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Macrodispersion of Sorbing Solutes in Heterogeneous Porous Formations
With Spatially Periodic Retardation Factor and Velocity Field

CONSTANTINOS V. CHRYSIKOPOULOS,! PETER K. KITANIDIS, AND PAUL V. ROBERTS

Department of Civil Engineering, Stanford University, Stanford, California

Expressions for the macroscopic velocity vector and dispersion tensor for sorbing solute transport
in heterogeneous porous formations whose hydrogeologic properties are repeated at intervals were
derived via Taylor-Aris-Brenner moment analysis. An idealized three-dimensional porous formation of
infinite domain with spatially periodic retardation factor, velocity field, and microdispersion coeffi-
cients in all three directions was considered. Sorption was assumed to be governed by a linear
equilibrium isotherm under local chemical equilibrium conditions. The analytical expressions pre-
sented are based on a perturbation method where all of the spatially periodic parameters employed
were assumed to have “‘small’’ fluctuations. It was shown that the effective velocity vector is given by
the volume-averaged interstitial velocity vector divided by the volume-averaged retardation factor,
and the effective dispersion dyadic (second-order tensor) is given by the volume-averaged microdis-
persion dyadic divided by the volume-averaged dimensionless retardation factor plus a dyadic
expressing the increase in solute spreading caused by the spatial variability of the parameters.

INTRODUCTION

Macroscopically, spreading of conservative nonreacting
solutes in the subsurface is caused primarily by variable
rates of advective transport of the interstitial fluid due to
natural spatial variability of conductivity [Dagan, 1989]. The
macroscopic property of the porous medium which charac-
terizes the rate of spreading is known as dispersivity. At a
laboratory or pore scale, dispersivity is often considered
constant, with values of the order of a few grain diameters,
and solute dispersion is assumed to be Fickian, i.e., the
dispersive flux is proportional to the concentration gradient.
At a field or local scale, as has been found in field tests [e.g.,
Sauty, 1980; Domenico and Robbins, 1984; Freyberg, 1986;
Sudicky, 1986; Garabedian et al., 1988], the observed dis-
persivity increases with distance from the solute injection
point along the flow path until, for some cases, it seems to
converge to a maximum asymptotic value. In the transient or
preasymptotic zone the solute plume readjusts to the varia-
tions in hydraulic conductivity. Field-scale dispersivities are
much larger than pore-scale dispersivities [Fried and Com-
barnous, 1971; Pickens and Grisak, 1981], and solute disper-
sion at the field scale is not critically affected by variations in
pore-scale dispersivities [Vomvoris, 1986].

The macrodispersion of nonreacting conservative solutes
or tracers in heterogeneous subsurface formations has been
the focus of several theoretical investigations. Schwariz
[1977] and Smith and Schwartz [1980, 1981] employed Monte
Carlo techniques to show that the dispersivity may not
converge to a maximum asymptotic value in a finite, two-
dimensional porous medium with spatially variable hydraulic
conductivity, represented as a realization of a stationary
random field. Gelhar et al. [1979] and Matheron and de
Marsily [1980] found that the assumption of Fickian macro-
dispersion is not valid for the special case of solute transport
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in perfectly stratified aquifers with layers of random perme-
ability and unidirectional flow field parallel to the stratifica-
tion. Gillham et al. [1984] developed a conceptual advection-
diffusion model for solute transport in stratified formations
consisting of high/low permeability layers allowing for inter-
layer mass transfer under unidirectional flow parallel to
bedding. They concluded that solute macrodispersion is not
Fickian under these conditions. Giiven et al. [1984] have
shown that, in stratified formations with hydraulic conduc-
tivities that are known functions of the vertical coordinate,
macrodispersivities become asymptotically Fickian when
the flow domain has finite thickness and is contained be-
tween impermeable boundaries at the top and the bottom.
Gelhar and Axness [1983], Dagan [1982a, 1984, 1987, 1988]
and Neuman et al. [1987] employed different analytical
approaches to derive expressions for Fickian macrodisper-
sivity coefficients which depend on the mean flow gradient
and the statistics of the log hydraulic conductivity field. This
analysis is for stationary conductivity and large Peclet num-
bers, and is exact at the limit when the conductivity fluctu-
ations are small. Gupra and Bhattacharya [1986] derived
macrodispersion coefficients for solute transport in porous
media with spatially periodic velocity field. Kitanidis [1988]
derived general expressions for the first two spatial moments
of solute concentration in heterogeneous porous media with
random but time-invariant flow velocities, and microdisper-
sion coefficients. Neuman and Zhang [1990] and Zhang and
Neuman {1990] developed a quasi-linear theory which ac-
counts for both non-Fickian and Fickian dispersion in sub-
surface formations. Neuman [1990] has shown that a fractal
model of log hydraulic conductivity is consistent with the
observed scale effect in dispersion coefficients.

All of the previously described studies provided valuable
information for improving the description and prediction of
nonreacting conservative solute or tracer transport in heter-
ogeneous formations. However, it is difficult to assess these
theories, because the ideal conservative tracer may not exist
[Davis et al., 1980]. Furthermore, the attention of hydroge-
ologists and environmental engineers is currently focused on
the transport of sorbing or reacting toxic contaminants in
natural subsurface porous media, an area of great practical
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importance. Laboratory [Durant and Roberts, 1986] and
field [Elabd, 1984; Mackay et al., 1986a; Roberts et al.,
1986] solute transport investigations suggest that sorption is
spatially variable. Therefore, mathematical models for sorb-
ing solute transport in subsurface porous media should not
consider the retardation factor as a position-independent
constant, but rather as a spatially variable parameter.
Chrysikopoulos et al. [1990a] developed an analytical sto-
chastic sorbing solute transport model for one-dimensional
homogeneous porous media to demonstrate that spatially
variable retardation increases the solute spreading. Valocchi
[1989] employed the classical Taylor-Aris dispersion analy-
sis to derive expressions for the asymptotic macrodispersion
coefficients of kinetically sorbing solute transport through
perfectly stratified formations. Garabedian et al. [1988]
employed spectral small-perturbation methods to analyze
reactive solute macrodispersion under the assumption that
the log hydraulic conductivity is linearly related to both
porosity and the distribution coefficient. Their results indi-
cate that solute spreading is enhanced when there is negative
correlation between the log hydraulic conductivity and the
distribution coefficient. Chrysikopoulos et al. {1992] derived
expressions for the macroscopic velocity vector and the
dispersion dyadic for sorbing solute transport under local
equilibrium as well as first-order reversible sorption condi-
tions in three-dimensional homogeneous porous media,
where the retardation factor was assumed spatially periodic
in all three directions and the flow field unidirectional.

