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Comment on ‘‘An Analytical Solution for One-Dimensional Transport
in Heterogeneous Porous Media” by S. R. Yates

CONSTANTINOS V. CHRYSIKOPOULOS

Department of Civil Engineering, Stanford University, Stanford, California

The solution to the deterministic one-dimensional advec-
tion-dispersion equation with distance-dependent dispersion
coefficient derived by Yares [1990] has many advantages due
to its analytical nature. The proposed model is interesting
with potential practical applications in laboratory heteroge-
neous packed column solute transport experiments and
possibly in some field studies where the assumption of
one-dimensional flow under constant velocity is valid. The
author should be commended for the useful analytical results
presented. The objective of this comment is to report a
simpler solution than the one given by Yates [1990] for the
case of zero initial concentration and constant flux boundary
condition. The notation employed here is identical to Yares
[1990].

The correct general Laplace time solution to the governing
advection-dispersion model is given by Yares [1990, equa-
tion (91, assuming that the division of C(¢, s) by C, on the
left-hand side is in error. In order to satisfy the downstream
boundary condition, the Laplace time solution reduces to
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The Laplace-transformed integration function, A(s), is eval-
vated from the constant flux boundary condition {Yates,
1990, equation (15)]
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Substituting (1) into (2) and taking the derivative yields

Cy
s(s + BY2E0 TR, L [2y(s + B 1Pgy)

A(s) = (3)

where the following expression has been employed
[McLachian, 1955, p. 204; Gradshteyn and Ryzhik, 1980, p.
970}
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Substituting (3) into (1) leads to

C_‘(g,.\‘)ﬁ[gr Ky[Zy(s-&ﬁ)”zg]

(5)

Co  |&| sGs+ B PEK, \[2y(s + B) PEgl

The preceding equation may be used as an approximate
solution in conjunction with numerical inversion of the
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Laplace transform by techniques such as the Stehfest algo-
rithm [Stehfest, 1970}, or Fourier series approximations
[Dubner and Abate, 1968 Crump, 1976}. Yares [1990, equa-
tion (16)] is not in error, but (5) requires evaluation of only
two modified Bessel functions and hence can be be consid-
ered computationaly less demanding. Following the proce-
dure presented by Yates [1990, appendix], equation (3) is
inverted from Laplace time variable s to real dimensionless
time 7. The resulting solution is

Gle.n felf  KM2yBe 2 ©
Cy &0l |B Hzg()Ky al2yB'e =
where

< exp [-x77]
1= -
) gl X

[«b(x)msuy e = S (&)Y, ey

3 3 3 3 dx. (1)
dlx) Iy ileg)” + dx)TY, . leg)”

The solution (6) and (7) is more compact and easier to
evaluate than that of Yates [1990. equations (17) and (18)]. It
should also be noted that in (17) of Yates [1990] Vb should
be replaced by V8.
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