colonization of roots indicating a possible shielding effect of tomato plants once the endophyte was established inside the roots. Vice versa, a possible alleviation of CuO-NPs, ZnO-NPs, and ZnSO4 toxicity was observed in the presence of FsK inside tomato roots in terms of plant dry weight. The results suggest that phytotoxicity of NPs in tomato treated plants should be considered before application and while both FsK and tomato are sensitive to NPs, their reciprocal benefits may extent to resistance towards these toxic agents.

© 2021 Elsevier B.V. All rights reserved.

⁎ Corresponding author at: School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece.
E-mail address: tasmal@aua.gr (A.A. Malandrakis).

https://doi.org/10.1016/j.scitotenv.2021.147606
0048-9697/© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Heralded by Richard Feynman’s infamous “There’s plenty of room in the bottom”, nanotechnology initiated a new era in science with numerous applications and virtually infinite possibilities (Feynman, 1960). Research focusing on nanotechnology applications in agriculture is rapidly gaining ground primarily driven by the promising potential of nanoparticles (NPs) for optimized efficacy of inputs and reduction of pesticide/xenobiotic footprint in the environment (Kah et al., 2018; Baker et al., 2017). Controlled release, enhanced bioavailability, target-specific delivery and improved residual action are some of the advantages of nanoparticles used as alternative pesticides or nutrient carriers (Kah et al., 2018; Pandey et al., 2018). Furthermore, their combined use with synthetic pesticides has demonstrated synergism in a number of cases achieving enhanced effectiveness against plant pests with lower doses (Malandrakis et al., 2019, 2020a, 2020b). Under this scope, NPs are proposed as suitable candidates to be used as novel, environmentally compatible pesticide alternatives (Baker et al., 2017; Pandey et al., 2018; Kah et al., 2018; Sun et al., 2018). However, certain environmental concerns such as fate in ecosystems and effects on non-target organisms including humans should be addressed before their wider commercial release (Noori et al., 2020; Baker et al., 2017).

Plants, being an essential part of all ecosystems, are expected to interact directly or indirectly with nanoparticles, that could potentially inhibit toxicity, accumulate via uptake or disturb interactions of plants with beneficial/symbiotic organisms (Ma et al., 2010; Courtous et al., 2019; Lewis et al., 2019). Phytotoxicity can result from physical or chemical interaction of NPs with root or other plant tissues via a number of physiological and biochemical mechanisms including membrane interactions, ion release, production of reactive oxygen species (ROS), inactivation of enzymes or DNA disruption (Karami Mehrian et al., 2016; Ma et al., 2010; Noori et al., 2020). Standard indicators of phytotoxicity include seed germination, root elongation, plant biomass, and chlorophyl content (Ma et al., 2010; Larue et al., 2014; Karami Mehrian et al., 2016; Noori et al., 2020; Ristroph et al., 2017). A number of studies evaluating phytotoxicity of metal NPs have been conducted reporting adverse effects on various aspects of plant growth and physiology in numerous plant species (K.E. Li et al., 2015; de la Rosa et al., 2021). Reports are often conflicting although a consensus is obvious: toxicity threshold of NPs towards plants is species dependent and each case should be evaluated separately.

2. Materials and methods

2.1. Nanoparticles, reagents and fungicides

Silver [Ag-NPs] (<100 nm particle size), zinc oxide [ZnO-NPs] (particle size <50 nm), copper [Cu-NPs] (particle size 25 nm), copper oxide [CuO-NPs] (particle size <50 nm) nanoparticles (NPs) as well as zinc sulphate [ZnSO₄] and silver nitrate [AgNO₃] used in this study were purchased from Sigma-Aldrich, MO, USA. A copper hydroxide containing a commercial fungicide (Copperblau-N 50 WP) used as a bulk counterpart of copper NPs was purchased from NITROFARM (Greece). Stock solutions-suspensions of commercial fungicide, reagents and nanoparticles used in fungitoxicity and phytotoxicity bioassays were prepared using distilled-sterilized water. Appropriate quantities of stock solutions were added aseptically to sterilized growth medium prior to inoculation or seed placement. In order to prevent their aggregation, nanoparticle suspensions were subjected to sonication for 30 min with Transonic 420 (Elma, Germany) before use. Zeta potentials and hydrodynamic diameter measurements for the nanoparticles are seen in Table S1 were measured with a zetasizer (Nano ZS90, Malvern Instruments, Southborough, MA) in triplicate.

2.2. Fungal isolate and culture conditions

The fungitoxic effect of silver, copper and zinc containing NPs and their bulk/ionic counterparts against the biocontrol agent FsK, a previously characterized, non-pathogenic F. solani tomato fungal endophyte, was evaluated (Kavroulakis et al., 2007). The fungal isolate was grown on sterilized potato-dextrose-agar medium (PDA) and maintained in growth chambers in the dark at 25 °C or at 4 °C for long term storage.

