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Abstract

This work focuses on the mechanisms of non-aqueous phase liquid (NAPL) drop formation within a single fracture fed from a NAPL
reservoir by way of a circular orifice, such as a pore. The fracture is assumed to be fully saturated, the relative wettability of the system
is assumed water-wet, and the water velocity profile within the fracture is described by a Poiseuille flow. The size of the NAPL drops is
investigated for various water flow velocities and NAPL entrance diameters. A force balancing method was used to determine the radii of
detached drops. The drop sizes calculated from the model developed here are shown to be in agreement with available experimental drop size
data. It is shown that at low Reynolds numbers the buoyancy force is the dominant force acting on the drop during the formation process and
at high Reynolds numbers the viscous forces dominate. A simplified expression relating the geometry of the fractured system to the drop radii
is developed from the model equations, and it is shown to predict drop radii that match well with both the model simulations and the available
experimental data.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Non-aqueous phase liquids (NAPLs) have played a ma-
jor role in contaminating aquifers through out much of
the industrial world[1]. Typical NAPLs have very low
water solubilities and their presence in drinking water is
hazardous even at concentrations of just a few parts per
billion [2]. NAPLs migrate into aquifers through a num-
ber of pathways including fractures that may be imbedded
within the bedrock that contains the aquifer. Such fractures
have the potential for providing pathways that may lead
to enhanced NAPL migration and aquifer contamination
that is less accessible to contemporary remediation pro-
cesses[3]. There are several ways a NAPL can migrate
within a fracture; however, it should be noted that not all
of the mechanisms associated with this migration are fully
understood.

There are numerous publications available in the liter-
ature addressing contaminant movement within fractured
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bedrock. Kueper and McWhorter[4] examined some of the
entry conditions required for a NAPL to enter into a fracture
embedded within a clay aquitard. Keller et al.[5] studied
the movement of NAPLs within a fracture under two-phase
flow conditions and Slough et al.[6] simulated the migration
of NAPLs in a discrete-fracture network. VanderKwaak and
Sudicky[3], Parker et al.[7] and Rubin et al.[8] analyzed
the rates of NAPL dissolution into the aqueous phase and
the subsequent contaminant plume movement within rock
fractures. The work by James and Chrysikopoulos[9,10],
Abdel-Salam and Chrysikopoulos[11] and Chrysikopoulos
and Abdel-Salam[12] examined the effects of the various
colloid interactions within a fractured medium and how these
interactions can alter (increase or decrease) the rate of so-
lute migration. Shikaze et al.[13] examined the movement
of vaporized contaminants as they migrate within a fractured
geologic medium. However, the formation and migration of
NAPL drops within a fracture has not been examined in the
literature. Therefore, it is the intent of this work to examine
the physical conditions required for NAPL drop formation
and to calculate the potential sizes these drops may attain as
they form within a water saturated fracture.
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Nomenclature

Aeff effective area of the drop (L2)
Af area of the NAPL entrance pore (L2)
Cd� drag coefficient for a bounded flow
CD drag coefficient for unbounded flow
d diameter of the NAPL entrance pore (L)
d̄ dimensionless NAPL entrance pore diameter
F� inertial force (ML/T2)
F�B buoyancy force (ML/T2)
F�D drag force (ML/T2)
F�L lift force (ML/T2)
F�M momentum force (ML/T2)
F�NI surface tension force at the NAPL/interstitial

fluid interface (ML/T2)
F�S surface tension force (ML/T2)
F�V viscous force (ML/T2)
g gravitational acceleration constant (L/T2)
hf Harkins’ correction factor
K constant
m exponent
p constant
Qd NAPL volumetric flow rate (L3/T)
r drop radius (L)
r̄ dimensionless drop radius
rf final drop radius (L)
r0 drop radius at zero interstitial

fluid velocity (L)
Re Reynolds number of the drop
s� drop’s center position vector (L)
ŝ unit position vector for the

drop’s center (L)
t time (T)
tf time when drop formation

is complete (T)
Ueff magnitude of the effective

velocity vector (L/T)
U�eff effective velocity vector (L/T)
Ûeff unit effective velocity vector
U(η) Poiseuille velocity profile of the

interstitial fluid (L/T)
U maximum interstitial fluid velocity (L/T)
Vd drop volume (L3)
Vd0 drop volume at zero interstitial

fluid velocity (L3)
Vf drop volume after detachment (L3)
W one half the fracture aperture (L)
We Weber number
x spatial coordinate in the

longitudinal direction (L)
x̂ unit vector thex-direction
y spatial coordinate in the

vertical direction (L)
ŷ unit vector in they-direction
Y dimensionless drop volume

