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Abstract. Transient moisture flow in a variably saturated quasi-three-dimensional
fracture-rock matrix system is investigated. The fracture is assumed to possess a spatially
variable aperture in its two-dimensional plane, whereas the rock matrix is treated as a
two-dimensional homogeneous and tight porous medium. The aperture fluctuations in the
fracture plane are described stochastically. Moisture exchange between the fracture and
the rock matrix is accounted for via an advective coupling term that governs the transfer
of moisture at the fracture-matrix interface and takes into account the effect of a fracture-
surface coating material. Although the variable aperture fracture is two-dimensional, the
coupling term between the fracture and the rock matrix accounts for the three-
dimensional nature of the physical system. The stochastic nonlinear set of partial
differential equations is solved numerically by the Galerkin finite element method in
conjunction with the Picard iterative scheme and an automatic time step marching.
Simulations are performed to investigate phenomena which have been ignored in previous
studies. It is demonstrated that, for the case of no moisture exchange with the rock matrix,
the moisture follows preferential flow paths within the fracture plane and exhibits
pronounced fingering effects. Furthermore, it is shown that the larger the fracture
aperture fluctuations the more extended the moisture flow in the fracture. In addition, for
the case where there exists moisture exchange with the rock matrix, the movement of the
moisture front is considerably reduced, whereas fracture-surface coatings tend to slow
down moisture absorption by the rock matrix.

Introduction

Unsaturated fluid flow in fractured media is recently receiv-
ing substantial attention, because terminal waste storage in
fractured media can possibly threaten the integrity of deeper
aquifers in case of accidental leaks [e.g., Evans and Nicholson,
1987; Pruess and Wang, 1987; Pruess and Tsang, 1990; Martinez
et al., 1992; Kwicklis and Healy, 1993]. An example is the Yucca
Mountain area in southwestern Nevada, which is being evalu-
ated as a potential site for the first high-level nuclear waste
repository in the United States [U.S. Department of Energy
1986]. In case of leaks the anticipated behavior of disposed
wastes is dependent upon the characteristics of the medium,
which govern fluid flow, fluid interactions with the rock matrix,
and consequently, contaminant transport. Obviously, the prob-
lem is not trivial, and recent studies focused on unsaturated
flow in fractured media overlook one or more significant as-
pects (e.g., fluid interaction with the rock matrix adjacent to
the fracture and fracture aperture variability).
In saturated fractured rocks, flow occurs primarily through

fractures, and fluid movement within the rock matrix surround-
ing fractures is negligible compared to that in fractures. This is
because the saturated hydraulic conductivity of the rock matrix
is several orders of magnitude smaller than the saturated hy-
draulic conductivity of fractures [Pruess and Wang, 1987]. How-
ever, unsaturated hydraulic conductivity is highly dependent
upon the moisture content present in the system [Evans and
Nicholson, 1987]. As the pressure head potential decreases

from zero at saturation to progressively negative values during
desaturation, areas in the fracture with larger apertures drain
first and cause a decrease in the hydraulic conductivity of the
fracture. The hydraulic conductivity of the rock matrix also
decreases with decreasing pressure head potential but at a
smaller rate compared to that of the fracture. This is because
the pore sizes in the rock matrix are much smaller than the
fracture apertures. Therefore, at some point the flow in the
rock matrix may be close or even exceed the flow in the frac-
ture, and flow in the rock matrix cannot be neglected anymore.
Fluids present in fractures can be imbibed into the rock

matrix by capillary suction forces at the fracture-matrix inter-
face. The existence of a low permeability mineralized layer or
coating at this interface may substantially reduce matrix imbi-
bition and could consequently result in fracture-dominated
flow [Thoma et al., 1992]. Coating material typically found in
the Yucca mountain region include manganese oxides, man-
ganates, iron oxides, iron hydroxides, silica, zeolites, smectites,
or carbonates [Carlos, 1985].
Several unsaturated flow models in fractured media have

been presented in the literature. Pruess and Tsang [1990] mod-
eled steady flow in a variable aperture fracture without mois-
ture exchange with the rock matrix. The emphasis of their work
was to develop characteristic relationships between unsatur-
ated hydraulic conductivity, pressure head, and moisture con-
tent. Kwicklis and Healy [1993] extended Pruess and Tsang’s
[1990] steady state flow model to a simple idealized discrete
fracture network with impermeable rock matrix. Other re-
searchers modeled unsaturated flow by replacing the matrix-
fracture system with an equivalent porous medium [e.g.,Wilson
and Dudley, 1987; Dykhuizen, 1987]. Nitao and Buscheck [1991]
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modeled flow in a fracture idealized as two parallel plates with
a coupling cross-flow term accounting for the exchange of
fluids between the fracture and the rock matrix. Gerke and van
Genuchten [1993] modeled one-dimensional unsteady vertical
flow in a two-porosity system with a coupling cross-flow mois-
ture exchange term.
In this study, a comprehensive mathematical model describ-