2.3. Fungitoxicity tests

2.3.1. Effect of NPs on FsK mycelial growth

The fungitoxic effect of NPs and their bulk/ionic counterparts on the fungal strain FsK was assessed in vitro utilizing poison agar bioassays. The inhibitory effect of antifungal agents was determined by measuring colony radial growth on PDA medium containing appropriate concentrations of NPs or their counterparts. In order to obtain fungitoxicity-curves, concentrations of 0, 5, 10, 50, 100, 250, 500 and 1000 μg mL⁻¹ Cu-NPs, CuO-NPs, Ag-NPs, ZnO-NPs, Cu(OH)₂, AgNO₃ and ZnSO₄ were added in sterilized PDA medium, which was poured in Petri dishes and left to solidify. After the growth medium cooled, inoculum consisting of a 5-mm mycelial plug cut from the edge of 5-day old FsK colonies grown on PDA was placed in the center of the plate with the mycelium facing down in direct contact with the medium. Plates were transferred for incubation in growth chambers at 25 °C in the dark for 7 days. Following inoculation and incubation procedures described above, mean colony diameters were then measured and percent inhibition was calculated using the formula: % inhibition = 100 − (mean colony diameter of treated/mean colony diameter of untreated control) × 100. In order to compare sensitivities of FsK to metal NPs and bulk counterparts, ECᵢ₀ values (effective concentration causing 50% inhibition of mycelial growth) were calculated. Three replicate plates were used per concentration while all tests were repeated twice.

2.3.2. Effect of NPs on FsK spore germination

The potential of NPs and their bulk counterparts to inhibit FsK spore germination was assessed in vitro on PDA. Conidial suspensions of the
fungal strain were obtained by inoculating 250 mL glass flasks containing Potato Dextrose Broth (PDB) with four 5-mm mycelial plugs, cut from the edge of rapidly growing colonies. Following incubation for 4 days in the dark at 25 °C in growth chambers under continuous shaking at 200 rpm, conidia were then harvested by filtration using a cheese cloth and the concentration of spores was determined using a haemocytometer. The spore concentration was adjusted to 100 conidia/100 μL by serial dilutions in sterilized-distilled water and 100 conidia were spread on the surface of petri dishes containing PDA amended or not with the appropriate nanoparticle/bulk counterpart concentrations. Concentrations of 0, 1, 5, 10, 25, 50, 100, 250, 500 and 1000 μg/mL of each metal NP or bulk counterpart were used to obtain fungitoxicity-curves. Three replicate dishes of each compound concentration were incubated for 2 days in the dark at 25 °C. The number of forming colonies was counted and the percent inhibition of colony formation was calculated by the formula: % inhibition = (mean number of colonies of treated/mean number of colonies of untreated control) × 100.

EC50 values based on relative percent inhibition were calculated for each compound. The experiment was conducted twice.

2.4. NPs phytotoxicity tests

2.4.1. Germination assays

Tomato seeds (Solanum lycopersicon, cv. ACE 55) used in germination assays were surface disinfested in a 2.5% NaOCl water solution, rinsed twice with distilled, sterilized water and then air dried. Germination was assessed in 15-ml Falcon centrifuge tubes filled with 10 mL water agar (WA) medium amended with concentrations of 0, 10, 100 and 1000 μg/mL of copper, silver and zinc oxide NPs as well as their bulk counterparts Cu(OH)2, ZnSO4 and AgNO3 under aseptic conditions. In each tube, one seed was placed on the surface of the treated or untreated WA using a sterilized forceps and exercising sufficient pressure to ensure contact with the medium. Tubes were covered with aluminum foil and incubated for 6 days in a growth chamber at 25 °C with a 16 h:8 h day:night photoperiod. Twenty tubes per treatment were used and the germination experiment was repeated twice. At the end of the experiment, the number of germinated seeds and root length (length of the longest root) in each treatment was recorded and germination percentage (GP%) was calculated according to the formula:

$$\text{GP}\% = \frac{\text{mean number of germinated seeds of treatment}}{\text{mean number of germinated seeds of the control}} \times 100$$ (1)

2.4.2. Impact of NPs on plant growth

The impact of NPs and their bulk/ionic counterparts on tomato plant growth was evaluated in terms of shoot and shoot length and dry weight of treated tomato seedlings grown on artificial growth medium. Sterilized Hornum-Agar (HA) medium (40 g/L NH4NO3, 30 g/L KNO3, 30 g/L MgSO4·7H2O, 10 g/L NaH2PO4·H2O, 2 g/L Fe-EDTA (9% Fe), 120 mg/L MnSO4·H2O, 120 mg/L H3BO3, 40 mg/L CuSO4·5H2O, 40 mg/L ZnSO4·7H2O and 8 mg/L Na2MoO4·2H2O and 0.8% agar diluted 1:100) was selected to provide essential nutrients for tomato plants and achieve a uniform distribution of NPs in tap water and pH adjusted to 6.8) was used. The mixture was heated at 95 °C for 30 min and afterwards was cooled in ice. In order to evaluate the oxidative stress response of tomato plants caused by metal NPs and their bulk counterparts, hydrogen peroxide (H2O2) levels were determined. Specifically, 150 mg of plant material (FW) was reduced in fine powder with liquid nitrogen and homogenized in 4 ml 0.1% trichloroacetic acid (TCA) at 4 °C by vigorous vortexing. After centrifugation at 6500 rpm for 15 min at 4 °C, the supernatant was used for the determination of both lipid peroxidation levels and H2O2 concentration (Sotiras et al., 2019).

2.4.3. Hydrogen peroxide assay. Hydrogen peroxide accumulation was measured spectrophotometrically as described by Tsamiklidis et al. (2020) with some modifications. The reaction mixture consisted of 0.25 ml plant extracts, 0.25 ml of 0.1 M potassium-phosphate buffer (pH 7.0), and 0.5 ml of 1 M KI. The reaction color was developed for 45 min in darkness and absorbance was measured at 390 nm. Hydrogen peroxide levels were calculated using a calibration curve prepared with eight known concentrations of H2O2. Transformation formula: $y = 102.5 + 0.0569x$ (mmol/g fw).