The goal of this work is to derive expressions for the
effective or macroscopic transport coefficients for a solute
sorbing under local equilibrium conditions in a heteroge-
neous porous medium with a retardation factor, a velocity
field, and microdispersion coefficients that are spatially
periodic in all three directions. The effective coefficients
governing the macroscopic solute transport can be employed
in the advection-dispersion equation with effective coeffi-
cients to predict the transport of a sorbing solute after
enough time has elapsed for the plume to spread out over an
area larger than the scale of fluctuations of the interstitial
fluid velocity and the retardation factor. Thus, a heteroge-
neous porous formation with spatially variable geochemical
properties may be represented by an equivalent porous
formation with homogeneous hydrogeochemical character-
istics. The results of this study provide physical insights
which improve our understanding of what macroscopic
coefficients really signify.

The spatially periodic model for heterogeneous porous
media employed in this investigation allows averaging of the
local-scale variability via the generalized Taylor-Aris mo-
ment analysis [Brenner, 1980a, 19824, b]. An alternative
approach for the elimination of the local space dependence
entails homogenization techniques [Bensoussan et al., 1978],
as have been employed by Rubinstein and Mauri [1986] and
Rubinstein and Torquato [1989]. The periodic model is a
mathematical idealization appropriate for cases where pa-
rameter fluctuations are characterized by the absence of
well-defined secular trends and resemble the superposition
of many waves of variable wavelength and displacement.
Such variability is best described through spectra, which
measure the amplitude and phase of the waves that form the
variable parameter versus the wavelength. The periodic

model is no more unrealistic than the frequently used infinite
and semi-infinite models of porous media [e.g., Lindstrom et
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al., 1967; van Genuchten et al., 1984; Goltz and Roberts,
1986; Chrysikopoulos et al., 1990a, b; Yates, 1990].

Although porous media with periodic hydrogeochemical
parameters are not observed in nature, the macrodispersion
coefficients derived in this work by the periodic model are
applicable to variability scales smaller than the periodicity.
The results can be extended to the case of stationary random
media by sufficiently increasing the period of the periodic
model. Such mathematical development is beyond the scope
of this paper.

PrOBLEM FORMULATION

Consider a three-dimensional porous formation with spa-
tially periodic interstitial velocity and geochemical parame-
ters in all three directions. Assuming that all periodic param-
eters vary in each principal direction of a Cartesian
coordinate system with identical spatial period /,, /,, and /,
respectively, the porous formation may be divided into
identical rectangular parallelepiped elements with edges
defined by the vectors I, 1, and I, (e.g., k, = (0, {,, 0)7).
A vector of spatial coordinates Q = (Q,, Q,, Q,)7 may be
written as the sum of an unbounded global variable Q, =
(@, Qn,» Q,)7 and a bounded local variable q [Brenner,
1980b; Brenner and Adler, 1982]. Explicitly,

Q=Q,+q, (n
where
nd,
Q. =|mly (2a)
nl,
qx
q=|9y (2b)
q:
n;=0, £1, £2, *3 .. (i=x,y,2), (3)
0=gq;=1, 4)

and the subscript n denotes the nth unit element which is
defined by the triplet of integers: {n} = {n,, n,, n,}. Q,
locates the origin of the nth unit element and q specifies a
local point within the nth unit element.

The transport of a sorbing solute through a three-
dimensional heterogeneous porous formation under steady
state flow conditions is governed by the following partial
differential equation:

aC(t, Q) N P aC*(t, Q)
at (7] ot

= Vq : [D((I) . VqC(ta Q) - U((I)C(t, Q)]y 5)

where C(¢, Q), which can also be written as C(¢, Q,, q), is
the volume-averaged or resident liquid phase solute concen-
tration, which is defined as the solute mass per unit volume
of interstitial fluid, as opposed to the flux-averaged concen-
tration which corresponds to the solute mass per unit volume
of fluid flowing through a given cross section per unit time,

C*(¢, Q) is the solid phase or sorbed solute concentration
defined as the sorbed solute mass per aquifer solids mass,
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D(q) is a symmetric matrix of the hydrodynamic microdis-
persion or local dispersion coefficients, U(q) is the nondiver-
gent steady state interstitial fluid velocity vector (incom-
pressible fluid), which satisfies the condition

Ve Ulq) = 0; (6)

t is time, p is the bulk density of the solid matrix, 6
is porosity, V, is the vector differential operator (V, =
[8/8q,, 38/3q,, 8/3q,17), V4 denotes divergence (V- F =
aF,laq, + 0F,/3q, + 8F,/3q,); and F is an arbitrary
function.

For linear, reversible, instantaneous sorption, the equilib-
rium relationship between the solute substance in the aque-
ous and solid phases is given by

C*(1, Q) = K4(q)C(1, Q). N

where K,(q) is the partition or distribution coefficient,
defined as the ratio of solute concentration on the adsorbent
to solute aqueous concentration at equilibrium. Alterna-
tively, the equilibrium relationship (7) can be written as

S*(ty Q) = kd(q)c(t$ Q)~ (8)
where
C*{t, Q)
S*(r, Q) = p——é—— 9)

is the solid phase or sorbed solute concentration with units
identical to C(z, Q), and

pK4(q)

kq(q) = n

(10)

is the dimensionless partition or distribution coefficient.
Combining (5) and (8) leads to

aC(t, Q)
k]

R(q) = V.- [D(q)  V,C(t, Q) - Ul@)C(t, Q)]

(11)

where the dimensionless variable R(q) is the retardation
factor defined as

R(q) = | + ky(q).