ing unsaturated moisture flow in a quasi-three-dimensional,
fracture-rock matrix system with spatially variable aperture is
presented. The pressure head potential field, for each realiza-
tion of the aperture fluctuations, is determined by numerically
solving a system of governing flow equations in the fracture
and the rock matrix with a coupling term that accounts for fluid
transfer at the fracture-matrix interface and the presence of a
fracture-surface coating material. The Galerkin finite element
method with two-dimensional triangular elements and linear
basis functions is used to discretize the governing set of non-
linear partial differential equations. Several simulations are
performed, in order to examine the behavior of the system
studied under different physical conditions.

Model Development
The physical system considered in this study is a quasi-three-

dimensional spatially variable aperture fracture-rock matrix
(see Figure 1). The assumption of a spatially variable aperture
is consistent with observations from studies conducted in sev-
eral field and laboratory experiments which show that the
aperture in the fracture plane takes on a range of values [e.g.,
Neretnieks, 1985; Abelin, 1986; Bourke, 1987]. The hypothetical
fracture used here is 8 m long and 4 m wide. The fracture
aperture is assumed to be a stationary stochastic variable that
follows a lognormal distribution with mean 1.65 mm (corre-
sponding to approximately 45 mm on a linear scale) and stan-
dard deviation of the log of the apertures 0.43 mm and varies
spatially according to an exponential autocovariance function
with an isotropic spatial correlation scale 0.3 m [Abdel-Salam
and Chrysikopoulos, 1995]. Random realizations of the aper-
ture fluctuations for a fracture with equal-size grid spacing

(0.2 m in both the y and z directions) are generated using the
geostatistical code COVAR [Williams and El-Kadi, 1986]. The
grid used consists of 21 by 41 nodes in the y and z directions,
respectively. Figure 2 shows a single realization of the aperture
field in the fracture plane. Clearly, the fracture comprises a
large variety of aperture sizes ranging from less than 9 mm
(white) to 300 mm (black).
The transient unsaturated flow equation in a fracture with

spatially variable aperture and moisture exchange with the
rock matrix is derived from mass balance considerations over a
representative fracture volume and is given as [Abdel-Salam,
1995]

b~ y, z!Cf
­c f ~t , y, z!

­t

5
g

12m

­

­ z F b3~ y, z!krfS ­c f ~t , y, z!
­ z 2 1D G 1

g

12m

z
­

­ yF b3~ y, z!krf ­c f ~t , y, z!
­ y G 2 V~t , x , y, z!, (1)

where C(c) 5 du/dc is the specific moisture capacity; c is the
pressure head potential; b is the fracture aperture at location
( y, z); kr(c) is the relative permeability, which ranges be-
tween zero for entirely air flow and one for entirely water flow;
V is the fracture-rock matrix cross-flow term; g is the fluid
specific weight; m is the fluid dynamic viscosity; t is time; y is a
horizontal spatial coordinate along the fracture width; z is a
vertical spatial coordinate, which is measured positive down-
ward; and the subscript f refers to the fracture. For the deri-
vation of the preceding equation, Darcy’s law as applied to
unsaturated fractures and the definition for the saturated hy-
draulic conductivity in a fracture segment formed by two par-
allel plates under incompressible laminar flow conditions
(Kf 5 gb2/12m) have been employed. It should also be noted

Figure 1. Schematic illustration of a vertical cross section in
the fracture-rock matrix system with spatially variable aperture
(V is the cross-flow coupling term between the fracture and the
rock matrix and b is the aperture).

Figure 2. A single realization of the aperture spatial distri-
bution in the fracture plane. The coded scale illustrates aper-
tures between 9 and 300 mm (here ly 5 4.0 m and lz 5 8.0 m).
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that (1) is a stochastic partial differential equation, because
one of its parameters, namely b , is a stochastic variable.
The pressure head based partial differential equation de-

scribing transient unsaturated flow in a homogeneous isotropic
rock matrix can be written as follows

Cm
­cm~t, x, y, z!