2.4.3.3. Thiobarbituric acid reactive substances (TBARS)/lipid peroxidation assay. Lipid peroxidation was measured as malondialdehyde (MDA) byproduct content determined by reaction with 0.5% 2-thiobarbituric acid in 20% TCA (w/v). For each assay, 1 mL of plant extracts, 2 mL of 20% (w/v) TCA and 2 mL of 0.5% (w/v) 2-thiobarbituric acid (TBA) were used. The mixture was heated at 95 °C for 30 min and afterwards was cooled in ice. The concentration of MDA was calculated from the difference of the absorbance at 532 and 600 nm using the Beer–Lambert equation (extinction coefficient of MDA was 155 mm−1 * cm−1) (Heath and Packer, 1968).

2.4.3.4. Photosynthetic pigments. Pigment content of treated and control tomato plants was measured in leaves following the method described below. 150 mg of fresh leaf sample was added in an Eppendorf tube containing 1.8 mL of cold acetone (80%) and vortexed vigorously. Tubes were then incubated in the dark for 1 h, while being vortexed every 15-mins. Subsequently, tubes were centrifuged at 6500 rpm for 5 min at 4 °C. Chlorophyll and carotenoid concentrations were determined spectrophotometrically at absorbance wavelengths of 470, 647, and 663 nm by using the equations described by Lichtenthaler and Buschmann (2001):

$$\text{Chl a} = 12.25A_{663}−2.79A_{647}$$ (2)

$$\text{Chl b} = 21.5A_{667}−5.1A_{647}$$ (3)

$$\text{Car} = (1000A_{470}−1.82\text{Chl a}−85.02\text{Chl b})/198$$ (4)

2.4.3.5. Physiological analysis

Physiological response of tomato seedlings grown on HA medium treated with selected concentrations of each NP or bulk counterpart was analyzed. Tomato plants were grown as described previously in aluminum containers containing HA medium amended with NPs and reagents at concentrations determined by the growth inhibition experiments causing 50% inhibition of growth in terms of dry weight. Specifically, concentrations of 300 μg/mL Cu-NPs, 1000 μg/mL CuO-NPs, 800 μg/mL Cu(OH)2, 1000 μg/mL Ag-NPs, 200 μg/mL AgNO3, 250 μg/mL ZnO-NPs and 300 μg/mL ZnSO4 were used. After 3 weeks incubation in a growth chamber at 25 °C with a 16 h:8 h day:night photoperiod and 70% RH, plant tissues were harvested and analyzed in physiological experiments. Two containers per treatment were used and the experiment was repeated twice.

2.4.3.5.1. Extraction for lipid peroxidation and H2O2 assays. In order to evaluate the oxidative stress response of tomato plants caused by metal NPs and their bulk counterparts, hydrogen peroxide (H2O2) levels were determined. Specifically, 150 mg of plant material (FW) was reduced in fine powder with liquid nitrogen and homogenized in 4 ml 0.1% trichloroacetic acid (TCA) at 4 °C by vigorous vortexing. After centrifugation at 6500 rpm for 15 min at 4 °C, the supernatant was used for the determination of both lipid peroxidation levels and H2O2 concentration (Sotiras et al., 2019).
2.5. Effect of NPs on the association between tomato plants – FsK

In order to investigate the potential impact of NPs on the beneficial association between the endophytic FsK F. solani strain and tomato plants, pot experiments with soil substrate treated with selected concentrations of nano or bulk metals were conducted.

2.5.1. Plant material and inoculation

Tomato seedlings (Solanum lycopersicon, cv. ACE 55) originated from tomato seeds surface sterilized in 2.5% NaOCl and sown directly into pots. Each pot contained 400 cm3 of peat amended with 0.8 g/L of a NPK fertilizer (20-20-20). Pots were covered with aluminum foil and transferred in a controlled-environment growth chamber at 20–25 °C with a 16 h photoperiod at 65% RH for a week until the emergence of young tomato seedlings.

FsK conidial suspensions used as inoculum in the in-planta experiments were acquired according to the following procedure: A 5-mm mycelial plug cut from the edge of a rapid growing FsK colony, was transferred in PDA containing Petri dishes and incubated for 6 days at 25 °C in the dark for conidiation. Conidia were harvested by scraping the colony, transferring the collected mycelium/conidial mass in distilled-sterilized water and sieving using a cheese cloth in order to remove mycelial fragments. The resulting suspension was then centrifuged at 4000g and conidia were re-suspended in an appropriate volume of 0.85% NaCl to achieve the desired inoculum concentration using a haemocytometer. One week after sowing, FsK inoculum was applied in the soil of tomato seedlings as water drench with 106 conidia per cm2 of potting mix.