For an unbounded porous formation in which the solute is
initially absent and the solute mass is instantaneously in-
jected at ¢ = 0 at the point Q° = Q0 + q°, the appropriate
initial and boundary conditions are

(12)

C(0, Q) = W8(Q — Q% = Wé,,08(q —q%,  (13)
lim Ct, Q) = lim C(t, Q) =0, (14)
Q-Q%—= Qa = Quol > =

where W is the injected solute mass; 8,0 is the Kronecker
delta for unit elements n and n® (Spne = 8, 88, 198, n);
and &q — q°) is a Dirac delta function. Note that C*(0, Q)
= 0 and 8,28 — q°) = &Q — QY. The first equality in
condition (14) holds, because |lq — q°| = OUW;) [Brenner,
19805]. The solute concentration can also be interpreted as

a probability density function provided that W = 1: C(z, Q,,,
qQu, q¥) = C(z, Q, — Qu, 4|q”) [Brenner, 1980a, b].
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Hereafter, for notational convenience it is assumed that
Q,c = 0and q° = 0, where 0 is the null vector and indicates
the unit element defined by {n®} = {0, 0, 0}. Furthermore, we
impose the conditions that the solute concentration and the
dispersive flux are continuous on each interface, dg;, of a
unit element [Brenner, 1980b; Shapiro and Brenner, 1988]:

Ct, Qu, @) =C(t, Qu~ 1, g+ 1y

VqC(t9 Qn’ q) = vqc(tv Qn - llvq + II) (q € aql)

In the present analysis, the retardation factor, the velocity
field, and consequently the microdispersion coefficients are
modeled as periodic with the same directional spatial periods
1., 1,, and /,, which means that for any q in the interior or
the boundary of the unit element (3 = R, U, D)

(q € 3qy), (15)

(16)

B(q) = B(q + 1. a7

R(q), U(g), and D(q), as well as their derivatives, are also
continuous at any point on the six faces of each parallelepi-
ped unit element:

BQu @) =BQu—li,q+ 1

VB Qu q) =V BQ,— L, qt+ 1 (g € 9qy,

Note that in (15), (16), (18) and (19), the vector q is on an
interface of two consecutive unit elements.

(q € aqy), (18)

(19)

SPATIAL MOMENTS

In order to obtain the expressions for the asymptotic
coefficients governing the macroscopic solute transport, the
generalized approach [Brenner, 1980a, 1982a, b; Dill and
Brenner, 1982a, b, Frankel and Brenner, 1989] to the
original method of moments [Taylor, 1953, 1954; Aris, 1956)
is employed. In the context of the generalized theory of
Taylor-Aris-Brenner dispersion theory, the local spatial mo-
ments of the liquid phase solute concentration are defined as

m,(1, ) = O, QIC(t, Qq, q) (20)

where

(21)

QM =Q, - * Q, (mtimes) is an m-adic. Thus Q) = 1; Q} =
Q,; Q2 is the second-order tensor (dyadic) whose ijth
element is the product of the / and j element of Q,; and so
on. The zeroth local moment (m,) is a scalar and represents
the sum of concentrations at all points with local coordinates
q; the first local moment (m,) is a vector whose ith element
can be written as m ;) = 2, Q,,C(f, Qq, @); and the second
local moment (m,) is a symmetrical dyadic whose ijth
element can be written as my;) = 2Xp @5 @n €, Qq, Q).

The global moments of the liquid phase solute concentra-
tion are defined as

M..(n =f m_(¢t. a) d’a. 22)
Vo
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where V, is the domain of a unit element and d’q is a
differential volume within a unit element. The zeroth global
moment (M,) is a scalar and represents the total mass in
solution; the first moment (M,;) is a vector and M;/M,
indicates the position of the center of mass; the second
moment (M,) is a dyadic and M,/M,; measures the mean
square displacement of the plume, after averaging the solute
concentration within each element, about the origin of the
n’th unit element where solute was introduced instanta-
neously as a point source. Similarly, the local moments for
the solid phase or sorbed solute concentration, p,,(t, q}, are
obtained by replacing C(t, Q,, q) for $*(z, Q,, q) in (20),
whereas the global moments P, (¢) are obtained by integrat-
ing p,,(#, q) over the volume of a unit element.

The rate of change of the local moments of the liquid phase
solute concentration is obtained by rewriting the parabolic
partial differential equation (11) in terms of local coordi-
nates, multiplying the resulting equation by QJ and then
summing over all unit elements. Explicitly,

ca, Qn, )
Z Qr {R( y = g D@ - Y, Qe @

- U(q)C(t’ Qna ‘-l)]} =0. (23)

Since R(q), U(q) and D{(q) are independent of n, (23) may be
written as

= U(q)m,]. (24)

am,,

R(‘l) ? = Vq : [D(Q) " Vq
In addition to (24), the local moments satisfy certain
boundary conditions imposed at the unit element surfaces.
These conditions are derived from (15), (16) and (20) and are
expressed in terms of “‘local jumps'' as follows [Brenner,
1980b; Brenner and Adler, 1982; Dill and Brenner, 1982a,

b, 1983; Shapiro and Brenner, 1988]:

{me]l =0 (25a)
HquO]] =0 (25b)
{m ] = —[qm,] (26a)
|[quII| = _“Vq(qmo)n; (26b)
mpm,
[m,] = ﬂ—]] (27a)
mg

mm;

|[qu2]] = Vq o . (27b)

The local jump term [F] indicates the difference between the
values of the function F at equivalent points on opposite
faces of a unit element, i.e.,

[F]=F(q + 1;) - F(q) (28)

(q € aqi))
where F is an arbitrary function of local coordinates.
The local moments for the solid phase solute concentra-

tion are obtained in a similar fashion by rewriting the
equilibrium relationship (8) in terms of local coordinates,
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multiplying the resulting equation by Q. and then summing;
over all unit elements. Explicitly,

m = ka(q)m,, 29

is the linear relationship between the local moments for the
liquid and solid phase solute concentration.