­t 5 Km
­

­ z F krmS ­cm~t, x, y , z!
­ z 2 1D G

1 Km
­

­ x F krm ­cm~t, x, y , z!
­ x G , (2)

where K is the rock matrix saturated hydraulic conductivity, x
is a horizontal coordinate perpendicular to the fracture plane,
and the subscript m refers to the rock matrix. In the interest of
computational simplicity, (2) is solved by not accounting for
any moisture flow in the y direction.
The derivation of the governing equations (1) and (2) is

based on the assumptions that (1) fluid flow is accounted for
only in the liquid phase, (2) adsorption of moisture onto frac-
ture surfaces is negligible, and (3) air remains at constant
atmospheric pressure at all times.
The initial and boundary conditions for the fracture-rock

matrix system studied in this work are

c f ~0, y , z! 5 c if , (3)

c f ~t, y , 0! 5 c0, (4)

­c f ~t, y , l z!/­ z 5 0, (5)

­c f ~t, 0, z!/­ y 5 0, (6)

­c f ~t, l y, z!/­ y 5 0, (7)

cm~0, x , y , z! 5 c im, (8)

cm~t, b/ 2, y , z! 5 c f ~t, y , z!, (9)

­cm~t, lx, y , z!/­ x 5 0, (10)

­cm~t, x, y , 0!/­ z 5 0, (11)

­cm~t, x, y , l z!/­ z 5 0, (12)

where c i is the initial pressure head potential; c0 is the pre-
scribed pressure head potential at the top boundary of the
fracture; lz 5 8 m is the fracture-rock matrix length; ly 5 4 m
is the width of the fracture; and lx is some representative depth
into the rock matrix, which in this work is assumed to be 1 m.
Equations (3) and (8) describe the initial conditions in the
fracture and the rock matrix, respectively. Equation (4) implies
that the fracture is subjected to a constant pressure head at the
top boundary. Condition (9) implies an equilibrium in the
pressure head potential at the fracture-rock matrix interface,
which also indicates that there is negligible resistance to mois-
ture flow between the fracture and the rock matrix. Equations
(6), (7), (10), and (11) describe no-flow boundaries, whereas
(5) and (12) imply free draining bottom boundary conditions in
the fracture and rock matrix, respectively. Although the free
draining boundary conditions (5) and (12) have the same
mathematical form as the no-flux boundary conditions (6), (7),
(10), and (11), nevertheless, their physical interpretation is
different. This is because vertical flow in unsaturated zones is
governed by capillary and gravitational forces, whereas horizontal
flow is governed only by capillary forces. A no-flux boundary

condition equivalent to (5) would read ­c f(t , y, lz)/­ z 2
1 5 0 [Kool and van Genuchten, 1991].
The cross-flow coupling term (V) accounts for the transfer

of fluid between the fracture and the rock matrix at the frac-
ture-rock matrix interface. This term provides a means of in-
cluding three-dimensional effects into the two-dimensional
fracture model and is expressed as [Nitao and Buscheck, 1991]

V~t , x , y, z! 5 22Kekrm
­cm
­ x U

x5b/ 2

, (13)

where Ke is the fracture-surface effective hydraulic conductiv-
ity, which takes into account the effect of a fracture-surface
coating material. The right-hand side of (13) is multiplied by 2
to account for moisture exchange at both sides of the rock
matrix adjacent to the fracture. It is clear from (9) that the
driving force for the gradient ­cm/­ x is the pressure head
difference between the fracture and the rock matrix.
The coefficients C(c) and kr(c) are highly nonlinear func-

tions of the pressure head potential, and consequently, the
system of coupled equations (1), (2), and (13) is also highly
nonlinear. Therefore, in order to solve for the pressure head
field in both the fracture and the rock matrix, it is essential to
define the characteristic functional relationships kr(c) and
C(c). In this work, the relationships derived by van Genuchten
[1980] are employed, because of their applicability to many
different rocks and soils [Zimmerman and Bodvarsson, 1989].
These relationships are given by

kr 5 Se
1/ 2@1 2 ~1 2 Se

1/h!h#2, (14)

u 5 u r 1
u s 2 u r

~1 1 uac ub!h , (15)