2.5.2. Application of NPs on FsK inoculated/non-inoculated tomato plants

One week after tomato seedlings were inoculated with FsK, metal NPs and bulk/ionic counterparts were applied as water suspensions (100 mL total water volume per pot) in the soil by drenching in appropriate concentrations. In the control treatment an equal amount of distilled water was used. NP containing suspensions were sonicated for 30 min before drenching to deter particle aggregation. Concentrations of NPs and counterparts applied were selected making sure that they were sublethal to FsK and additionally based on their mean dry weight inhibitory concentration determined in tomato toxicity experiments described above. Specifically, concentrations of 300 μg/mL Cu-NPs, 1000 μg/mL CuO-NPs, 800 μg/mL Cu(OH)$_2$, 250 μg/mL ZnO-NPs, 300 μg/mL ZnSO$_4$, 1000 μg/g Ag-NPs and 200 μg/mL AgNO$_3$ were used in the experiments. The experiment included two subsets: a set of NPs/bulk counterpart treated tomato plants inoculated with an identical set not inoculated with FsK. Each treatment consisted of 4 pots containing 4 tomato plants. The whole experiment was repeated twice.

2.5.3. Tomato root tissue harvesting and DNA extraction

The effect of NPs and their counterparts on FsK colonization of tomato root tissues was examined by comparing control and metal-treated tomato plants. Whole roots collected from 16 plants per treatment were washed to remove soil and then dried in sterilized filter paper. Genomic DNA was extracted from root tissue samples using the “NucleoSpin® Plant II genomic DNA extraction” kit (MACHEREY-NAGEL GmbH & Co. KG, Duren, Germany) according to the manufacturer’s protocol.

2.5.4. Quantification of FsK colonization using qPCR

The effect of NPs on the symbiotic relationships of FsK with tomato plants was evaluated by quantifying the presence (colonization) of FsK inside treated and non-treated tomato roots using Real Time qPCR. F. solani ITS region-specific primers FFsITS (5′-TGTTCAATTTAG GAA GTAA-3′) and RFsITS (5′-GCTATGTTCAAGGTGTGATG-3′), were used for the Real Time PCR assay. Copy numbers of the ITS gene in total DNA samples extracted from root tissues of FsK-inoculated plants were evaluated using an external standard curve as previously described (Garantonakis et al., 2018). Data were means of two technical replicates for each of three biological replicates. Values were normalized to ng of total DNA isolated.

3. Statistical analysis

The NPs and counterparts EC$_{50}$ values for the FsK strain were calculated by regressing the relative inhibition of mycelial growth against the Log$_{10}$ compound concentrations. The same analysis was conducted for the determination of the IC$_{50}$ values of metal compounds in the tomato plant toxicity experiments. Statistical differences between treatments in fungitoxic and phytotoxicity experiments were evaluated by analysis of variance and the resulting means were separated according to Tukey’s HSD test ($\alpha = 0.05$). Correlations of growth and physiological parameters of NPs/counterpart treated tomato plants were evaluated using Pearson correlation coefficients. The SPSS v20 software (SPSS Inc., Chicago, IL, USA) was used for the statistical analyses.

4. Results

4.1. Fungitoxic activity of NPs in vitro

The fungitoxic activity of metal nanoparticles in comparison with their bulk/ionic counterparts in terms of mycelial growth and spore germination inhibition of the FsK F. solani strain was evaluated in vitro. A dose-dependent response of FsK to metallic compounds tested was observed both in radial growth and spore germination. The respective EC$_{50}$ values for each treatment are shown in Fig. 1. Among NPs tested, Cu-NPs...
and ZnO-NPs were the most toxic against FsK both in mycelial growth and spore germination inhibition experiments. EC50 values calculated for Cu-NPs and ZnO-NPs were 260.8 and 554.4 μg/mL in mycelial growth and 18.6, 6.9 μg/mL in the spore germination tests respectively (see Fig. 1). FsK was significantly less sensitive to CuO-NPs and Ag-NPs with EC50 values close to 1000 μg/mL both in mycelial growth and spore germination assays. ZnO-NPs and Cu-NPs were 2 to 4 times more toxic to FsK compared to their counterparts ZnSO4 and Cu(OH)2 respectively in terms of mycelial growth while differences were dramatically more profound in the case of spore germination (141 and 46 times more toxic respectively—see Fig. 1). On the contrary, CuO-NPs were less or equally toxic with Cu(OH)2 while AgNO3 was approximately 8 times more toxic than AgNPs in all bioassays (see Fig. 1).

4.2. Phytotoxicity tests

4.2.1. Impact of NPs on tomato seed germination

The impact of metal NPs and their bulk counterparts on germination and root length of tomato seed was evaluated in vitro. Percent germination, root length and percent germination index rates of tomato seed treated with 10, 100 and 1000 μg/mL of metallic compounds compared to the untreated control seeds are presented in Table 1. Addition of NPs or their bulk/ionic counterparts did not affect the number of germinated seeds compared to the control even in the highest concentrations (1000 μg/mL). The only exception was observed in the case of AgNO3 which exhibited a dose dependent decrease in the seed germination rate with a maximum inhibition of 43% at the highest concentration. In contrast, a significant, dose dependent impact on root elongation of germinating seeds was observed in all treatments (see Table 1). Addition of NPs or their bulk counterparts negatively affected root elongation of tomato seeds even at the lowest (10 μg/mL) concentration. Inhibition of root length at the 1000 μg/mL concentration ranged between 60 and 90% compared to the control treatment (see Table 1). The less toxic compounds in terms of root elongation were Ag-NPs and CuO-NPs with an inhibition rate of approximately 60–65% while the remaining NPs and counterparts exhibited inhibition rates close to 85–90% at the highest tested concentration.