Integrating both sides of (24) over the domain of a uni
element and applying the divergence theorem on the right-
hand side leads to

f R S0
q q
v, at
= f [D(q) - Vom,, — U(@)m,]-n, ds,  (30)
aVy

where 3V is the external surface area of a unit element, n;
is the outer unit vector normal to 9V, and ds is an
infinitesimal surface area on 9 V. A surface integral over the
area of a unit element can be written in terms of local jumps
as [Brenner, 1980b]

f F'nsds=zf [F] - n, ds,
Vo i S+

where s .; (s+; = s-;) denotes the faces of the unit element,
while the plus or minus sign permits identification of equiv-
alent but opposite faces. Substitution of the preceding iden-
tity into (30) yields

am,,
R(q) — d*
fvo q) 5 4d

-3 f {ID(Q) - Vqm,] - [U@m, I} -n, ds.  (32)

(31

which is suitable for direct application of jump boundary
conditions (25)-(27).

LARGE-TIME BEHAVIOR

This section is devoted to the derivation of the zeroth, first
and second global moments for the three-dimensional trans-
port problem considered. It is important to distinguish the
difference between local and global moments, and to note
that the mth global moment depends on the first m — 1 local
moments. The local moments are determined sequentially by
solving the boundary value problems described by (24)—(27),
whereas the global moments are obtained by integrating the
derived local moments over the volume of a unit element. All
moments are determined under the assumption that the
plume is spread out enough so that the zero local moment is
constant, or equivalently, that the sum of concentrations at
all points with local coordinates q is independent of time and
location within the unit element.

Zero-Order Moments

At large values of time, for m = 0, the solution to (24)
subject to jump boundary conditions (254) and (25b) is by
inspection deduced to be

mg = const. (33)
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The preceding equation indicates that a steady state has been
reached for mg, and does not generally imply that the solute
concentration is also at a steady state. Equation (33) be-
comes valid when the plume extends over several unit
elements, which certainly does not mean that the concentra-
tion has reached steady state. Since the solute introduced
into the porous formation is sorbing but otherwise nonreact-
ing, the total liquid phase solute mass is not equal to the
injected mass for all time, but depends critically on the
spatial periodicity of sorption. However, the conservation of
mass iaw requires that the sum of the zero-order giobai
moments for liquid phase and sorbed solute concentration is
at all time equal to the mass injected,

Mo+ Py=W. (34)
In view of (12), (29) and (34

the zero-order local moment for
the liquid pt t

ase solute concentration mav be written as

a3t {1 (8154 naay v

w w
= — = — 35
T IR VoR 32
where the dimensionless variable
= def !
R= — [ R(q) d'q, (36)
Vo

is the retardation factor averaged over the volume of a unit
element. Integrating m, over the volume of a unit element
yields the liquid phase zero-order global moment

w
My=—=. (37)
First-Order Moments
For m = 1, (32) can be written as
f R 2 aq =S f {~ID(a) - Vo(amo)]
Vo i Sai
+ [U(q)gmyo]} - n, ds, (38)

where the local unit element boundary conditions (26a) and
(26b) have been employed. For the m(,, element of the first
local moment vector, where the subscripts in parentheses
indicate the appropriate elements of the corresponding vec-
tor m;, (38) can be written as follows:

Imix) wU,
R( ) d qQq=—, (39)
v at R

where

_ 1
o, ™ j U (g d’q, (40)
0 Jv,

and the dispersion term in (38) is eliminated because
[D(q) - Vq(gmg)] = mq[D(q) - Vq] is equal to zero.

Inspection of boundary conditions (26a) and (26b) sug-
gests that for large times a trial solution for m(,, is of the
form

mllx) = [Fxt - qx + ‘Dx(q)]m()’ (41)
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where I, is a constant and & ,(q) is a function of the local
coordinates with symmeiric values on the boundary of the
unit element. That is,

D.(q) =

V@.(q) = VP (q+ 1)

®.(q+1]) (q € 4q;), (42)

(q € 9q;). (43)

Note that (41) satisfies the conditions (26a) and (26b).
Substituting (41) into (39) the constant I', is easily evaluated
to be

U,

Fry=—.
R

(44)
Combining (44) and (41), the general trial solution for any
element m,; is given by

fry., 1
Uil

my) = l—-'—— qi + ¢i(q)Jm li=x,y, 2). (45)

R

Employing (22) and (45) yields the expression for the ele-
ments of the first global moment,

M Ut w 46
10 = 73 R (46)
where
= def I 3
¢, = — ®,(q) d'q. (47)
Vo

To complete the description of the first-order local mo-
ments, ®;(q) must be determined. Since ®,(q) is periodic it
can be expanded in the following Fourier series

®i(q) = B, + Dj(q) =B, + D u,(b) exp [j27q- b),

b
b#0

(48)

where the prime signifies fluctuations, j = (—=1"?, bis a
three-dimensional vector of integers, b= (b,, b,, b )T =
(b, /1, byil,, b1 .)7, and the expression for the coefficients
pi(b) is denved in Appendix A by the method of small
perturbations or first-order approximation,

U,- .«
vi(b) — 7 AP —27&i(b) - b

mi(b) = , (49)

47’b-D-b+,270-b
where A(b) is a scalar defined in (A6), ub) is a vector defined
in (A7), &b) is a symmetric matrix of known coefficients
defined in (A8), v;(b) is the ith element of 1(b), and &(b) is
the ith column of &b).

Second-Order Moments

For m = 2, (32) can be written as

Joma -3 {5
ﬂvm m,::']” oy Ao (EO)
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where the local unit element jump boundary conditions
(27a) and (27b) have been used. For the element my;),
where the double subscripts in parentheses indicate the
corresponding element of the dyadic m,, (50) can be written
as

f R(@) 2 ”’dq=f
Vy aVy

- U(q)(m——m)m”j))} ‘n,ds.  (51)

my

myami )
My

D(q) - Vq(

Substitution of (12), (29), (45) and (48) into (51) followed by
integral evaluations yields

dMyy, dPyy; W (200p 1O, LU, _ _
2(1)+ 2(1)=____ 1_1__1_____ U<I>
dt dt R R 2 2
where
0= > [v](b) = j2m& (b) - blujb) (53)
bro

and the dagger exponent denotes complex conjugation.