C 5
du

dc
5 2h~1 1 uac ub!2h21ba uac ub21~u s 2 u r! , (16)

where Se is the effective saturation (Se 5 (u 2 ur)/(us 2 ur));
u is the volumetric moisture content; subscripts r and s refer to the
residual and saturated volumetric moisture content, respectively;
and a, b, and h are empirical coefficients. The Mualam-based
conductivity model is assumed to be applicable (i.e., h 5 12 1/b)
[van Genuchten, 1980]. It should be noted that the coefficients a,
b, h, ur, and us are all fitting parameters and that ur and us do not
possess precise definitions [van Genuchten et al., 1991]. In addi-
tion, the residual volumetric moisture content is assumed to be
negligible in both the fracture and the rock matrix (see Table 1).
The two coefficients a and b determine the shape of the kr(c) and
C(c) relationships or, equivalently, the saturation/desaturation
behavior. Because the fracture aperture is variable, the satura-
tion/desaturation behavior is expected to fluctuate spatially within
the fracture plane. Assuming that the values of a and b are linear
functions of the aperture size, the data reported by Kwicklis and
Healy [1993] (a 5 2.45 m21, b 5 3.57 for b 5 25 mm and a 5
14.58 m21, b 5 2.92 for b5 125 mm) are used to determine kr(c)
and C(c). The scaling of a linearly to b is also consistent with the
classical work of Leverett [1941] in which the universal J-Leverett
function varies linearly with capillary suction. The coefficient b is
essentially the same as the pore size distribution index in the
Brooks and Corey’s relationships, which are often used to de-
scribe kr(c) and C(c) in porous media [Corey, 1994]. The pore
size distribution index varies with grain size distribution, structure,
and mixing of the media, with the grain size distribution being the
least important [Corey, 1994]. One might argue whether a pore
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size distribution index exists for a segment of a fracture with
constant aperture (perhaps analogous to porous media with a
uniform pore size distribution). Since available experimental data
indicate that the pore size distribution index for sands with uni-
form pore size is approximately 5 or 6 [Wygal, 1963; Corey, 1994],
a value of b for a fracture of constant aperture could exist. How-
ever, additional research is needed to confirm this and to provide
accurate relationships for the variation of b with aperture size.
Figure 3 illustrates the initial volumetric moisture content in

the fracture plane, evaluated using (15) with the appropriate a
and b values corresponding to the realization of the aperture
field presented in Figure 2. Although the initial pressure head
is the same everywhere in the fracture plane (see Table 1), the
volumetric moisture content varies over 4 orders of magnitude
(see Figure 3). This is because the variability of the fracture
aperture leads to different moisture-holding capacities. Large

aperture areas do not hold moisture as effectively as small
aperture areas, for the same pressure head. Owing to large
differences in pore sizes and geometry between fractures and
the rock matrix, the shape of kr(c) and C(c) is expected to be
quite different for the rock matrix and the fracture [Pruess and
Wang, 1987]. For the rock matrix the values for a and b used
are constant, and they are listed in Table 1. Consequently, both
the initial pressure head and the initial volumetric moisture
content are constant throughout the rock matrix. The param-
eters kr(c) and C(c) are considered to exhibit no hysteretic
behavior, neither in the fracture nor in the rock matrix.

Numerical Formulation
Because of the symmetry about the z axis of the physical

system examined (see Figure 1), only one half of the system is
considered. The fracture in the y-z plane is superimposed by a
two-dimensional finite element mesh of regular size, where
each node of the mesh is assigned a different aperture as
generated by the geostatistical code COVAR. The rock matrix
is divided into a series of two-dimensional finite element
meshes of regular size. The nodes of each rock matrix mesh in
the x-z plane (i.e., perpendicular to the fracture plane) share
the same location with nodes in the fracture mesh at x 5 b/ 2
(see Figure 4). In this work, two-dimensional three-node ele-
ments are used in the fracture plane and the rock matrix. A
total of 861 nodes and 1600 elements are used in the fracture
plane. The size of each element is 0.2 m in both the y and z
directions. It should be noted that the same nodes are used for
geostatistical realizations and computational flow simulations.
The rock matrix is divided into 21 equally spaced meshes along
the fracture width, where each mesh contains 328 nodes and
560 elements of dimensions 0.143 and 0.2 m in the x and z
directions, respectively.
Substituting (13) into (1) and following the standard Galer-

kin finite element method as outlined by Pinder and Gray
[1977] and Huyakorn and Pinder [1983], using Green’s theorem

Figure 4. Schematic illustration of the fracture and rock ma-
trix finite element meshes (the solid circles represent the nodes
of the mesh).