Greek letters
β relative wettability contact angle
γ surface tension coefficient (M/T2)
η spatial coordinate normal to

the fracture wall (L)
η̂ unit vector normal to the fracture wall
ηD drop’s center coordinate normal

to the fracture wall (L)
θ fracture angular offset
µw absolute viscosity of water (M/LT)
ξ spatial coordinate in the longitudinal

direction (L)
ξ̂ unit vector in the longitudinal direction
ξD drop’s center longitudinal coordinate (L)
ρd NAPL density (M/L3)
ρw interstitial fluid density (M/L3)
φ NAPL entrance angle
ψ angle of inclination between the drop’s center

and theη-axis

2. Background

In fractured subsurface formations NAPLs can use frac-
tures as conduits to enhance their spreading. The increased
spreading is caused by the higher fluid flow rates that exist
within a fracture. Gvirtzman et al.[14], using tritium as a
tracer, documented that water traveled at higher velocities
within fractures as compared to the water flow rate within the
hosting porous matrix. The higher velocities exist because
the saturated hydraulic conductivity values of fractures are
several orders of magnitude larger than those of the porous
rock matrix [15]. These higher hydraulic conductivity val-
ues lead to higher fluid flow rates for a given hydraulic gra-
dient. Consequently, fractures provide flow paths that the
entrained contaminants can use to migrate faster and further
into the subsurface.

NAPLs can enter into a fracture either from the surround-
ing porous matrix or from any small opening that may in-
tersect the fracture. A NAPL may enter into a fracture when
its capillary pressure exceeds the sum of the interstitial fluid
pressure within the fracture and the surface tension acting
on the NAPL/interstitial fluid interface (seeFig. 1). Once a
NAPL has entered a fracture it can either form a single-phase
layer that spreads along the fracture wall or form a drop at
the entrance point that eventually detaches from its source
and enters into the fracture’s interstitial fluid. NAPL drops
may also be generated when a NAPL layer is exposed to
ionic surfactants that exist either naturally or are injected
during site remediation efforts[16]. However, this mecha-
nism for drop formation will not be examined in this study.

The final form of an invading NAPL is dependent on the
relative wettability of the two fluids that come into contact
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Fig. 1. Schematic illustration of the fluid pressures and surface tension
force acting on an exposed NAPL surface as it enters into a fracture (PC

is the capillary pressure,PI is the interstitial fluid pressure andFNI is the
surface tension force at the NAPL/interstitial fluid interface).

Fig. 2. Schematic illustration of the relative wettability of a NAPL–water–
solid system under water-wet and NAPL-wet conditions.

with the fracture wall. The relative wettability is defined by
the contact angle,β, which is the angle between the solid and
the liquid-liquid interface (seeFig. 2). The contact angle de-
pends on the magnitude of the surface tension forces acting
on the NAPL at the NAPL-water-solid contact point. A sys-
tem is considered water-wet whenβ < 70◦ and NAPL-wet
whenβ > 110◦. Whenβ is between 70 and 110◦ the sys-
tem is considered to be neutral wetting[17]. Generally,
water–hydrocarbon systems are considered to be water-wet
[18]. However, it has been observed that water–hydrocarbon
systems in carbonate rock can be neutral wetting[17]. Con-
sequently, a NAPL entering into a water-wet system is ex-
pected to extend into the aperture of the fracture and not
spread along the fracture wall, while a NAPL entering a
NAPL-wet system is expected to migrate along the fracture
walls. This study focuses on a water-wet fracture system that
provides the greatest potential for forming NAPL drops.