To determine the second global moment of the liquid
phase solute concentration, assume a trial solution for the
ma;j entry of the dyadic m; of the form [Brenner, 19804, b]

may = [Egt? + Zy(@)1 + Hy(@)Imo, (54)
where E; is a constant and Z;;(q), H ;(q) are functions of the
local coordinates. Evaluation of the term H;(q) is not
necessary for the determination of the dispersion dyadic that
governs the macroscopic solute transport process, because
H;(q) has no influence on the time derivative of My ; (see
next section). Also, combining (29) and (54) yields the
second local moment of the solid phase solute concentration,

Pagp = kad@E;* + Zij(q)t + Hy(@)dmg.  (55)
Integrating (54) and (55) over the volume of a unit element,
the trial second global moment of the liquid and solid phase
solute concentrations are

w
MZ(U) = (EUI + Z it + H R , (56)
w
Pz(,j) = (E; k—dl +Z; kdt + H; kd) E (&¥))]

Substituting (56) and (57) into (52) the constant E; is
evaluated to be

(58)

Substituting (35) and (45) into the local unit element jump

honndary ~randitinn (974) and camparing the recnltine av.

pression to (54), it is evident that
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Zyq) = 3 [@iq) — g+ 7 [Piq) —g]+ Gy, (59)

where G ; is a constant to be determined. Substitution of (58)

and (59) into (54) and (55), followed by some simplifications,

yields
25,

0,
G-g Rl

$(q)I'R'(q)

U,
+ =5 lai- QIR (@) + ¢ (@., +0;), (60
where the term F' indicates the value of the function F minus
its average over the volume of a unit element (F' = F — F),
and the expression for the volume-averaged term is (see

Appendix B)

[9: - P@)]'R'(q) = ~ D,

b
b#0

ATb)pub). (61

Since all the necessary terms of the second global moment
for the liquid phase solute concentration are evaluated, (56)
can be written as

I 5 -
My = U,I;jzjt N U;;I)jt+ U,};fit_ }{t
) U;-;;,t 21;,-,-;+ %Jr a, ;_:', (62)
where
Qy= D, [¥]pjb) + ¥ uib)]
b :: 0

(b-D-b) Re (¥]¥)

2 oG e
b:o
U
¥i= ib) — = Ab) —j2mEb) b (64)

The latter formulation in (63) was obtained by employing (49)
and the identity z{z, + z;z; = 2 Re (z{z,), where z, and
z, are complex variables and Re indicates the real part of a
complex variable. It should be noted that ; is a function of
discrete power spectra (products of Fourier coefficients).

EFFECTIVE COEFFICIENTS

The macroscopic velocity vector U and the macrodis-
persion dyadic D are defined by [Brenner, 1980a, b]

o d (M,
U” = lim — | —|, (65)
t—>® dt MO
1 d (M; MM,
0 = - — — —
b~ =z tll,m e (fuo »ed (66)
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The effective parameters governing the macroscopic solute
transport under local equilibrium conditions and the pre-
scribed flow field can now be obtained formally. In view of
(37), (46) and (65) the effective velocity vector is

1{Z U
UO-———: Uy ==,
R

184 (67)

Also, from (37), (46), (62)
macrodispersion dyadic is

| D3 D3y Di
DO=1=2-' Dyx Dyy Dyz ’ (68)
sz Dzy Dzz
where

Equation (67) indicates that the macroscopic velocity of a
sorbing solute is a ratio of the volume-averaged interstitial
velocity to the volume-averaged or effective retardation
factor. The symmetrical macrodispersion dyadic (equation
(68)), whose elements are divided by the volume-averaged
retardation factor, indicates that the effective dispersion is
affected by the spatial variability of the hydrogeochemical
parameters considered. The enhancement of solute spread-
ing is described by Q,-j/(ZR_), where ();; is defined in (63).
The mean hydrodynamic microdispersion coefficients may
not contribute significantly to the overall macrodispersion, if
the parameters {);; are sufficiently large ({};; >> D). To
evaluate {);;, knowledge of the structure of fluctuations of R,
U(q), and D(q) is needed. It must be recognized that the
expression for the macrodispersion dyadic is valid for any
orientation of the mean interstitial velocity, as long as the
incompressibility condition (6) holds. Moreover, for the
special case of unidirectional flow in a hydraulically homo-
geneous porous medium, U(q) = (U,, 0, 07 and D(q) = D,
Equations (67)-(69) reduce to the results presented by
Chrysikopoulos et al. [1992].

Discussion

The effective macrodispersion coefficients derived (equa-
tions (67) and (68)) can be employed in the advection-
dispersion equation with constant coefficients,

aC(t, Q)

= Ve, [P Vo 0, Qu1-U° - Vo C(t, Qu)

(70)

to predict the transport of C(z, Q,) (concentration averaged
over the volume of a unit element) for a sorbing solute after
the plume has sampled all variations in the retardation factor
and the flow field. The time period which needs to elapse
before the preceding equation is applicable is known as the
‘‘relaxation time.’” The relaxation time can be determined as
follows. The zero-order local moment, which signifies the
probability that a particle occurs at certain location in the
local coordinate system, is given by the time dependent
solition tn (24 for m = 0 cuhiect to inmn hanndary

conditions (25a) and (25b4),
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40
w 3
A
10
P r——
0 100 200 300 400
Time (d)
Fig. 1. The dependence of A upon time and microdispersion

coefficients, D,,/2 = D, = D_,, of 0.0005 m%/d (curve a), 0.001
md (curve b), 0.005 m2/d (curve c), and 0.05 mZ/d (curve d).
(Here, 1,/2 = l, = l,=05m, R =10)

mo(t, q) = >, a(b, t) exp [j2wq-b],  (71)

b

where a(b, t) are time dependent coefficients with absolute
values given by

N .t
la(b, )] = |a(b, 0)| exp [—41rzb-D-b E}' (72)
The coefficients |a{b, f)| decay exponentially for every b #
0, and
la(b, 1)
A= ——=
=2 la(b, 0)]

b

(73)

approaches unity at a time approximately equal to the
maximum value of R/[47?b - D - b}, which corresponds to
the smallest b # 0, or to the lowest frequency. It should also
be noted that the macroscopic coefficients indicate what
values the transport parameters tend to; therefore, they are
useful even if the asymptotic conditions have not yet been
reached.