Table 1. Parameter Values for the Flow Model

Parameter Value Reference

Fracture
a 1.5–20.0 m21 Kwicklis and Healy [1993]
b 2.2–3.6 Kwicklis and Healy [1993]
g 9.78 3 103 N/m3 Munson et al. [1994]
ur 0.0
us 1.0
m 1.15 3 1028 N d/m2 Munson et al. [1994]
c i f 210.0 m
c0 0.0 m

Rock Matrix
Km 0.01 m/d Klavetter and Peters [1986]
a 0.15 m21 Klavetter and Peters [1986]
b 1.5 Klavetter and Peters [1986]
ur 0.0
us 0.005 Abelin [1986]
c im 210.0 m

Figure 3. Initial volumetric moisture content in the fracture
plane corresponding to the realization shown in Figure 2. The
coded scale illustrates volumetric moisture content between
3.0 3 1024 and 4.7 3 1021.
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to integrate the spatial derivatives, and finite differencing the
time derivatives results in the following set of matrix equations

A f
n1«@«C f

n11 1 ~1 2 «!C f
n# 1

B f
n1«

Dt @C f
n11 2 C f

n# 5 F f
n1«

1 G f
n1«, (17)

Am
n1«@«Cm

n11 1 ~1 2 «!Cm
n # 1

Bm
n1«

Dt @Cm
n11 2 Cm

n # 5 Fm
n1«,

(18)

where the matrices Af and Bf are symmetric and of the order of
N 3 N, while Cf, Ff, and Gf are vectors of the order of N 3
1, where N is the number of nodes in the fracture mesh;
similarly, the matrices Am and Bm are symmetric and of the
order ofM 3 M, whileCm and Fm are vectors of the order of
M 3 1, where M is the number of nodes in each mesh of the
rock matrix; superscripts n 1 1 and n indicate the current and
previous time levels, respectively; « is a time-weighting factor,
which is set to 0.5 for unsaturated nodes and 1.0 for saturated
nodes [Huyakorn and Pinder, 1983]; and Dt is the incremental
simulation time step. The elements of the above matrices are
given as

Afij 5
g

12m E E
Df

b3krfS ­L j

­ z
­L i

­ z 1
­L j

­ y
­L i

­ y D d y dz , (19)

Bfij 5 E E
Df

bCfL id ij d y dz , (20)

Ffj 5
g

12m E E
Df

b3krf
­L j

­ z d y dz , (21)

Gfj 5 2Km E E
Df

krmS ck
­Lk

­ x DL j d y dz, (22)

Amkl 5 Km E E
Dm

krmS ­L l

­ z
­Lk

­ z 1
­L l

­ x
­Lk

­ x D dx dz , (23)

Bmkl 5 E E
Dm

CmLkdkl dx dz , (24)

Fml 5 Km E E
Dm

krm
­L l

­ z dx dz , (25)

where Df is the spatial domain of the fracture mesh, Dm is the
spatial domain of a single mesh in the rock matrix (all rock
matrix meshes have the same spatial domain), L is a set of
global piecewise linear basis functions; subscripts i and j vary
from 1 to N, and subscripts k and l vary from 1 to M . The
Kronecker deltas, d ij and dkl, which appear in (20) and (24),
respectively, are used as basis functions instead of L, in order
to yield a mass-lumped (diagonalized) coefficient matrix for
the specific moisture capacity terms. A diagonalized coefficient
matrix leads to a stable numerical solution [Milly, 1985]. It
should be noted that the integrals in (22)–(25) are repeated for
each mesh of the rock matrix.
For every time step, (17) and (18) are solved iteratively using

the Picard method as outlined by Huyakorn and Pinder [1983].
The iterative solution for the fracture is

J f
n1«, rDC f

n11, r11 5 R f
n1«, r, (26)

where

J f
n1«, r 5 «A f

n1«, r 1
B f
n1«, r

Dt , (27)

DC f
n11, r11 5 C f

n11, r11 2 C f
n11, r, (28)

R f
n1«, r 5 H f

n1«, r 2 J f
n1«, rC f

n11, r, (29)

H f
n1«, r 5 F f

n1«, r 1 G f
n1«, r 2 F ~1 2 «!A f

n1«, r 2
B f
n1«, r

Dt GC f
n, (30)

where superscripts r and r 1 1 indicate the previous and
present iteration levels, respectively, at the time level n 1 1.
The solution is expressed in terms of DC rather than C to
reduce computer round off errors. Equation (26) represents a
set of linear equations with as many unknowns, DCn11,r11, as
the number of nodes in the fracture plane. The Picard iterative
solution for the rock matrix is derived in a similar fashion to
the solution presented for the fracture. An automatic time
marching algorithm is also employed, which increases or de-
creases the time step depending on the number of iterations
needed for convergence. The initial time step is set to 7.0 3
1025 days and increases progressively with simulation time to
a preselected maximum value of 0.05 day. Furthermore, (16) is
replaced by the following relation, in order to improve the
convergence of the nonlinear iterations [Huyakorn and
Thomas, 1984],

C 5
du

dc
5

un1«, r11 2 un1«, r

cn11, r11 2 cn11, r . (31)