3. Drop formation within a fracture

The formation of a liquid drop as it enters into a moving
fluid is a complicated, three-dimensional process involv-
ing moving two-phase fluid interfaces[19]. Traditionally, a
problem such as this is examined from a microscopic view-
point using the Navier-Stokes equation so that the forces
acting on fluid interfaces are accurately represented, thus
providing the means necessary to calculate the surface de-

formations required to form a drop. However, for Reynolds
numbers less than one, the mathematical analysis of this
physical system can be simplified greatly, because at these
flow conditions a drop’s surface does not distort and the
drop acts as if it were a solid object[20]. A drop slowly
forming from a circular orifice, such as a pore channel
intersecting a fracture, can be represented in this fashion.
Consequently, the drop formation analysis performed in this
work begins with the assumption that the Reynolds number
is less than one. This simplification allows for the deter-
mination of the radius of a detached drop by examining
all of the macroscopic forces acting on the drop’s surface
during the formation process as the final size of the drop is
ultimately dependent on the magnitude and the direction of
each of these forces.

The formation of a NAPL drop, as illustrated inFig. 3,
begins the moment that the NAPL enters the fracture and
continues as long as the drop remains connected to its source.
The drop establishes contact to its source by forming a small
neck that connects the body of the drop to the NAPL entrance
point. The neck allows the NAPL source to continuously
feed the drop while anchoring the drop to the fracture wall.
The drop formation is completed when the drop severs its
neck and detaches from its source. During the formation
process there are four forces acting on the drop. Three of
the forces, the buoyancy force,F�B, the viscous force,F�V,
and the momentum influx force,F�M, act to move the drop
away from its source point. The surface tension force,F�S, is
the only force keeping the drop connected to its source. An
illustration showing each of these forces is provided inFig. 4.
The balance of these forces determines the instant when
the surface tension force is overwhelmed by the other three
forces and ends the drop formation process. Specifying each
of these forces provides the means for calculating the instant
that the NAPL drop severs its neck. Knowing when the drop
detaches from its material source provides the necessary
information required for calculating the drop’s final size.

4. Definition of forces acting on a forming drop

Newton’s Second Law is used to develop the relationship
of the macroscopic forces acting on the drop during the
formation process and is given by[21]

F� = F�B + F�V + F�M + F�S, (1)

whereF� represents the drop’s inertial force. In order to
determine the instant when these forces come into balance,
each force must be examined separately.

4.1. Buoyancy force (F�B)

A buoyancy force is created when the NAPL density dif-
fers from the density of the interstitial fluid and is equiv-
alent to the difference between the weight of the drop and
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Fig. 3. Schematic illustration of a NAPL drop forming within a uniform, water saturated, two-dimensional fracture.

the weight of the displaced interstitial fluid. The buoyancy
force is defined as[22]

F�B = Vdg(ρd − ρw)ŷ, (2)

whereVd is the drop volume,ρd the NAPL density,ρw the
interstitial fluid density,g the gravitational acceleration con-
stant and̂y is the unit vector oriented in the same direction as
the gravitational acceleration vector. The drop’s volume at
any time during its formation process can be approximated
from the following equation:

Vd = Qdt, (3)

whereQd is the NAPL volumetric flow rate that is assumed
to be constant andt is the elapsed time since the NAPL
initially entered the fracture. The value ofVd, as determined
by Eq. (3), is only an approximation because a portion of
the NAPL that has entered the fracture is contained within
the drop’s neck. The amount of NAPL contained within the
drop’s neck is a negligible portion of the overall drop volume
and shall be neglected at this point of the analysis. However,

Fig. 4. Schematic illustration of the macroscopic forces acting on a NAPL
drop during the drop formation process.

there are correction factors available in the literature that
account for the neck volume when computing the drop’s final
size. An appropriate correction factor will be introduced in
a subsequent section.