To illustrate the decisive role of microdispersion, local
retardation and scale of periodicity in determining the time
period that must elapse before the macroscopic results of
this study become valid, we have plotted the variation of A
with time for a variety of conditions. For presentation
purposes, the curves appearing in Figures 1-4 are obtained
for the special case where D,/2 = D,, = D,, and [,/2 =
l, = [,. The range of the transport parameters used in the
figures is chosen to encompass most of the commonly
encountered subsurface conditions.

Figure 1 illustrates the dependence of A upon time for
several sets of microdispersion coefficients. As the micro-
dispersion coeflicients get larger, A(t) declines exponentially

to ite acvmntatic valne at a facter rate Nate that m,
becomes constant as soon as A(#) approaches unity. For the
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Time (d)

Fig. 2. The dependence of A upon time and scales of periodic-
ity, 1,/2 =1, = 1,, of 0.5 m (curve a), 1.0 m (curve b), 1.5 m (curve
¢), 2.0 m (curve d), and 2.5 m (curve e). (D, /2 = D,, = D,, =
6.005 m%/d, R = 10.)

transport conditions considered in this exercise, a tenfold
increase in the microdispersion coefficients reduces the
relaxation time by approximately a factor of 10 (i.e., com-
pare curves ¢ and d), indicating that the relaxation time is
inversely proportional to microdispersion coefficients. The
dependence of A upon time and scale of periodicity is shown
in Figure 2. A twofold increase in /; increases the relaxation
time by a factor of 4 (i.e., compare curves a and b). Clearly,
the relaxation time is proportional to the square of the
periodicity scale. Figure 3 illustrates the linear relationship
between the relaxation time and the retardation factor.
Therefore, a rough estimate of the time required for A(¢) to

L) L L] L LA L
| -
i R
- 1
\ —_— 1
\
L7 T 4
“ ------ 20 |
' !
' -
t
[
A ol N .
\ :
\
s 4
\—.~~_‘ E
o A § I 1 A 1 A | I 1 A
[} 20 40 80 8o 100 120
Time (d)
rig. 3. 1he gepengence OI 4 UpOn UME anu relaraauon 1acior

(Dyx/2 = Dyy = D,y = 0.005 m¥d, [,/2 =1, =1, = 0.5m).
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Fig. 4. The dependence of A upon time for one- and three-
dimensional sorbing solute transport.

approach unity, or equivalently a very rough estimate of the
relaxation time, is [2R/D, where R, D are typical values of
the retardation factor and the microdispersion coefficient,
respectively, and [ is the scale of periodicity. Similar expres-
sions of the relaxation time, for different but related prob-
lems, have been derived by Dagan [1982b] and Kitanidi:
[1990]. Although macrodispersion is not crucially affected by
microdispersion variations {Vomvoris, 1986; Dagan, 1987],
the pore-scale dispersivity, together with the local retarda-
tion factor and the scale of periodicity, controls the relax-
ation time and consequently determines when the macrodis-
persion theory is applicable.

The relaxation time for organic solutes in groundwater
formations under natural gradient conditions may be quitz
long. For example, consider the halogenated organic solutz
1,2-dichlorobenzene (DCB) which was used during the long-
term solute transport experiment at Canadian Forces Base,
Borden, Ontario [Mackay et al., 198656]. Among the five
organic solutes investigated at the Borden site, DCB is the
second most strongly retarded compound with retardation
factor equal to 3.9, as estimated from synoptic sampling after
a 15-day time period {Roberts et al., 1986]. The correlation
scales of the natural log of hydraulic conductivity of the
aquifer in directions parallel and transverse to the mean
interstitial velocity vector are 5.14 and 8.33 m, respectively,
whereas the vertical correlation scale is in the range 0.21-
0.34 m [Woodbury and Sudicky, 1991]. Since the spatial
variability of DCB sorption and the microdispersion coefli-
cients of the aquifer are presently not available in tle
literature, we assume that the correlation scales of sorpticn
are smaller than the correlation scales of the hydraulic
conductivity, D,, = 0.005, D,, = D,, = 0.0005 m?/d, ard
that the scales of periodicity are approximately equal to the
correlation scales of hydraulic conductivity. For this set of
hydrogeochemical parameters and assumptions the relas-
ation time for DCB in the Borden site is over 110 years.

Turthermore) for the vace whure R(y) 3 1 (oo v

tive tracer) the relaxation time is approximately 28 years.
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The last sampling session at the Borden aquifer was 1038
days after injection [Mackay et al., 19865b]; therefore,
according to this analysis, the injected solutes may not have
reached asymptotic conditions. The spatial moments of the
data, analyzed by Freyberg [1986], show that asymptotic
conditions had not been reached by the end of the experi-
ment. Certainly, it is hard to use the relaxation time to
pinpoint the time the Borden plume(s) are reaching the
asymptotic domain because (1) the plume is already spread
out at time ¢ = 0 (distributed injection); and (2) the appro-
priate characteristic lengths (‘‘periods’’) are probably multi-
ples of the correlation lengths but their exact size is unspec-
ified if the medium is not periodic.

