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�We investigated the size and zeta
potential of TiO2 NPs suspensions.
� We conducted transport experiments

of TiO2 NPs in columns packed with
glass beads.
� Agglomeration decreases with

increasing pH and decreasing NP
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� A substantial retention of the anatase

TiO2 NPs within the column was
observed.
� Mass recovery is increasing with

decreasing NP size and increasing
concentration.
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In this experimental work, various suspensions of titanium dioxide (TiO2) nanoparticles (NPs) were care-
fully characterized, and their transport in columns packed with glass beads were thoroughly investigated.
All NP suspensions were prepared with rutile–anatase and anatase TiO2. Two different methods were
used for the preparation of aquatic suspensions of TiO2 NPs at relatively low concentrations. The average
particle size and zeta potential of each suspension were estimated in order to investigate the effect of pH
and sonication time on TiO2 NP agglomeration. Finally, transport experiments of the various suspensions
of anatase TiO2 NPs were conducted. The concentration and particle size of the NPs were measured peri-
odically at the column outlet. Also, the accumulated mass of TiO2 NPs retained in the column was deter-
mined. The experimental data suggested that NP agglomeration decreases with increasing solution pH
and decreasing NP concentration. Also, it was shown that a substantial percentage of the anatase TiO2

NPs injected into the experimental column were retained within the column packing due to agglomera-
tion, and that mass recovery is increasing with decreasing NP size and increasing injected concentration.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction large-scale production and frequent use in microelectronics, paints,
Engineered metal oxide nanoparticles (NPs) have received
considerable attention over the past few years due to their rapid
catalysts, cosmetics, food, pharmaceutical industries [1–4], as well
as in environmental remediation applications [5,6]. Large quanti-
ties of NPs are released into sewers, which eventually reach waste-
water treatment facilities, or directly into surface waters and
subsurface environment by numerous point and non-point
sources, including wastewater reuse, agricultural uses, landfill
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Nomenclature

C concentration of NPs in suspension, M/L3

Co source concentration of NPs in suspension, M/L3

Cmax maximum concentration of NPs in the effluent, M/L3

dc collector diameter, L
dp NP diameter, L
<dp> average NP diameter, L
L length of the porous medium, L
mo zeroth absolute temporal moment, tM/L3

Ma normalized mass accumulated within the column,
defined in Eq. (3), (–)

Mr mass recovery, defined in Eq. (1), M
Q flow rate, L3/t
ta duration of aging period, t

tp duration of the suspension pulse, t
ts duration of sonication period, t

Greek Letters
f electrokinetic zeta potential, V

Abbreviations
dH2O deionized water
IEP isoelectric point
NP nanoparticle
TiO2 titanium dioxide
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leachates, and underground storage tank leakages [7–12]. The NPs
have active surfaces and can interact with molecules, organic
material, biocolloids, and clays [13–15]. Consequently, NPs that
enter the environment undergo surface interactions, producing
very stable agglomerates, which are capable of migrating over long
distances [16–24]. The toxicological risks that NPs can pose to
human health and the environment have not been thoroughly
examined yet [25]. To assess these potential risks, the fate and
transport of NPs in environmental systems should be carefully
investigated [8]. However, it should be noted that the migration
behavior of NPs in subsurface formations is relatively complex
[8], because it is known to be affected by many factors including
solution chemistry (ionic strength, pH), temperature, flow velocity,
presence of surfactants, gravity effects, and existence of biofilms
[17,19,26–30]. Besides the above-mentioned environmental appli-
cations, NPs are used in Enhanced Oil Recovery for altering the
interfacial tension values or contact angles in two-phase (water–
oil) or three-phase flow systems (gas–water–oil) [31] or applica-
tions concerning hydraulic fracturing [32]. Also, NPs are used in
medicine for functionalized bone implants [33], in photovoltaic
devices [34] or memory devices [35].