In this study, they-coordinate may be offset from the axis
normal to the fracture wall. In order to simplify the analysis,
the buoyancy force is transformed into a new coordinate
system that is aligned with the fracture. The appropriate
transformation is give by

ŷ = η̂ cosθ − ξ̂ sinθ, (4)

whereη̂ is the unit vector in theη-direction (normal to the
fracture wall),ξ̂ is the unit vector in theξ-direction (longi-
tudinal direction) andθ is the fracture’s angular offset with
respect to thex-axis. Substituting the time-dependent rela-
tionship (3) into (2) and transforming the resulting buoyancy
force equation to the desired coordinate system yields

F�B = Qd(ρd − ρw)gt(η̂ cosθ − ξ̂ sinθ) (5)

4.2. Momentum influx force (F�m)

During the drop’s formation period, momentum is con-
tinually added to the drop by the steady influx of NAPL.
The force generated by the added momentum acts on the
drop in the direction of influx and is considered constant for
a constant volumetric flow rate of the NAPL. The equation
for the momentum flux force is written as[23]

F�m = Q2
d
ρd

Af
(η̂ cosφ + ξ̂ sinφ), (6)

whereAf is the area of the NAPL entrance point, andφ is
the NAPL entrance angle. If the area of the NAPL entrance
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into the fracture is circular then

Af = π

4
d2, (7)

whered is the diameter of the NAPL entrance point. In view
of (7), the expression for the momentum force becomes

F�m = 4Q2
dρd

πd2
(η̂ cosφ + ξ̂ sinφ). (8)

4.3. Viscous force (F�V )

The viscous force acting on the drop arises from the
pressure differential across the drop caused by the flowing
interstitial fluid, the viscosity of the fluids and the inter-
nal circulation within the drop. The viscous force consists
of two components. The first force component,F�D, drags
the drop in the direction of fracture flow and the second
component,F�L, lifts the drop away from the fracture wall.
Therefore, the viscous force can be expressed as

F�V = F�D + F�L . (9)

The drag component of the viscous force is given by[20]

F�D = 1
2Cd�ρwAeffU

2
eff Ûeff , (10)

whereCdα is the drag coefficient for bounded flow,Ûeff is
the unit effective velocity vector,Ueff is the magnitude of
the effective velocity vector andAeff = πr2 is the effec-
tive area of the drop (wherer is the radius of the drop).
The drag coefficient accounts for the pressure and viscous
forces generated by the modified velocity profile created by
the interstitial fluid impinging upon the drop’s surface. The
effective velocity vector is defined as

U�eff = Ueff Ûeff =
[
U(ηD)− dξD

dt

]
ξ̂, (11)

where ξD is the longitudinal coordinate of the center of
the drop,ηD is the coordinate normal to the fracture wall
passing through the center of the drop, dξD/dt is the velocity
of the drop in theξ-direction, andU(ηD) is the interstitial
fluid velocity at the drop’s center. Because the drop’s neck
anchors it to the fracture wall during the formation process,
dξD/dt ≈ 0 and the effective velocity is approximately equal
to the interstitial fluid velocity at the location of the drop’s
center. The interstitial velocity profile is assumed to be a
Poiseuille flow, therefore the expression forU(η) is given
by [20]

U(η) = U

W2
(2Wη− η2), (12)

whereU is the maximum interstitial fluid velocity at the cen-
ter of the fracture andW is one-half the fracture aperture.
The functionU(ηD) is determined by replacing the indepen-
dent variable,η by ηD in Eq. (12).

The drag coefficient,Cd�, is determined from an un-
bounded flow regime around a solid sphere and then adjusted
for the case of bounded flow. This adjustment is necessary

because the confining walls of a fracture have an effect on
the drag force exerted on a drop. The drag coefficient for
unbounded flow about a sphere is[20]

CD = 24

Re
+ 6

1 + √
Re

+ 0.4, (13)

whereReis the Reynolds number for a drop moving within
the fracture and is defined as[20]

Re= ρwU(ηD)2r

µw
, (14)

whereµw is the absolute viscosity of water. It should be
noted that expression (13) is valid for 0≤ Re ≤ 105. It
is assumed that the drop remains spherical through out the
formation process as experiments have shown that a drop
maintains a spherical shape for drop-to-containment ratios
as large as 0.60[24]. The drag coefficient for bounded flow
is defined as[21]

Cd� = CD

(1 − r̄2)3
, (15)

wherer̄ = r/W is the dimensionless radius of the drop.
The lift force generated on a drop is a consequence of the

velocity gradient of the interstitial fluid normal to the fracture
wall and the asymmetric surface pressure distribution acting
on the surface of the drop[25]. Saffman[26] has derived a
theoretical expression for the lift force