However, for the case where the denominator in (31) ap-
proaches zero (i.e., impending convergence), the estimation of
the specific moisture capacity is obtained by (16). All integra-
tions (equations (19)–(25)) are performed on an element-by-
element basis by using a set of local linear basis functions (l)
defined over the element and the integral equation presented
by Segerlind [1984, equation (6.29)]. The dependent variables,
c f and cm, and the parameters, b, C, and kr, are approxi-
mated over each element in terms of the local basis functions
and their corresponding nodal values (e.g., c f . c f1l1 1
c f2l2 1 c f3l3, where the subscripts 1, 2, and 3 refer to nodes
1, 2, and 3, respectively). Since the shape functions are linear,
it follows that c f, cm, b, C, and kr vary linearly between the
nodes of each element.

Model Testing
The numerical solution for the model presented in this work,

for the case of constant fracture aperture and without moisture
exchange with the rock matrix, is tested against the numerical
code HYDRUS [Kool and van Genuchten, 1991]. HYDRUS is
a one-dimensional flow and transport model for variably sat-
urated porous media. In order to compare the fracture model
to HYDRUS, the relationship K 5 gb2/12m is employed to
estimate the saturated hydraulic conductivity which corre-
sponds to a desired b. A saturated hydraulic conductivity of 1
m/d is used in HYDRUS, which corresponds to a fracture
aperture of 3.8 mm. Furthermore, equivalent boundary condi-
tions to (4) and (5) were used in HYDRUS (i.e., constant
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pressure head top boundary, c 5 c0, and free draining bottom
boundary, ­c/­ z 5 0). Figure 5 shows a comparison between
the present numerical solution and HYDRUS at z equal to 4
and 6 m. The two solutions are in very good agreement. It
should be noted that Figure 5 also illustrates the sharp inter-
face of the moisture front which is a common characteristic of
unsaturated flow in homogeneous porous media and fractures
with constant apertures.

Model Simulations and Discussion
In order to investigate the effect of variable aperture and

moisture exchange with the rock matrix on unsaturated flow in
the fracture considered, several model simulations under dif-
ferent physical conditions have been performed. The parame-
ter values used in the simulations are compiled in Table 1.
First, we examined the case where there is no moisture ex-
change with the rock matrix (i.e., V 5 0). Figure 6 portrays a
two-dimensional snapshot of the pressure head potential in the
fracture plane after 1 day of simulation time. The area adjacent
to the top boundary is almost saturated, and there is no sig-
nificant fingering. This is due to the high gradient imposed by
the constant pressure head at the top boundary, which leads to
saturation of areas with smaller aperture followed by satura-
tion of areas with progressively larger apertures. Further away
from the top boundary, more variability in the pressure head
and more pronounced fingering is observed, because of the
fluctuations in the moisture holding capacity of areas with
different aperture sizes. At low pressure head potentials, areas
with large apertures do not hold as much moisture as areas
with small apertures (see (15)). Therefore areas with small
aperture dominate the flow causing localized pressure buildup
and possible reversal of pressure head potential gradients.
Pressure buildup in small aperture areas does not only depend
on aperture size but also on the spatial location of other neigh-
boring areas with comparatively the same aperture size. An
area of very small aperture size completely surrounded by

areas of large aperture size could remain at a low pressure
head potential for a long time.
It should be noted that the snapshot shown in Figure 6

corresponds to a single realization of the aperture field. How-
ever, the results of unsaturated flow in a variable aperture
fracture are best illustrated by the ensemble average of several
aperture realizations (i.e., expected value). Figure 7 displays
curves for pressure distribution as a function of time, based on
an ensemble average of 25 realizations for the case where V 5
0. The pressure head potential is averaged across the fracture

Figure 5. Comparison between temporal distributions of the
pressure head potential created by the presented numerical
solution (dotted lines) and the one-dimensional numeric code
HYDRUS (solid lines) for two different depths (here b 5 3.8
mm, K 5 1.0 m/d, a 5 2.0 m21, b 5 3.0, and c0 5 0.05 m).

Figure 6. Spatial distribution of the pressure head potential
in the fracture plane for unsaturated flow without moisture
exchange with the rock matrix (here t 5 1 day).