4.2.2. Impact of NPs on tomato plant growth

The effect of metal nanoparticles tested as well as their bulk/ionic counterparts on root and shoot length of tomato plants grown in HA medium is shown in Figs. 2 and 3. Among NPs tested, Cu-NPs were the most toxic followed by CuO-NPs, ZnO-NPs and Ag-NPs in terms of relative root length, with IC50 values of 17.88, 52.93, 197.72, and 693.20, respectively (see Fig. 2). In the case of shoot length, IC50 values of Cu-NPs, CuO-NPs, ZnO-NPs and Ag-NPs were 41.85, 75.69, 594.21 and 84.44 respectively. Comparison of the impact of NPs with their respective bulk/ionic counterparts on root and shoot development is shown in Fig. 3. In all cases, statistically significant differences were found between metal nanoparticles and their counterparts as indicated by their respective IC50 values. Cu-NPs had a significantly higher adverse effect on root and shoot development compared to Cu(OH)2 while in the ZnO-NPs and ZnSO4 case, zinc nanoparticles were more toxic to root than shoot development where the reverse relationship was found (see Fig. 3). CuO-NPs and Ag-NPs were less toxic than their counterparts both in terms of root and shoot development.

Percent mean dry weight of tomato plants treated with 100, 500 and 1000 μg/mL of NPs and bulk/ionic counterparts is shown in Table 2. Reduction of tomato plant dry weight caused by all treatments was dose-dependent in most cases. At the highest concentration, AgNO3 had the most toxic effect causing a 89% reduction in dry weight compared to the control treatment, followed by CuO-NPs, ZnO-NPs and Cu(OH)2 which exhibited the less toxic effect on tomato plants in terms of dry weight (see Table 2).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Effect of NPs and their respective bulk/ionic counterparts on the germination of tomato seeds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Germinated seeds (%)</td>
</tr>
<tr>
<td></td>
<td>(mean ± SD)</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Ag-NPs</td>
<td>100.00 a</td>
</tr>
<tr>
<td>AgNO3</td>
<td>85.71 ± 0.42 a</td>
</tr>
<tr>
<td>Cu-NPs</td>
<td>97.55 ± 1.05 a</td>
</tr>
<tr>
<td>CuO-NPs</td>
<td>100.00 a</td>
</tr>
<tr>
<td>Cu(OH)2</td>
<td>100.00 a</td>
</tr>
<tr>
<td>ZnO-NPs</td>
<td>71.43 ± 2.14 a</td>
</tr>
<tr>
<td>ZnSO4</td>
<td>100.00 a</td>
</tr>
</tbody>
</table>

a Expressed as percent of the control treatment after 14 days incubation at 22 °C (n = 3).
b Standard deviation of the means (n = 10).
c Numbers indicate concentration of NPs/bulk counterparts in μg/mL of active ingredient.

Fig. 2. Comparison of mean toxicity of copper, silver and zinc containing nanoparticles on root and shoot length in tomato plants. Bars marked by the same letter do not differ significantly according to Tukey’s HSD test (α = 0.05).
4.2.3. Effect of NPs on physiological parameters

Effect of NPs and non-nanoparticle counterparts on lipid peroxidation, an indicator of plant membrane integrity, measured as MDA byproduct was evaluated in comparison with non-treated tomato plants. All treatments except for CuO-NPs and ZnSO₄ exhibited higher MDA levels than the control treatment (see Fig. 4a). The highest MDA value was recorded in the case of Cu-NPs (1.39 µmol/g FW) which did not differ statistically from the respective value (1.17 µmol/g FW) of Cu(OH)₂. This was also the case for Ag-NPs and AgNO₃ (0.94 and 1.07 µmol/g FW), while ZnO-NPs exhibited significantly higher (1.01 µmol/g FW) MDA levels than ZnSO₄ (0.87 µmol/g FW) (see Fig. 4a).

Hydrogen peroxide accumulation as a response to oxidative stress potentially caused by NPs and counterpart treatments was determined in tomato plant tissues. Both NPs and counterparts exhibited higher levels of H₂O₂ accumulation than the untreated control (see Fig. 4b). Among NPs, higher levels of H₂O₂ (0.52 µmol/g FW) were recorded in Cu-NPs-treated tomato plants followed by ZnO-NPs (0.44 µmol/g FW), Ag-NPs (0.35 µmol/g FW) and CuO-NPs (0.17 µmol/g FW) respectively. Cu-NPs and ZnO-NPs treatments resulted in a statistically higher H₂O₂ response than their counterparts Cu(OH)₂ and ZnSO₄. No statistical difference was found in hydrogen peroxide levels between silver NPs and AgNO₃. In contrast, Cu(OH)₂ treatment resulted in a higher H₂O₂ response than CuO-NPs (see Fig. 4b).