F�L = 6.46µwr
2U(ηD)

(
dU(η)

dη

∣∣∣∣
η=ηD

ρw

µw

)1/2

η̂. (16)

Although this expression for the lift force was derived for
simple shear flow, it is assumed to adequately define the
lifting force acting on a drop within the parabolic Poiseuille
flow considered in this work. In view ofEqs. (9)–(12)
and (16), the viscous force can be expressed as:

F�V = 6.46µwr
2U(ηD)

(
2Uρw

W2µw
(W − ηD)

)1/2

η̂

+ π

2
ρwr

2Cd�U
2(ηD)ξ̂, ηD < W. (17)

4.4. Surface tension force (F�S)

The surface tension force acts on the drop at the
drop/fracture wall connection point and attaches the drop
to the fracture wall. This force is directed from the center
of the drop towards the center of the NAPL entrance point.
Assuming that the NAPL entrance point is circular, the
expression for this force is[23]

F�S = −γπdŝ = −γπd (cosψη̂+ sinψξ̂), (18)

whereγ is the surface tension coefficient,ψ the angle of
inclination between the drop’s center and theη-axis (see
Fig. 3), andŝ = s�/|s| is the unit position vector for the drop’s
center.
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5. Final drop size formulation

The drop formation process ends when the drop severs
its neck and begins its migration within the fracture. The
moment of drop detachment is defined as the time when
Eq. (1) is balanced, or equivalently when

F� = F�B + F�V + F�M + F�S = 0. (19)

Inserting the mathematical expressions for each of the forces
considered into (19) and replacing the coordinateηD by r
yields the following set of equationŝη-direction:

4Q2
dρd

πd2
cosφ +Qd(ρd − ρw)gtcosθ + 6.46µwr

2U(r)

×
(

2Uρw

W2µw
(W − r)

)1/2

= γπd cosψ, (20)

ξ̂-direction:

4Q2
dρd

πd2
sinφ −Qd(ρd − ρw)gtsinθ

+ π

2
ρwCd�r

2U2(r) = γπd sinψ. (21)

Assuming that the forces in theξ̂-direction are balanced dur-
ing the complete drop formation process,Eq. (21)is valid
for all time steps. This assumption provides the necessary
relationship forψ needed to obtain the time whenEq. (20)
becomes valid. Consequently the expression forψ is ob-
tained by rearranging (21) as

sinψ = 1

γπd

{
4Q2

dρd

πd2
sinφ −Qd(ρd − ρw)gtsinθ

+ π

2
ρwCd�r

2U2(ηD)

}
. (22)

Fig. 5. Harkins’ correction factor as a function of the drop volume at the instant of detachment.

The time,tf , signifies the moment when the drop formation
process has ended. To findtf Eqs. (20) and (22)are evaluated
iteratively at increasing time steps until (20) becomes valid.
Oncetf is determined the final drop volume can be calculated
by [22]

Vf = hfVd = hfQdtf . (23)

whereVd is the volume of the drop at the instant of detach-
ment andhf is the Harkins’ correction factor that accounts
for the small volume of NAPL left behind at the entrance
point as the drop detaches from its source. Assuming that
the shape of the detached drop is spherical,Vf can also be
expressed as

Vf = 4
3πr

3
f , (24)

whererf is the final drop radius. The Harkins’ factor is a
curve fitted equation defined as[27]

hf = 1.0 − 0.66023
d

V
1/3
d

+ 0.33936
d2

V
2/3
d

,

0 ≤ d

V
1/3
d

≤ 0.6, (25)

hf =
{

0.92878+ 0.87638
d

V
1/3
d

− 0.261
E

V
2/3
d

2
}−1

,

0.6 <
E

V
1/3
d

< 2.4. (26)

A graphical representation ofhf as a function ofd/V 1/3
d is

presented inFig. 5. Substituting (24) into (23) yields the
following expression for the final drop radius

rf =
(

3Qd

4π
hf tf

)1/3

. (27)