Titanium dioxide (TiO2) was employed in this experimental
study, because it is one of the most frequently used nanomaterials
in consumer products [36,6]. The stability of TiO2 NPs in aqueous
solutions is significantly affected by solution pH, surface charge,
inorganic salts, and organic matter [13,21,23,24]. Also, the initial
NP concentration plays an important role in agglomerate growth,
especially for concentrations ranging between 0.1 and 10 mg/L
[21]. Furthermore, the retention of TiO2 NPs in porous media
increases with decreasing flow rate, whereas at pH = 7 an electro-
statically unfavorable condition has been reported to exist that
yields maximum retention [36]. Although several studies of TiO2

NP transport in porous media have assumed that NP agglomeration
in porous media is negligible [17,37], when solution chemistry
favors NP-NP interactions over NP–solid matrix interactions, TiO2

NP agglomeration may be significant [38].
The main aim of this work is to characterize TiO2 NP suspen-

sions in aqueous solutions, and to investigate the transport of
TiO2 NPs with relatively low concentrations in water saturated
porous media in order to improve our understanding of how
agglomeration or equivalently particle size can influence NP accu-
mulation in porous media.

2. Materials and methods

2.1. Preparation of TiO2 NPs solutions

The solution pH is known to influence the NP aggregate forma-
tion [18,39]. Therefore, TiO2 NP suspensions at various pH values
were prepared using TiO2 anatase (Aldrich 637254-50G,
size < 25 nm), and TiO2 anatase–rutile (Aldrich, code
size < 100 nm). Two different preparation methods were applied.
In the first method (M1), the TiO2 NPs were first dispersed in
deionized water (dH2O) and then the solution pH was adjusted
to the desired value. In the second method (M2), the pH of dH2O
was adjusted to the desired value, and then the NPs were added
to the solution. In both of the preparation methods employed in
this work (M1 and M2), the solution pH values were either reduced
with HCl 0.1 M or increased with NaOH 0.6 M.

Sonication of NP suspensions may decrease the size of the
aggregates and may yield a more stable suspension [39–42]. How-
ever, sonication is more appropriate for larger aggregates [41], and
the duration of sonication should be carefully selected because
excessive sonication may cause re-agglomeration of smaller parti-
cles [39,43]. In this study, TiO2 suspensions were sonicated in an
ultrasound bath (Elma, TI-H-5) for various time periods.
2.2. Packed columns

Flowthrough transport experiments were conducted in glass
columns with 2.5-cm inner diameter and 30-cm length, which
were placed horizontally to avoid gravity effects [30]. The columns
were packed with glass spheres of diameter dc = 2 mm. Each NP
solution was injected into the packed column with a peristaltic
pump (Masterflex, Cole Parmer). After the end of each experiment
the glass spheres were cleaned carefully following the procedure
suggested by Bergendahl and Grasso [44]. Briefly, the cleaning pro-
cedure consisted of washing the glass spheres with acetone, hex-
ane and concentrated HCl, then washing the glass spheres
several times with dH2O, soaking them in 0.1 M NaOH solution,
re-washing them several times with dH2O, and drying them over-
night in an oven at 105 �C. The glass column was cleaned with
dense chromosulfuric acid, washed several times with dH2O, and
then dried in an oven.
2.3. Analytical methods

The size and zeta potential of the NPs were determined with a
zeta sizer (Nano ZS90, Malvern Instruments, UK). The various NP
concentrations were determined with a fluorescence spectropho-
tometer (Cary Eclipse, Varian Australia PTY LTD, Australia). The
fluorescence spectrophotometer was equipped with a quartz cuv-
ette (10 mm � 10 mm), and the excitation/emission wavelength
was set at 625 nm [21]. It should be noted that a fluorescence spec-
trophotometer provides accurate measurements for liquid samples
containing low concentration of scattered particles, and small par-
ticles [21,45,46].
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2.4. Mass recovery and accumulation

The mass recovery, Mr [�], of the NPs injected into the packed
column was quantified by the following expression [47]