4.2.4. Effect of NPs on physiological parameters

Effect of NPs and non-nanoparticle counterparts on lipid peroxidation, an indicator of plant membrane integrity, measured as MDA byproduct was evaluated in comparison with non-treated tomato plants. All treatments except for CuO-NPs and ZnSO₄ exhibited higher

Table 2: Percent mean dry weight of tomato plants treated with NPs and their respective bulk/ionic counterparts.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Dry weight (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100⁰ᵇ</td>
</tr>
<tr>
<td></td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Cu-NPs</td>
<td>97.25 ± 3.24 c</td>
</tr>
<tr>
<td>CuO-NPs</td>
<td>105.13 ± 0.85 c</td>
</tr>
<tr>
<td>Cu(OH)₂</td>
<td>96.19 ± 6.11 c</td>
</tr>
<tr>
<td>ZnO-NPs</td>
<td>85.20 ± 5.25 b</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>78.52 ± 3.88 ab</td>
</tr>
<tr>
<td>Ag-NPs</td>
<td>95.70 ± 9.32 c</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>65.79 ± 5.00 a</td>
</tr>
</tbody>
</table>

ᵃ Standard deviation of the means (n = 4).
ᵇ Numbers indicate concentration of NPs/bulk counterparts in µg/mL of active ingredient.
ᶜ Within columns, means followed by the same letter do not differ significantly according to Tukey’s HSD test (α = 0.05).
The photosynthetic response potential of tomato plants to NPs and counterpart treatments was evaluated by measuring Chl-a, Chl-b, and carotenoid concentrations. Chl-a content was significantly reduced compared to control in all treatments indicating that both nano and bulk counterparts and their ionic counterparts applied as root drenches significantly reduced the dry weight of tomato plants compared with the untreated control. In an attempt to investigate the potential of FsK to alleviate phytotoxicity caused by NPs and their bulk/ionic counterparts, growth parameters such as fresh, dry weight and shoot length of treated tomato plants were measured in the presence or absence of FsK. In non-inoculated tomato plants, no significant differences were found between treatments with xenobiotics and the control in terms of fresh weight and shoot length (see Table 3). When plants were inoculated with FsK, significant differences in fresh weight and shoot length were only recorded between NPs/counterpart treatments and the control only in the case of AgNO₃, which exhibited a dramatic reduction (43 and 57% respectively). In contrast, FsK-inoculated plants did not suffer any significant dry weight loss compared with the control in all NPs/counterparts cases except for AgNO₃. The later exhibited a significant decrease (41%) in dry weight compared with the control (see Table 3).

5. Discussion

In this study, the potential of copper, silver and zinc oxide NPs to cause phytotoxicity or interfere with the association between tomato plants and their endophytic partner *Fusarium solani* FsK strain was investigated via plant growth, physiological analysis and colonization bioassays.

Tomato seeds sown on growth medium containing all tested NPs germinated successfully and in rates similar or even higher than the control treatment even at the highest 1000 μg/mL concentration. This was also the case for the NPs bulk/ionic counterparts except for AgNO₃ which inhibited seed germination in a dose-dependent manner. In contrast, tomato-seedling root length was significantly reduced in a dose dependent way in most cases of NPs and bulk counterparts. Ag-NPs and CuO-NPs had the less negative effects on root elongation and were significantly less toxic than their counterparts AgNO₃ and Cu(OH)₂ respectively. The remaining NPs were equally toxic with their bulk counterparts in terms of root elongation.

![Image](42x594 to 285x741)

Fig. 5. Effect of nanoparticles application on fungal (FsK) colonization within root tissues. Quantification of fungal colonization within root tissues by qPCR using primers specific for ITS gene (primary axis). Bars marked by the same letter do not differ significantly according to Tukey’s HSD test (α = 0.05).

Table 3

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fresh weight** (mean ± SD)**</th>
<th>Dry weight** (mean ± SD)**</th>
<th>Shoot length** (mean ± SD)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−FSK</td>
<td>+FSK</td>
<td>−FSK</td>
</tr>
<tr>
<td>Control</td>
<td>16.81 ± 3.24µg</td>
<td>16.18 ± 2.01µg</td>
<td>1.46 ± 0.42µg</td>
</tr>
<tr>
<td>Cu-NPs</td>
<td>17.10 ± 2.53µg</td>
<td>16.29 ± 2.43µg</td>
<td>1.19 ± 0.27µg</td>
</tr>
<tr>
<td>CuO-NPs</td>
<td>14.13 ± 3.05µg</td>
<td>14.05 ± 2.33µg</td>
<td>0.65 ± 0.32µg</td>
</tr>
<tr>
<td>Cu(OH)₂</td>
<td>16.98 ± 0.92µg</td>
<td>16.33 ± 1.47µg</td>
<td>1.27 ± 0.13µg</td>
</tr>
<tr>
<td>ZnO-NPs</td>
<td>15.39 ± 5.85µg</td>
<td>15.34 ± 3.4µg</td>
<td>0.77 ± 0.32µg</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>17.55 ± 3.31µg</td>
<td>15.40 ± 1.02µg</td>
<td>0.81 ± 0.03µg</td>
</tr>
<tr>
<td>Ag-NPs</td>
<td>14.10 ± 1.47µg</td>
<td>14.83 ± 1.62µg</td>
<td>0.95 ± 0.12µg</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>10.45 ± 2.73µg</td>
<td>7.18 ± 3.52µg</td>
<td>0.49 ± 0.18µg</td>
</tr>
</tbody>
</table>

Mean fresh and dry weight measured in grams.

Shoot length measured in mm.

Standard deviation of the means (n = 3).

Within columns, means followed by the same letter do not differ significantly according to Tukey’s HSD test (α = 0.05).

Table 3: Effect of metal NPs and counterparts on fresh, dry weight and shoot length of tomato seedlings in the presence or absence of the endophytic FsK *F. solani* strain.
observed negative effects of green synthesized CuO-NPs on tomato root elongation even at the lowest concentration, while seed germination was only affected at the highest over a number of concentrations ranging from 4 to 4000 μg/mL. Chen et al. (2020) reported an increase on seed germination of tomato grown in iron, zinc and copper NPs-amended Murashige–Skoog (MS) nutrient medium compared with the control, although in lower concentrations. Similar reports on the effect of Ag-NPs on tomato plants indicate that silver NPs may not be a limiting factor for seed germination in concentrations up to 5000 μg/mL but significantly reduce root elongation in doses as low as 25 μg/mL (Cox et al., 2016; Song et al., 2013; Karami Mehrian et al., 2016).