K.M. Pumphrey, C.V. Chrysikopoulos / Colloids and Surfaces A: Physicochem. Eng. Aspects 240 (2004) 199–209 205

6. Comparison of model predictions to existing
experimental data

To verify the accuracy of the theoretical model, calcu-
lated drop sizes were compared against experimental data
reported by Itoh et al.[23]. This data is the best available
experimental representation of a NAPL entering into a mov-
ing liquid through a small orifice, though it is a simplified
version of an actual system. The Itoh et al.[23] experiments
measured the drop diameters generated by a NAPL injected
from a nozzle into a flowing stream of water. These ex-
periments represent a simplified version of an ideal system
consisting of a NAPL entering a fracture. During each ex-
periment the NAPL injection rate was held constant while
the water flow rate was varied from 0 to 30 cm/s. The in-
jection nozzle could be oriented either perpendicular (cross
flow) or parallel to the water flow. The following empirical
correlation, based on the experimental data, predicting the
drop volumes generated for a cross flow configuration was
developed by Itoh et al.[23]

Y2 + 9
64We3/2Y = 1, (28)

whereY = Vd/Vd0, We= 4U2ρwr
2
0/γd is the Weber num-

ber,Vd0 is the drop volume for the cross flow configuration
at zero water velocity.Vd0 can be calculated from the model
Eqs. (20)–(27)with the anglesθ, φ, ψ, plus the interstitial
velocity,U, set equal to zero andr0 (the drop radius at zero
water velocity) can be calculated fromVd0, assuming that
the drop is spherical.

Table 1shows the comparison of Itoh et al.[23] empirical
correlation (28) for a water/benzene system and predictions
made by the modelEqs. (20)–(27)derived in this study. The
model predictions compare favorably with the correlation
of Itoh et al.[23]. Note that the model under-predicts drop
radii by up to 0.008 cm (4%) at the lower water velocities
and over-predicts drop radii by up to 0.003 cm (3%) at the
higher water velocities.Fig. 6compares graphically the Itoh
et al. [23] empirical correlation, the drop radii predictions
based on the model derived here and the available experi-
mental data. This figure shows that the radii predicted by
the correlation and the theoretical model are contained well
within the range of the experimentally measured values. The
theoretical model actually predicts drop radii that match the
experimental data somewhat better than the correlation of
Itoh et al.[23]. The discrepancy between the two predictive
models can be attributed to the fundamental difference in
their development. The Itoh et al.[23] empirical correlation
is based on experimental data, therefore it is system specific;
whereas the modelEqs. (20)–(27)are theoretically (mecha-
nistic) derived and are not biased on any particular system.

7. Drop size results and discussion

The interaction of the four forces acting on a drop during
the drop formation process dictates the final drop size at the

Table 1
Comparison of the detached drop radii calculated by the theoretical model
derived in this study to the Itoh et al.[22] correlation

Uw (cm/s) rfItoh (cm) rfstudy (cm) rfItoh/rfstudy

0 0.2466 0.2466 1.00
1 0.2464 0.2454 1.00
2 0.2454 0.2422 1.01
3 0.2427 0.2371 1.02
4 0.2374 0.2300 1.03
5 0.2290 0.2207 1.04
6 0.2174 0.2096 1.04
7 0.2032 0.1973 1.03
8 0.1875 0.1842 1.02
9 0.1719 0.1710 1.01

10 0.1574 0.1583 0.99
11 0.1445 0.1466 0.99
12 0.1332 0.1359 0.98
13 0.1233 0.1265 0.97
14 0.1147 0.1180 0.97
15 0.1072 0.1105 0.97
16 0.1006 0.1038 0.97
17 0.0947 0.0977 0.97
18 0.0894 0.0925 0.97
19 0.0848 0.0877 0.97
20 0.0805 0.0832 0.97
21 0.0767 0.0791 0.97
22 0.0732 0.0754 0.97
23 0.0700 0.0721 0.97
24 0.0671 0.0689 0.97
25 0.0644 0.0661 0.98