MrðLÞ ¼
m0ðLÞ
C0tp

ð1Þ

where C0 [M/L3] is the source concentration of NPs suspended in the
aqueous phase, tp [t] is the broad pulse duration of the injected NPs,
L [L] is the porous medium (column) length, and m0 [tM/L3] is the
zeroth absolute temporal moment, which describes the mass of
NPs in the breakthrough curve:

m0ðLÞ ¼
Z 1

0
CðL; tÞdt ð2Þ

where C [M/L3] is the concentration of NPs in suspension.
The normalized mass of the TiO2 NPs injected in the column,

which was accumulated within the column at time t, Ma [�] was
calculated using the following equation:

MaðL; tÞ ¼
1

C0tp

Z t

0
C0 � CðL; tÞ½ �dt ð3Þ
Fig. 1. Effect of solution pH on (a) particle size and (b) zeta potential of Co = 10 mg/L
anatase (circles) and Co = 10 mg/L anatase–rutile (squares) TiO2 NP suspensions,
prepared by methods M1 (open symbols) and M2 (filled symbols). Also, showing is
the pHIEP = 3.5 for anatase–rutile TiO2 NP suspensions prepared with method M1.
Error bars not shown are smaller than the size of the symbol.
3. Results and discussion

3.1. Effect of pH on TiO2 NP suspensions

The particle diameters, dp [L], and electrokinetic zeta potentials,
f [V], of the various TiO2 NP suspensions prepared in this work,
with both M1 and M2 methods, were measured, listed in Table 1,
and graphically presented in Fig. 1. The resulting dp values were
not sensitive to the method of preparing NP suspensions except
for anatase–rutile TiO2 NP suspensions at pH < 4 and pH > 10.
Clearly, both methods of preparation yielded relatively similar f
values for both anatase and rutile–anatase TiO2 NP suspensions.
However, the observed dp values for anatase TiO2 NP suspensions
were smaller than those of rutile–anatase TiO2 NP suspensions.
Moreover, the f values of anatase TiO2 NP suspensions are shown
to be essentially unaffected by the solution pH. This observation
Table 1
Zeta potential and particle size measurements.

Preparation method pH

TiO2 anatase
M1 no sonication (ts = 0) 2.7

7.5
11
12

M2 no sonication (ts = 0) 4
6.3
7.4
10

TiO2 anatase–rutile
M1 no sonication (ts = 0) 2.9

6.1
11

M2 no sonication (ts = 0) 4
5.8
9
10

M2 30 min sonication (ts = 30 min) 4
5.8
10

M2 30 min sonication & 1 day aging (ts = 30 min, ta = 1 d) 4
5.8
10
is not in agreement with the findings presented by Fazio et al.
[16] and Fang et al. [26], probably due to different initial NP con-
centrations and NP suspension preparation methods employed.
The dp and f values of anatase–rutile TiO2 NP suspensions are
shown in Fig. 1 to decrease with increasing pH. It should be noted
that the isoelectric point (IEP), which represents the pH where the
f ± SD (mV) dp ± SD (nm)

�7.6 ± 4.7 423.4 ± 90.0
�7.4 ± 4.7 –

.3 �8.6 ± 2.6 252.3 ± 51.1
�10.1 ± 2.6 558.7 ± 73.5
�10.2 ± 3.5 251.7 ± 37.5
�3.8 ± 3.5 227.6 ± 105.7
�2.3 ± 0.4 91.0 ± 0.8

.4 �9.5 ± 5.5 340.14 ± 126.7

6.9 ± 1.5 115.8 ± 26.2
�23.3 ± 0.85 745.7 ± 141.8

.2 �39.7 ± 2.9 285.5 ± 121.5
�12.9 ± 0.51 809.7 ± 68.3
�18.4 ± 0.7 677.7 ± 127.2
�28.7 ± 0.7 647.0 ± 65.0