Growth experiments of tomato plants grown on HA medium amended with metal NPs and their counterparts revealed a significant toxic effect of treatments on biomass, root and shoot length. Specifically, dry weight of plants was significantly reduced upon treatment with NPs and counterparts in concentrations over 500 μg/mL with most pronounced effects in the case of AgNO₃, Cu-NPs, ZnO-NPs and ZnSO₄. Cu-NPs resulted in a stronger reduction in tomato dry weight than Cu(OH)₂ while AgNO₃ were 5 times more toxic than Ag-NPs in terms of dry weight. Root and shoot length of grown tomato plants was also affected by treatments with NPs and their bulk counterparts. Cu-NPs incorporation to the growth medium resulted the highest root and shoot length inhibition among NPs tested, followed by CuO-NPs and ZnO-NPs. Shoot length was less negatively affected by NPs than their respective bulk counterparts in all cases. This was also the case for CuO-NPs and Ag-NPs as far as root length is concerned. On the contrary, Cu-NPs and ZnO-NPs resulted a more pronounced reduction in root length than Cu(OH)₂ and AgNO₃ respectively.

Tomato plant biomass significantly decreased (59–78%) upon exposure to CuO-NPs while NPs treatment also significantly reduced root (68–75%) and shoot (42–47%) length as compared to untreated controls (Pagano et al., 2016). Phytoxicity of silver NPs in tomato plants was demonstrated by reduced wet weight, root length, lower chlorophyll contents, higher superoxide dismutase activity and less fruit productivity (Song et al., 2013; Noori et al., 2020). A significant reduction in root and shoot length of S. lycopersicon was also observed upon treatment with ZnO-NPs as well as its bulk counterpart form (Ahmed et al., 2019). In the present study, NP treatments had a more pronounced toxic effect in root rather than in shoot length as indicated by the respective IC₅₀ values. The only exception was in the case of Ag-NPs where relative shoot length inhibition was greater than the one observed in roots. A probable higher translocation factor of Ag-NPs towards the shoot could be responsible for this enhanced toxicity. This could be attributed to the PVP coating of Ag-NPs which results in a negative charge of this NP in contrast to Cu-NPs and ZnO-NPs which were positively charged. Koelmel et al. (2013) has reported a surface charge-dependent bioaccumulation of Au-NPs in various rice organs with negatively charged NPs being more toxic and mostly accumulating in the above ground rice organs. Additionally, Noori et al. (2020) have reported a significantly higher translocation factor (TF) of AgNP-exposed tomato plants compared to AgNO₃ which results in the release of positively charged Ag⁺ ions. On the contrary, positively charged ZnO-NPs were found to attach to negatively charged soybean and tomato roots resulting in a low translocation factor (Zn shoot to root concentration ratio) (Ristroph et al., 2017; Akangi-Gada et al., 2019).

A number of physiological and biochemical mechanisms including membrane interactions, ion release, production of reactive oxygen species (ROS), inactivation of enzymes, disruption of the photosynthetic mechanism or damage to DNA are considered responsible for NPs phytotoxicity (Karami Mehrian et al., 2016; Ma et al., 2010; Noori et al., 2020). In an attempt to investigate the potential involvement of NPs and their bulk counterparts on lipid peroxidation and oxidative stress response of tomato, experiments determining MDA and hydrogen peroxide (H₂O₂) levels of treated and untreated S. lycopersicon plants were conducted. Overall, treatment of tomato plants with NPs/bulk counterparts resulted in a marked oxidative stress response both in terms of MDA and H₂O₂ levels which were significantly elevated in treated plants compared to the untreated control. The greatest oxidative response was observed in the case of Cu-NPs (2–8 fold increase in MDA and H₂O₂ levels compared to the untreated control respectively) followed by ZnO-NPs and Ag-NPs. This had an expected impact to the corresponding fresh weight (FW) of tomato plants as revealed by the negative correlation observed between H₂O₂ levels and FW. Comparison between NPs and their bulk/ionic counterparts showed different patterns of oxidative response. Oxidative stress caused by Cu-NPs and ZnO-NPs were greater than the one imposed by their counterparts Cu(OH)₂ and ZnSO₄ possibly indicating a higher toxicity of those metals related to nano properties. In contrast, treatment with Ag-NPs and CuO-NPs resulted in a lesser or equal oxidative response than that of their counterparts AgNO₃ and Cu(OH)₂ indicating that the ionic form of those metals are more reactive than the nano form. Similar studies on the oxidative response of Ag-NPs on tomato plants have reported a significant increase of MDA and H₂O₂ levels compared with untreated plants, which were significantly lower than that of plants treated with AgNO₃ (Noori et al., 2020; Jiravova et al., 2016). High concentrations of CuO-NPs (>0.5 μM) have been reported to trigger oxidative bursts leading to elevated H₂O₂ levels, challenging oxidative plant-defense mechanisms and resulting in the disruption of membrane integrity/phytotoxicity in barley and rice plants (Shaw et al., 2014). A similar elevation of oxidative stress in terms of H₂O₂ production as response to ZnO-NPs treatment has been reported in tomato plants (Akanbi-Gada et al., 2019). Oxidative response to NPs and counterparts treatments in the present study were correlated with chlorophyll-a and carotenoid levels which were significantly reduced compared to the untreated control. Reduction of photosynthetic pigments was more pronounced in cases with high H₂O₂ and MDA confirming the suggestion that plant biomass and chlorophyll levels are more sensitive indicators of phytotoxicity than seed germination or root elongation (Ma et al., 2010). Photosynthetic pigment level alterations have been associated with metal nanoparticle treatments in tomato plants in various studies, including treatments with copper, zinc and zinc oxide NPs (Noori et al., 2020; Akanbi-Gada et al., 2019; Lopez-Lima et al., 2021).