Figure 7. Temporal distribution of the ensemble mean pres-
sure head potential averaged across the fracture width at 2.0,
3.0, and 4.0 m downstream from the top boundary, for unsat-
urated flow without moisture exchange with the rock matrix
(here V 5 0).
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width at 2, 3, and 4 m from the top boundary. The number of
realizations is chosen such that additional realizations do not
change the calculated ensemble average. These curves indicate
that the fracture aperture variability leads to a slower increase
in the pressure head with time (the fronts are not as sharp as
the ones observed in Figure 5) and that the rate of pressure
buildup decreases with distance from the top boundary. This is
because fracture segments with small aperture fill with mois-
ture faster than areas with large aperture. Furthermore, the
gradual pressure increase is due to the time period required for
areas with large aperture to fill with moisture.
The impact of the standard deviation (s) of the lognormally

distributed fracture aperture fluctuations on the ensemble av-
erage pressure head potential, for the case of flow without
moisture exchange with the rock matrix is shown in Figure 8.
The pressure head potential curves are based on 25 realiza-
tions of the fracture aperture fluctuations at a distance of 2 and
3 m from the top boundary. The number of realizations is
chosen such that additional realizations do not change the
calculated ensemble average. The solid lines correspond to s
5 0.43 mm, and the dotted lines correspond to s 5 0.3 mm.
These values of the standard deviation are for the log of the
aperture. It is clear from Figure 8 that decreasing the standard
deviation leads to a decrease in the moisture flow in the frac-
ture. In addition, the difference between the simulated pres-
sure head potentials for the two standard deviations examined
increases with distance downstream of the top boundary. This
is because increasing the standard deviation leads to a greater
variability in the aperture distribution within the fracture
plane, which in turn increases the number of areas with smaller
aperture. The greater the number of areas with small apertures
present in the fracture, the faster the moisture movement and
pressure buildup.
Figure 9 shows simulated breakthrough curves for an en-

semble average of 25 realizations for different correlation
lengths (0.3 and 0.5) at distances 2 and 3 m downstream from
the inlet boundary. The pressure head potential is lower for the
larger correlation length (0.5). This is because increasing the

correlation length leads to enhanced preferential moisture
flow. Small aperture areas are most likely surrounded by small
aperture areas, and large aperture areas are surrounded by
large aperture areas. Consequently, for large correlation
lengths it is expected that moisture is transported through
fewer channels across the fracture width. The breakthrough
curves presented are obtained by averaging the pressure head
potential across the entire fracture width; therefore the pres-
sure head potential is lower for the larger correlation length.
The effect of moisture exchange with the rock matrix (i.e.,

V Þ 0) on unsaturated flow in the fracture is illustrated in
Figure 10. The initial pressure head potential in the rock ma-
trix is assumed to be uniform and equal to that in the fracture,
c im 5 c i f (see Table 1). Figure 10 shows a two-dimensional
snapshot of the pressure head potential in the fracture plane
after 1 day of simulation time. It is clear that the fingering and
pressure variation across the fracture width are considerably
decreased by comparison to the case where there is no mois-
ture exchange with the rock matrix (Figure 6). This is because
the rock matrix acts as a sink that absorbs moisture from the
fracture, which in turn smoothes the effect of the fracture
aperture variability.
The pressure head potential in the fracture for the case

where there is moisture exchange with the rock matrix is ob-
tained by accounting for V in the model. Figure 11 shows a
comparison between the cases with and without moisture ex-
change with the rock matrix for an ensemble average of 25
realizations at a distance of 2 and 3 m from the top boundary.
The solid lines represent the case of no moisture exchange with
the rock matrix, and the dotted lines represent the case of
moisture exchange with the rock matrix. It is evident from
Figure 11 that moisture exchange with the rock matrix de-
creases the pressure head potentials in the fracture. Also, the
effect of moisture exchange becomes more pronounced with
increasing distance downstream from the top boundary. This is
because areas close to the constant pressure head top bound-
ary are replenished at a faster rate. Farther downstream, the
moisture removed by the rock matrix originates predominantly

Figure 8. Temporal distribution of the ensemble mean pres-
sure head potential averaged across the fracture width at 2.0
and 3.0 m downstream from the top boundary, for s 5 0.43
(solid lines) and s 5 0.3 (dotted lines) (here V 5 0).

Figure 9. Temporal distribution of the ensemble mean pres-
sure head potential averaged across the fracture width at 2.0
and 3.0 m downstream from the top boundary, for correlation
lengths 0.3 (solid lines) and 0.5 (dotted lines) (here V 5 0).
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from fracture areas with small aperture. This reduction in
moisture from fracture areas with small aperture further hin-
ders fracture segments with large aperture from filling with
moisture. Furthermore, Figure 11 indicates that the curves
corresponding to cases of with and without moisture exchange
with the rock matrix at distance 2 m slowly approach each
other, whereas in Figure 8 the curves corresponding to stan-
dard deviations 0.43 and 0.3 mm approach each other at a
faster rate. This is because moisture exchange with the rock
matrix leads to moisture absorption by the fracture.