.9 �44.2 ± 1.3 530.0 ± 57.0
�9.8 ± 0.8 1054.0 ± 120.4
�29.7 ± 0.7 437.9 ± 36.6

.9 �42.3 ± 0.85 326.0 ± 38.0
�12.0 ± 1.3 811.0 ± 260.0
�26.3 ± 0.5 417.9 ± 3.4

.9 �41.5 ± 0.8 267.0 ± 61.5



Fig. 3. Effect of sonication time on particle size of anatase–rutile TiO2 NP
suspensions prepared with method M2, at two relatively high initial concentrations.
Error bars not shown are smaller than the size of the symbol.
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electrophoretic mobility changes from positive to negative, for
anatase–rutile suspensions prepared by the M1 method, was found
to be equal to pHIEP = 3.5 (see Fig. 1b). A similar pHIEP has also been
reported in the literature for a rutile TiO2 NP suspension [48]. How-
ever, depending on the manufacturer, pHIEP values for TiO2 NP
suspensions can vary considerably [48,49]. The f values for ana-
tase–rutile TiO2 NP suspensions prepared by the M2 method, and
for anatase TiO2 NP suspensions prepared by both M1 and M2
methods, were negative for all pH values examined in this study
(see Fig. 1b); but the possibility of switching to positive f values
at lower pH values cannot be ruled out.

Relatively small, suspended particles, with high absolute f val-
ues are expected to exhibit better stability than suspended parti-
cles with low absolute f values. At low absolute f values,
aggregates are formed because attracting forces between sus-
pended particles are stronger than repulsive forces [26,50–52].
For the pH range examined in this work, anatase TiO2 NP suspen-
sions, formed smaller aggregates than anatase–rutile TiO2 NP sus-
pensions; however, the anatase TiO2 NP suspensions exhibited
smaller absolute f values than anatase–rutile TiO2 NP suspensions.

3.2. Effect of sonication time

Sonication of suspended particles is known to reduce the size of
aggregates, and also to provide relatively stable suspensions
[39–42]. To obtain the optimum sonication period, ts [t], several
concentrations of anatase–rutile NP suspensions, prepared by
method M2 at pH = 7 were sonicated for varying time periods, as
shown in Figs. 2a and 3. Clearly, the results suggest that the mean
dp of NP suspensions without sonication (ts = 0) and with sonication
(ts > 0) increases with increasing initial NP concentration. This
result is consistent with the observations made by Brunelli et al.
[21] who reported that the initial TiO2 NP concentration plays a
Fig. 2. Effect of sonication time on: (a) particle size, and (b) zeta potential of
anatase–rutile TiO2 NP suspensions prepared with method M2, as a function of
initial NP concentration. Error bars not shown are smaller than the size of the
symbol.
key role on NP agglomeration and sedimentation in aquatic solu-
tions, whereas other parameters (e.g., ionic strength, salt content
and dissolved organic carbon) are of less importance. However, it
should be noted, for relatively small initial concentrations
(Co 6 5 mg/L), the range of dp values observed for ts = 2 h is much
greater than that for ts = 1 h and 3 h (see Fig. 2a). For relatively high
initial concentrations (Co P 500 mg/L), the time period of sonica-
tion plays an important role because the mean dp, as well as its
range decreases with increasing ts (see Fig. 3). These observations
are in agreement with the results presented by Horst et al. [39]
and Jiang et al. [41] who noted that sonication is appropriate for
the breakage of large agglomerates, but it is not effective for the
small sizes, because extended sonication may cause re-agglomera-
tion due to increased collision frequency of smaller particles. The
data presented in Fig. 2b suggest that there is no clear trend
between the measured f values and ts as a function of Co.