A number of studies have investigated the potential of metal NPs to suppress both plant pathogens and beneficial/symbiotic microorganisms (S. Li et al., 2015; Oktarina and Singleton, 2020; Malandrakis et al., 2019, 2020a, 2020b). The importance of the potential toxic action of NPs towards beneficial soil microorganisms including bacteria and fungi derives from the direct implication of these organisms to soil and plant health and productivity, and the agroecosystem/environmental sustainability (Dimkpa, 2014; Ameen et al., 2021). A better understanding of such ramifications requires studies involving combined plant-microbe interactions under the nanoparticle’s influence (Ameen et al., 2021). Fsk is a root colonizing Fusarium solani strain proven to induce tomato plant resistance mechanisms against pathogens and abiotic stress (Kavouralakis et al., 2007; Garantonakis et al., 2018; Kavouralakis et al., 2018). A key question besides tomato phytotoxicity and Fsk fungitoxicity risks posed by NPs, is whether they can affect the survival and colonization of Fsk and its symbiotic interactions with the tomato plant. In vitro fungitoxicity tests revealed that Fsk was significantly more sensitive to Cu-NPs and ZnO-NPs than CuO-NPs and Ag-NPs both in terms of mycelial growth and spore germination. All NPs were more toxic to Fsk compared to their bulk counterparts except for AgNO₃ which was to 9-fold more toxic than Ag-NPs. A similar fungitoxic profile was reported in another F. solani strain exposed in vitro to the above metal NPs and bulk counterparts (Malandrakis et al., 2019). When applied in sublethal doses in a soil-based tomato-endophyte system, NPs and bulk counterparts did not exhibit any significant effect on Fsk colonization of tomato roots. This could be due to the fact that the endophyte was already established inside tomato roots which acted as a barrier, before treatment with metal NPs/countersparts. On the other hand, tomato plants colonized by the Fsk strain did not suffer...
any adverse effects in terms of dry mass from CuO-NPs, ZnO-NPs and ZnSO₄ treatments compared with the untreated control. In the absence of FsK, the above treatments of tomato plants resulted in a significant decrease in dry mass compared with the untreated control. This indicates a potential plant-endophyte mutual protection against NPs and heavy metals with obvious implications on plant health and production. A number of studies have reported toxicity of NPs on beneficial soil fungi including biocontrol agents and other beneficial symbiotes such as arbuscular mycorrhizal fungi (AMF) and their impact on colonization and plant growth. Oktarina and Singleton [2020] have reported a significant fungitoxic effect of Ag-NPs in terms of colony diameter and spore production in the beneficial soil fungus Trichoderma harzianum in concentrations of 200, 600 and 1000 μg/mL in growth media. A similar study reported a significant reduction in maize growth and colonization by the (AMF) fungus Funneliformis mosseae in the presence of 500 mg/kg of ZnO-NPs and ZnSO₄ [S. Li et al., 2015]. On the other hand, AM fungi have demonstrated an alleviation potential against the negative effects of Ag-NPs and ZnO-NPs exposure in maize (Zea mays L.) and tomato plants (Cao et al., 2020; Noori et al., 2017; Wang et al., 2016).

6. Conclusion

Metal nanoparticles significantly negatively affected growth and physiology of tomato plants as indicated by dry mass, oxidative stress responses and photosynthetic pigment levels. Differences in plant and FsK responses between nano and bulk/ionic counterparts were observed indicating potential differences in the mode of toxic action of the two categories. NPs and counterparts applied in sublethal concentrations did not affect FsK colonization of tomato roots, while a possible alleviation of metal toxicity was observed in the presence of FsK in the case of CuO-NPs, ZnO-NPs and ZnSO₄. These results suggest that phytotoxicity of NPs in tomato treated plants should be considered before application and while both FsK and tomato are sensitive to NPs and counterparts, their symbiotic benefits can extend to mutual resistance towards these toxic agents.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2021.147606.

CRediT authorship contribution statement

Anastasios A. Malandrakis: Conceptualization, Investigation, Methodology, Writing
Nektarios Kavourakis: Investigation, Visualization, Reviewing
Georgios Tsaniklidis: Investigation, Reviewing
Marianna Avramidou: Investigation, Reviewing
Kalliopi K. Papadopoulou: Investigation, Reviewing
Constantinos V. Chryssikopoulos: Supervision, Visualization, Reviewing and Editing

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Fusarium solani FsK is patented (20070100563/1006119, issued by the Industrial Property Organization to NK and KKP).

Acknowledgements

This study was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE – INNOVATE (project code: T2EDK-00597). MA is supported by the European Union (European Social Fund – ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (IKY).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