The relaxation time for one- and three-dimensional porous
formations may not be equal. For example, in Figure 4, we
have compared the dependence of A(¢) upon time for one-
and three-dimensional porous media. Clearly, asymptotic
conditions are reached faster in the one-dimensional system.
This result is intuitively expected, because in a one-
dimensional porous medium the solute samples only the
parameter fluctuations in the longitudinal direction, whereas
in a three-dimensional porous medium the solute must
sample parameter variabilities in all three directions. Since
the relaxation time is inversely proportional to microdisper-
sion coefficients, the large relaxation time shown for the
three-dimensional case is attributable to the coefficients D,
and D,,, which are smaller than D,, .

The Taylor-Aris-Brenner method of moments makes use
of spatial averaging of the aqueous solute concentration, C,
as opposed to RC which corresponds to the total concentra-
tion (aqueous plus sorbed solute mass). For example, the
large-time or effective velocity U/R of a solute sorbing under
local equilibrium conditions represents the aqueous solute
velocity in a heterogeneous porous medium with periodic
hydrogeochemical parameters. The same expression for the
effective velocity was found by Dagan [1989), Valocchi
[1989] and Chrysikopoulos et al. [1992]. However, Kabala
and Sposito [1991] suggested that the field-scale velocity is
given by U/R. This result is valid when the total concentra-
tion is uniformly distributed within the porous medium, a
situation which can be encountered at early times of an
injection experiment with a uniform flux- or third-type
upstream boundary condition.

The method of moments employed in this work for the
determination of macroscopic parameters makes use of
spatial averaging in a single formation with periodic hydro-
geochemical parameters. It thus is an alternative to the
stochastic approach which employs averaging over the en-
semble of all realizations of a stationary random field. The
relation between the two approaches has been explored
through comparison in special cases and, interestingly enough,
it has been found that the two approaches yield essentially the
same large-time resuits. It has been shown in the head covari-
ance [Van Lent and Kitanidis, 1989] and effective conductivity
cases [Kitanidis, 1990] that the result of the stochastic model
can be approximated at any degree of accuracy by sufficiently
increasing the period in the periodic model.

The assumption that retardation is governed by a linear
equilibrium isotherm under nearly ideal, local chemical
equilibrium conditions is by no means applicable to every
hydrogeological setting. However, this study is focused on

the fundamentals of sorbing solute macrodispersion in het-
erogeneous porous formations, and the local equilibrium
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assumption is just a starting point for generalization to more
complicated systems. In relatively complex field sites the
transport of organic solutes under natural gradient condi-
tions might be affected by nonlinear equilibrium sorption
behavior, hysteresis, biotransformation, and slow approach
to sorption equilibrium [Roberts et al., 1986; Curtis et al.,
1986]. Deviations from local equilibrium may lead to consid-
erably different effective macrodispersion coefficients. For
example, in the special cases examined by Valocchi [1989]
and Chrysikopoulos et al. [1992], it was shown that the
longitudinal macrodispersion coefficient is greater for first-
order kinetic sorption than linear equilibrium sorption.

SUMMARY

Taylor-Aris-Brenner moment analysis was employed to
derive the effective velocity vector and macrodispersion
dyadic for sorbing solute transport under local equilibrium
conditions in a three-dimensional porous medium with spa-
tially periodic interstitial velocity field, microdispersion co-
efficients and retardation factor in all three directions. The
periodic parameters were assumed to possess identical spa-
tial periods in each principal direction of a Cartesian coor-
dinate system. The domain is divided into rectangular par-
allelepipeds or unit elements with identical properties. It was
shown that the field-scale effective solute velocity for the
aqueous concentration is the volume-averaged interstitial
velocity over the volume-averaged retardation factor, and
the effective dispersion is the volume-averaged microdisper-
sion over the volume-averaged retardation factor plus a term
expressing the increase in solute spreading from the spatial
variability of the hydrogeochemical parameters. A perturba-
tion or first-order method was employed for the derivation of
the expressions presented; thus, the results are valid only for
the case where the spatially periodic parameters have
*‘small’’ fluctuations. The range of applicability of the results
remains to be explored. The results derived in this work are
valid for any orientation of the mean velocity, assuming that
the steady state interstitial fluid velocity is nondivergent.
The effective macrodispersion coefficients (equations (67)
and (68)) can be employed in the advection-dispersion equa-
tion with constant effective coefficients to predict the trans-
port of volume-averaged concentration for a sorbing solute
after the plume has sampled all variations in the retardation
factor and the flow field. The macroscopic coefficients are
useful even if the asymptotic conditions have not yet been
reached, because they show us what values the transport
parameters tend to. It was shown that the pore-scale disper-
sivity, the local retardation factor, and the scale of period-
icity are crucially important in determining the time period
needed for the effective velocity and the effective macrodis-
persion coefficient to become constant.

APPENDIX A: DERIVATION OF u(q)

Substituting (45) (for i = x) into (24), (26a). and (26b)
leads to the following set of partial differential equation and
local jump conditions:

<

X

R(q) =~ U.(q) =V - [D(q) - V®.(q)]

::.]

- Vg dq) — U@ -V ®.(q), (AD
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[®.(q)] =0,
[[qu)x(Q)]] = Oy

where d,(¢) = (D,,, D,,, DU)T is the first column of the
microdispersion coefficient tensor. Since R(q), U(q), and
D(q) are periodic in all three directions, they can be ex-
panded into the following Fourier series:

(A2a)

(A2b)

R(q)=R+R'(q)=R+ > Ab) exp [j2mq-b], (A3)
b
b0

U@ =T+U(q) =T+ > wub)explj2rq-b], (A4

b
b#0

D) =D +D'(q)=D+ > &®) exp[2mg-bl, (AS)

b
b#0

where A(b) is a scalar, 1{(b) is a vector, and &b) is a
symmetric matrix of known coefficients, given by

1 R
A(b) = ——f R(q) exp [—j2mq-b] d*q,  (A6)
VO V“

1 .
v(b) == | U(q) exp [-y27q - b] d’q, (A7)

0 Jv,

1 .
£b) = o~ f D(q) exp [—j27mq-b] d’q.  (A8)
0 Jv,

Note that A(b) = AT(=b), «b) = »"(~b), and &b) = £'(~b).
Substituting (A3)-(A5) and (48) into the governing equation
(A1) leads to