Anatase–rutile TiO2 NP suspensions with Co = 10 mg/L, prepared
by method M2 at various pH values, were also sonicated for
ts = 30 min. The dp and f values of the NP suspensions were mea-
sured immediately after sonication, and once again after a time
delay or aging time, ta [t], of one day (ta = 1 d). The experimental
results are graphically illustrated in Fig. 4, and suggest that with
or without sonication and aging, dp and f decreased with increasing
solution pH. Worthy to note is that at pH > 6, dp decreased with
sonication compared to the case of no sonication, and decreased
more with aging (see Fig. 4a). Also, at pH� 6, f became more nega-
tive (more stable) with sonication, and even more negative with
aging; whereas, at pH� 6, sonication and aging did not significantly
affect f. Consequently, a short time of sonication (ts � 30 min) at
pH > 6 are considered optimum conditions for anatase–rutile TiO2

NP suspensions.
3.3. Transport experiments

All transport experiments were conducted with anatase TiO2 NP
suspensions prepared by method M2 at pH = 7, without sonication
and aging (ta = ts = 0). Note that at pH = 7, anatase TiO2 NP suspen-
sions exhibit relatively small initial dp (see Fig. 1a) and thus strain-
ing may not be significant, but the measured f values at pH = 7
suggest that anatase TiO2 NP suspensions are more prone to
agglomeration than anatase–rutile TiO2 NP suspensions (see
Fig. 1b). Three different concentrations of anatase TiO2 NP suspen-
sions were used in this study: Co = 2.5, 5, and 7 mg/L. For each
transport experiment a TiO2 NP suspension solution was injected
into the packed column with a flow rate of Q = 2 mL/min. When
the effluent NP concentration reached a plateau, the TiO2 NP sus-
pension solution was replaced with dH2O. The injection period, tp

[t], of the NP suspension was recorded and listed in Table 2. Efflu-



Fig. 4. Effect of solution pH on (a) particle size and (b) zeta potential of Co = 10 mg/L
anatase–rutile TiO2 suspensions, prepared by method M2 without sonication (ts = 0,
squares), with ts = 30 min (diamonds), and with ts = 30 min followed by one day
aging (ta = 1 d, triangles). Error bars not shown are smaller than the size of the
symbol.

Fig. 5. Normalized effluent anatase TiO2 NP concentration data for the transport
experiments conducted with initial concentration: (a) Co = 2.5 mg/L, (b) Co = 5 mg/L,
and (c) Co = 7 mg/L. Here Q = 2 mL/min.
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ent liquid samples were collected periodically and analyzed for
TiO2 NP concentration and dp. The breakthrough data collected
from the various experiments were presented in Fig. 5. Also, the
normalized maximum (peak) NP concentration from each break-
through data set was graphically presented in Fig. 6. Note that
experiments 1–3 were conducted with Co = 2.5 mg/L (see Fig. 5a),
experiments 4–6 with Co = 5 mg/L (see Fig. 5b), and experiments
7 and 8 with Co = 7 mg/L (see Fig. 5c). Clearly, breakthrough data
obtained from experiments conducted with identical Co are some-
what different, especially for Co = 5 mg/L (see Fig. 5b). This variabil-
ity is attributed to randomly occurring NP agglomeration within
the packed column. However, as expected, the observed peak con-
centrations of the various transport experiments exhibited a trend
of increasing values with increasing Co (see Fig. 6).

The measured effluent dp values from all of the transport exper-
iments conducted in this study are presented in Fig. 7, together
with the corresponding initial dp values of the injected NP suspen-
sions. The effluent dp values (see Fig. 7), as well as the mean efflu-
ent <dp> values (see Table 2) were significantly different than the
Table 2
Experimental conditions and estimated Mr values.