instant of detachment. To illustrate how each force affects
the drop formation process, the relative magnitude of the
forces acting on a benzene/water drop system as a function
of the interstitial fluid velocity are presented inFig. 7. Note
that at low velocities the dominant force acting to overcome
surface tension is the buoyancy force. The magnitudes of the
lift and drag forces are comparably smaller at the lower in-
terstitial fluid velocities as they are both proportional to this
velocity, whereas the buoyancy force is not affected because
it is independent of the fluid velocity. As the interstitial ve-
locity increases, the drag and lift forces begin to make larger
contributions to the net force counteracting the surface ten-
sion force. The increase in the two viscous forces reduces
the magnitude of the buoyancy force required to overcome
the surface tension force that keeps the drop attached to its
source. A smaller buoyancy force corresponds to a smaller
drop and is one of the reasons why smaller drops are gener-
ated at the higher water velocities. Note that the momentum
force remains constant throughout the formation process and
is three orders of magnitude lower than the surface tension
force. For the system considered here, the momentum force
does not play a significant role in drop creation. Further-
more, it is evident fromFig. 7 that the buoyancy force dom-
inates at low velocities, the viscous forces dominate at high
velocities and the momentum force does not play a signifi-
cant role in the drop formation processes.

To evaluate the potential NAPL drop sizes that can be
created within a fracture, various drop radii were generated
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Fig. 6. Graphical comparison of drop radii calculated from the theoretical model, the Itoh et al.[23] correlation, the approximate correlation and the
experimental data for benzene drops formed within stream of water flowing perpendicular to the injection nozzle (hereW = 15 cm,Qd = 0.0070 cm3/s,
d = 0.1 cm, θ = φ = 0, ρd = 0.874 g/cm3, ρw = 0.997 f/cm3).

from the theoretical modelEqs. (20)–(27)for various en-
trance diameters and water velocities. Assuming that the
NAPL is trichloroethylene (TCE) and water is the intersti-
tial fluid, the predicted values of the dimensionless radius
r̄f are presented inFig. 8. As expected, higher water veloci-
ties and/or smaller entrance diameters yielded smaller drop
sizes.Fig. 8 also shows that the following approximate re-
lationship between̄r and the entrance diameter,d̄, for the
water velocities considered, can be obtained

d̄m ≈ Kr̄, (29)

Fig. 7. Graphical comparison of the magnitude of the forces acting on benzene drops at the instant of detachment (hereQd = 0.0070 cm3/s, d = 0.1 cm,
θ = φ = 0, ρd = 0.874 g/cm3, γben = 28.00 dyn/cm).

whereK is a constant and the exponentm is a function of
U and d̄. The appropriate expressions forK andm are (for
derivation seeAppendix A)

K =
[

2g

3γ
W2(ρd − ρw)

]1/3

, (30)

m ≈ 1

3
− 5U3/2

d̄1/3ln(d̄)K3γ
(2Wµwρw). (31)

The value ofr̄ calculated from (29)–(31) is for the drop
radius at the moment of detachment. The final drop radius
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Fig. 8. Graphical comparison of the TCE drop radius generated from the theoretical model for various entrance diameters and interstitial fluid velocities
(hereUTCE = 1.0 m/year,W = 5 mm, θ = φ = 0◦, ρd = 1.46 g/cm3, ρw = 0.997 g/cm3, γTCE = 29.6 dyn/cm,µw = 0.8904 dyn s/cm2).

of the detached drop,r̄f , must account for the small amount
of NAPL volume left behind at its source and is calculated
from the following equation

r̄f = r̄h
1/3
f . (32)

Table 2 presents the drop radii calculated from the theo-
retical model (20)–(27) and the approximate correlation
(29). The parameters used for the determination of the nu-
merical values listed inTable 2are:W = 5 mm, ρTCE =
1.460 g/cm3, ρw = 0.997 g/cm3, γTCE = 29.6 dyn/cm,
and µw = 0.890 dyn s/cm2. The approximate correlation
produced drop radii that were within∼3% of the radii
calculated from the theoretical model. The approximate
correlation is also graphically compared to the Itoh et
al. [23] experimental data inFig. 6. Note that the ap-

Table 2
Calculated exponentm values and comparison of radii calculated from the
approximate correlation and the theoretical model for various interstitial
velocities