The effect of fracture-surface coatings on unsaturated flow
in the fracture is shown in Figure 12. The simulated break-
through curves are for the ensemble average of 25 realizations
for different fracture-surface effective hydraulic conductivities.
The uppermost curve corresponds to the case where there is no
fluid interaction with the rock matrix (i.e., V 5 0). The low-
ermost curve corresponds to the case where the fracture sur-
face is free of any coating material (i.e., Ke 5 Km). It is clear
from Figure 12 that as the fracture-surface effective hydraulic
conductivity decreases, which indicates the existence of a min-
eralized layer or coating on the fracture surface, the pressure
head potential in the fracture increases. This is because frac-
ture-surface coatings inhibit moisture absorption by the rock
matrix, resulting in a fluid flow primarily within the fracture.

Summary and Conclusions
Previous work on flow in unsaturated fractured media usu-

ally accounted for moisture exchange between the fracture and
the rock matrix or fracture aperture variability but not both. In
this study, unsaturated flow in a quasi-three-dimensional frac-
ture-rock matrix system with spatially variable aperture ac-
counting for moisture exchange with the rock matrix is inves-
tigated. The fracture aperture is treated as a stochastic
variable, whereas the rock matrix is assumed to be homoge-
neous and isotropic. The resulting set of coupled nonlinear
equations, with the pressure head as the dependent variable, is
solved numerically using the finite element method with two-
dimensional triangular elements and linear basis functions.
The equations are linearized using the Picard iterative scheme
with an automatic time step.
Spatial and temporal distributions of the pressure head po-

tential in a fracture are constructed for various situations. The
results indicate that the variability in the fracture aperture
causes fingering in the pressure head distribution within the
fracture plane. Moisture exchange with the rock matrix is
found to remove moisture from the fracture thereby decreas-

Figure 12. Temporal distribution of the ensemble mean
pressure head potential averaged across the fracture width at
3.0 m downstream from the top boundary for several fracture-
surface effective hydraulic conductivities. Top curve represents
the case where V 5 0.

Figure 10. Spatial distribution of the pressure head potential
in the fracture plane for unsaturated flow with moisture ex-
change with the rock matrix (here t 5 1 day).

Figure 11. Temporal distribution of the ensemble mean
pressure head potential averaged across the fracture width at
2.0 and 3.0 m downstream from the top boundary, for unsat-
urated flow with moisture exchange with the rock matrix (dot-
ted lines) and without moisture exchange with the rock matrix
(solid lines).
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ing the effects of aperture variability and diminishing the fin-
gering of the pressure head distribution in the fracture plane.
Furthermore, fracture-surface coatings decrease the effect of
the rock matrix in slowing down the moisture movement. In
addition, an increase in the standard deviation of the lognor-
mally distributed fracture aperture leads to a faster increase in
the pressure head potential with time, whereas large correla-
tion lengths lead to a decrease in the amount of moisture
flowing across the fracture width.

Notation
b fracture aperture, L.
C specific moisture capacity, 1/L.
kr relative permeability.
K saturated hydraulic conductivity, L/t.
Ke fracture-surface effective hydraulic conductivity, L/t .
lx representative depth of the rock matrix in the x
direction, L

ly fracture width in the y direction, L
lz fracture-rock matrix length in the z direction, L
M number of nodes in each mesh of the rock matrix.
N number of nodes in the fracture mesh.
Se effective saturation, equal to (u 2 ur)/(us 2 ur).
t time, t.
x horizontal coordinate perpendicular to the fracture
plane, L.

y horizontal coordinate along the fracture width, L .
z vertical coordinate along the fracture length, L .

Greek Letters

a empirical coefficient.
b empirical coefficient.
g fluid specific weight, M/L2t2.

Dt incremental simulation time step, t.
« time-weighting factor.
h empirical coefficient, equal to 1 2 1/b.
u volumetric moisture content.
l local linear basis function.
L global linear basis function.
m fluid dynamic viscosity, M/Lt.
s standard deviation of the lognormally distributed
fluctuations of the fracture aperture

c pressure head potential, L.
V fracture-rock matrix cross-flow term, L/t.

Subscripts

f fracture.
i, j indices for the nodes in the fracture mesh.
k,l indices for the nodes in each mesh of the rock matrix.
m rock matrix.
r residual volumetric moisture content.
s saturated volumetric moisture content.

Superscripts

n time level.
r iteration level.
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