Exp. No. Co (mg/L) Q (mL/min) tp (min)

1 2.5 2 85
2 2.5 2 95
3 2.5 2 105
4 5 2 120
5 5 2 83
6 5 2 105
7 7 2 100
8 7 2 120

a Evaluated with (1).
initial dp values of the injected NP suspensions. The observed var-
iability in the measured effluent dp values (see Fig. 7) suggests that
substantial NP agglomeration took place within the packed column
during the transport experiments. This observation is in agreement
with earlier work on NP agglomeration in porous media [38]. Note
that there is no particular trend in the measured effluent dp values,
because there is randomness in the NP agglomeration process
within the packed column. Also, effluent dp values do not provide
Initial dp (nm) Mean effluent <dp> (nm) Mr
a

179.0 190.2 0.13
278.0 182.0 0.16
154.5 168.1 0.19
207.4 156.6 0.25
240.0 273.3 0.17

92.0 166.0 0.46
51.3 140.9 0.36

138.9 86.4 0.32



Fig. 6. Normalized maximum effluent anatase TiO2 NP concentration as a function
of the injected initial TiO2 NP concentration. Fig. 8. Accumulated mass of anatase TiO2 retained in the packed column of each

experiment as a function of time.
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a true representation of <dp> for the agglomerates formed and
retained within the packed column.

The normalized mass accumulated within the packed column,
Ma [�], during each of the transport experiments conducted in this
study was determined with Eq. (3), and presented graphically as a
function of time in Fig. 8. The estimated normalized accumulated
mass curve for each transport experiment was increasing linearly
with time for a time period equal to tp, and then it asymptotically
Fig. 7. Observed effluent NP sizes from transport experiments with: (a) Co = 2.5 mg/
L TiO2, (b) Co = 5 mg/L TiO2, and (c) Co = 7 mg/L TiO2. Here Q = 2 mL/min. The dashed
lines represent the injected initial NP sizes of the various transport experiments.
Error bars not shown are smaller than the size of the symbol.
reached a plateau. The time to reach the asymptotic plateau from
the maximum Ma value of each experiment was affected by NP
detachment from the column solid matrix, which, as expected
was more pronounced for smaller NPs. Clearly, in experiments 6–
8, which were conducted with the smallest initial dp values, more
time was required for Ma to reach its asymptotic value.

The mass recovered from each of the transport experiments
conducted in this study was determined with Eq. (1), listed in
Table 2, and graphically illustrated in Fig. 9a, in conjunction with
the corresponding initial dp concentrations shown in Fig. 9b.
Clearly, the mass recovery of the injected TiO2 NPs was increasing
with increasing Co. This result is intuitive because as shown in
Fig. 9b, the dp of the injected NP suspensions was decreasing with
increasing Co. Assuming that possible agglomeration of the injected
anatase TiO2 NPs within the column at pH = 7 would yield particles
with dp < 300 nm (see Fig. 1a), then straining and wedging should
Fig. 9. Effect of initial concentration on: (a) mass recovery, as related to (b) the
initial size of the injected anatase TiO2 NPs.
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be ruled out of possible mechanisms of mass accumulation within
the packed columns examined in this study, because the corre-
sponding colloid to collector diameter ratios (dp/dc < 0.00015) were
well below the suggested threshold of 0.004 [53] or 0.003 [54].
Consequently, the observed accumulation of TiO2 NPs within the
column should be attributed only to physicochemical attachment
processes.

4. Conclusions

The experimental results of this study revealed that smaller
aggregates with smaller absolute f values were formed with ana-
tase TiO2 NP suspensions than anatase–rutile TiO2 NP suspensions.
The method of preparing NP suspensions did not significantly
affect the resulting f values, but affected the resulting dp values
for anatase–rutile TiO2 NP suspensions at pH < 4 and pH > 10. Son-
ication decreased the aggregate size for NP suspensions of rela-
tively high initial concentrations, but extensive sonication could
lead to re-agglomeration of low NP concentrations with small par-
ticles. Also, sonication and aging reduced NP aggregate size at rel-
atively high pH values. The results from the transport experiments
with anatase TiO2 NP suspensions suggested that mass recovery of
the injected TiO2 NPs could increase with increasing Co and
decreasing dp. Furthermore, NP accumulation within the packed
columns was significant due to agglomeration in conjunction with
physicochemical attachment rather than straining or wedging.
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