Uw (cm/s) d̄ m r̄fcorr r̄fmodel r̄fcorr/r̄fmodel

0.1 0.005 0.403 0.400 0.399 1.00
0.001 0.425 0.180 0.186 0.97
0.0005 0.439 0.121 0.122 0.99

0.01 0.005 0.336 0.574 0.570 1.01
0.001 0.336 0.333 0.334 1.00
0.0005 0.337 0.263 0.263 1.00

0.001 0.005 0.333 0.580 0.579 1.00
0.001 0.333 0.339 0.339 1.00
0.0005 0.333 0.269 0.269 1.00

proximate correlation predicts reasonably accurate drop
radii.

8. Summary

This study focused on the formation of NAPL drops con-
tained within a water saturated fracture. The fracture was
assumed to be water-wet and the NAPL influx flow rate
constant. A force balance method was used to derive a the-
oretical model that can predict the size of the NAPL drops
generated within the fracture. The drop radii predicted from
the model equations derived in this work were compared to
existing experimental data and a strong correlation between
the calculated radii and the data was shown to exist. Model
simulations indicated that the drop radii decreased as the
NAPL entrance diameters decreased and/or interstitial ve-
locity increased. Furthermore, a simple approximate corre-
lation for radius estimation of NAPL drops formed within a
fracture was developed. The drop radii calculated from the
approximate correlation developed here were within 3% of
the radii calculated from the theoretical model and compared
well with the available experimental data.

Appendix A

Both K and m present inEq. (29)can be approximated
from Eq. (20)by neglecting the momentum force, assuming
the inclination angle,ψ, is small and setting the anglesθ and
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φ equal to zero. Applying these assumptions to (20) yields
the following expression

πγd̄ = 2
3πgW2(ρd − ρw)r̄

3 + 3.23U3/2(2 − r̄)r̄3

× {2Wρwµw(1 − r̄)}1/2 (A.1)

In view of the following MacLaurin expansion[28]√
1 − r̄ = 1 − 1

2 r̄ − 1
8 r̄

2 − 1
16r̄

3 − · · · , (A.2)

Eq. (A.1) can be simplified by expanding and taking the
cube root as follows:

d̄1/3 =
{

2g

3γ
W2(ρd − ρw)+ 6.46

U3/2

πγ
(2Wµwρw)

1/2

×
(

1 − r̄ + 1

8
r̄2 − · · ·

)}1/3

r̄. (A.3)

If the exponentm can be expressed as

m = 1
3 + f, (A.4)

wheref is a function to be determined, thenEq. (29)can be
expressed as

d̄m = d̄1/3d̄f ≈ Kr̄. (A.5)

Comparing (A5) to (A3) the following relationship is ob-
tained

K

d̄f
=
{

2g

3γ
W2(ρd − ρw)+ 6.46

U3/2

πγ
(2Wµwρw)

1/2

×
(

1 − r̄ + 1

8
r̄2 − · · ·

)}1/3

. (A.6)

SettingK = [(2g/3γ)W2(ρd − ρw)]1/3and substituting
into (A6) yields

d̄−f =
{

1 + 6.46
U3/2

K3πγ
(2Wµwρw)

1/2

×
(

1 − r̄ + 1

8
r̄2 − · · ·

)}1/3

. (A.7)

Taking the natural log of (A7) yields

f = − 1

3ln(d̄)
ln

{
1 + 6.46

U3/2

K3πγ
(2Wµwρw)

1/2

×
(

1 − r̄ + 1

8
r̄2 − · · ·

)}
. (A.8)

Eq. (A.8) can be simplified by first assuming thatr̄ is a
large multiple ofd̄ and by approximating the portion of (A8)
containing thēr terms in the parenthesis to≈pd̄−1/3 (where
p is a constant). Utilizing the relationship ln(1+ b) ≈ b for
b � 1 [28] yields this expression forf

f ≈ − 5U3/2

d̄1/3ln(d̄)K3γ
(2Wµwρw)

1/2. (A.9)

Substituting (A9) into (A4) yields the desired expression

m ≈ 1

3
− 5U3/2

d̄1/3ln(d̄)K3γ
(2Wµwρw)

1/2. (A.10)
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