90,

(e’R+ ¢'R'(q) IR

(0, + & 'Uq))

=V, [(e°D + &'D'(q) - V(e %D, + &' D' (q))]
— Vo (%, + e'dy(q)) — (£°T + £ 'U'(q))

Vy(e", + £ 'D(q)), (A9)

where the superscript 0 indicates zero-order terms, and the
superscript 1 designates first-order terms. Note that the
introduction of ¢ is solely a mathematical artifice which
permits separation of the ‘*small’’ high-order terms from the
larger low-order terms, and bookkeeping of terms of the
same order. The preceding equation must be satisfied sepa-
rately for terms of each order. Equating coefficients of ° in
(A9) yields

Vg D-V®,)-T- 93, =0. (A10)
By inspection we can deduce that the preceding equation is
satisfied since ®, is a constant. Equating coefficients of £ in
(A9) yields

RI Ux UI
(q) R +(q)

=Vq (D Vo@ig)] — Vg dilg) ~ U -V @iq). (AlD)
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Employing the Fourier expansions of R’, U/, d}, and ®' in
(All) yields

U, R o
> {F A(b) = v, (b) + (47D -D - b+ j27rT - b, (b)
b
b#0

+ j2mwé(b) - B} exp [2mq-bl=0, (Al2)

where v, (b) is the first element of the coefficient vector Kb},
and £,(b) is the first column of the coefficient matrix &b).
Since the complex exponentials form a complete orthogonal
basis, the bracketed expression in the previous equation
must be zero for every b # 0. Hence, it follows that

ve(b) ~ (TU,/R)A(D) — j2m£(b) - b
4w’b-D-b+,270 b

u(b) = (A13)

(b # 0),

In a similar fashion the expressions for u,(q) and ux,(q) are
derived.

APPENDIX B: DERIVATION OF [q; — ®,(@)]'R'(q)

In this appendix the expression for the volume-averaged
term that appears in the effective global dispersion coeffi-
cients is developed. By definition

R def |
lg; - 2d@))R'(@) = 7| 40— QTR (@) d’a,

0 Jv,
(BI)
where
R(g)= D, A(b) exp [j27q-b), (B3,
b
b0
®'(q)= >, wu(b) exp [j2mq-b]. (B4)

b
b0

Combining equations (B1)-(B4) and assuming that integra-

tions and summations are interchangeable leads to

lg;— ®{q))'R'(q)

_VO

b#0

1 .
=— A(b)f (q; — 1/2) exp [j27q - b] d’q
Vo

! -
-— > > AKub) [ exp[j2mq- (k +b)] d’q
Yo bk o

b0k #0

== A(-bu®),

b
b#*0

(BS)

where the following equation has been employed:
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1
V—f exp [j2mq-(b+ k)] d’q=1 b= —k;
Bhad (B6)
1 -
— | exp[j2mq-(B+Kk)]dq=0 b * —k.
Vo Ve
Since A(—b) = A'(b), (BS) becomes
[q: - PLQ)IR (@ = = >, A'b)ub). (B
b
b=0
NOTATION
A defined in (73).
b vector of integers (wavenumbers), equal to
by, by, b,)7.
b normalized vector, equal to (b,/I,, b,/1,,
b )T
% denotes R, U, D.
C liquid phase solute concentration (solute
mass/liquid volume), MIL3.
C* solid phase or sorbed solute concentration
(solute mass/solid mass), M/M.
d; column of the microdispersion coefficient
tensor i.e., d, = (D,,, D,,, D,)7.
D hydrodynamic microdispersion coefficient,
L.
D microdispersion coefficient tensor.
E; constant.
F arbitrary global or local function.
Gy constant.
Hj; function of local coordinates.
Jj imaginary number unit equal to V-l
k; dimensionless partition or distribution
coefficient.
k vector of integers (wavenumbers), equal to
o ks Ky, k)T
k normalized vector, equal to (k,/l,, k,/I,,
k1T,
K, partition or distribution coefficient (liquid
volume/solid mass), L*/M.
{; characteristic linear dimension of a unit
element, L.
l; basic vectors which define a unit element.
m,, liquid phase moments.
M,, continuous and discrete representation of
liquid phase global moments.
n, outer unit vector normal to aV.
O order of magnitude.
P solid phase local moments.
P, continuous and discrete representation of
solid phase global moments.
q; local Cartesian coordinates, L.
q local position vector within a unit element.
dq; interface of a unit element.
d*q differential volume within a unit element.
Q; global Cartesian coordinates, L.
Q discrete position vector of a general point.
Q, discrete position vector locating the origin of
the mth wunit cleaisnt.
R retardation factor.

Re
S+
ds
S*

0y
A, M, v, §
P

Subscripts
i, J, k

n

X, ¥, 2

Superscripts
T

*

¢

+
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real.

faces of the unit element.

infinitesimal area on 3 V).

solid phase or sorbed solute concentration
(solute mass/liquid volume), M/L?>.

time, t.

interstitial velocity, L/t.

velocity vector.

domain of a unit element, equal to [,/,/,.
external surface of a unit element.

mass of solute injected, M.

function of local coordinates.

constant.

Dirac delta function.

Kronecker delta.

mathematical artifice, scalar.

porosity (liquid volume/aquifer volume),
L3/L3,

defined in (53).

Fourier coefficients.

bulk density of the solid matrix (solid mass/
aquifer volume), M/L?.

summation.

function of local coordinates.

defined in (64).

defined in (63).

null vector.

an element of.

vector operator (del), equal to [3/dq,, d/dq,,
3/9q,]17. '
equals by definition.

given that,

magnitude of a vector; Euclidean norm.
jump in the value of a function across
equivalent points on opposite faces of a unit
element.

direction of principal axes, equal to x, y, z.
nth unit element: {n} = {n,, n,, n_}.
principal directions of a Cartesian coordinate
system.

transpose.

solid phase.

macroscopic coefficient.

value of a function minus its average over
the volume of a unit element.

complex conjugate.

An overdot denotes average over the volume of a unit

element.
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