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Nomenclature

Ap cross—sectional area of a sorbed colloid, L2.
b uniform fracture aperture, L.
b mean aperture of a variable aperture fracture, L.
b(x, y) local fracture aperture, L.
C number of contaminants exiting a fracture.
C∗ number of contaminants sorbed to fracture and matrix walls.
Co total number of contaminants in a plume.
dp colloid particle diameter, L.
D molecular diffusion coefficient of a colloid or contaminant particle, L2/t.
Dmatrix molecular diffusion coefficient of a contaminant within the matrix, L2/t.
Deff effective dispersion coefficient of a colloid plume, L2/t.
DTaylor Taylor dispersion coefficient of a contaminant plume, L2/t.
f(z) Gaussian probability density function.
F (n∗) dynamic blocking function.
g gravitational acceleration, L/t2.
h(x, y) piezometric head, L.
i element number of a variable aperture fracture in the x—direction.
j element number of a variable aperture fracture in the y—direction.
k Boltzmann’s constant, ML2/Tt2.
Kn cotransport sorption rate coefficient, L/t.
m numerical step number in the particle tracking equation.
no initial number concentration of colloid particles, 1/L3.
N number of colloids exiting a fracture.
N ∗ total number of sorbed colloids.
No total number of monodisperse particles in a plume.
p probability of colloid attachment per wall encounter.
P local fluid pressure, M/Lt2.
Pcont(∆t) probability of contaminant wall sorption per time step.
P (z) probability of a colloid entering the fracture at location z.
Rn(0, 1) uniformly distributed random number between 0 and 1.
t time, t.
∆t time step for a particle tracking algorithm, t.
T absolute temperature of the interstitial fluid, T.
ux local Poiseuille fluid velocity in the x—direction, L/t.
ux mean fluid velocity in the x—direction, L/t.
uy local fluid velocity in the y—direction for a variable aperture fracture, L/t.
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uy mean fluid velocity in the y—direction for a variable aperture fracture, L/t.
uz local fluid velocity in the z—direction, L/t.
UD deterministic velocity due to a diffusivity gradient, L/t.
Ueff effective velocity of a contaminant plume, L/t.
Umax maximum, or centerline, velocity in a fracture, L/t.
Uθ deterministic velocity due to a porosity gradient, L/t.
x coordinate along the fracture length, L.
y coordinate along the fracture width, L.
z coordinate normal to the fracture surface, L.
zmatrix contaminant’s z—location when diffusing within matrix, L.
Z a standard normally distributed random number.

Subscripts

eff effective parameter.
d distribution.
DBF dynamic blocking function.
i index indicating the element in the y—direction.
j index indicating the element in the x—direction.
matrix indicates that contaminant has diffused into surrounding matrix.
max maximum value.
p particle.
Taylor indicates the Taylor dispersion coefficient

Greek Letters

β parameter defining hydrodynamic shadow effect for colloids sorbed to fracture wall.
γ fluid specific weight, M/L2t2.
6(t, x, y) coefficient of surface coverage by colloids, equal to Apn

∗(t, x, y).
6max maximum coefficient of surface coverage by colloids.
θ matrix porosity.
κ multiplication constant.
µ fluid dynamic viscosity, M/Lt.
µd mean of the Gaussian distribution, equal to 0.
ρ fluid density, M/L3.
φ repulsive interaction energy between a particle and the fracture surface, ML2/t3.
σ standard deviation.
σ2ln b variance of log aperture.
ξ correlation length of the fracture aperture fluctuations, L.
τ log—travel time, equal to lnΣ∆t.
Ω(z) probability density function of particle z—loctions after one time step.
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Abstract

Colloid/Contaminant Co—Transport in Porous Fractured Media

by

Tanya Bilezikjian

Master of Science in Engineering

University of California at IRVINE

Professor Constantinos V. Chrysikopoulos, Chair

A three—dimensional particle tracking model is developed to characterize the long

term spatial and temporal effects of advection, molecular diffusion, Taylor dispersion,

fracture wall deposition, matrix diffusion, and co—transport on two discrete plumes

(monodisperse colloids and aqueous phase contaminants) flowing through a spatially

variable aperture fracture. Contaminant particles travel by advection and diffusion

and may sorb onto both fracture walls and colloid particles, as well as diffuse into and

sorb onto the surrounding porous rock matrix. Colloid particles also travel by advec-

tion and diffusion and may sorb onto fracture walls, but do not penetrate the rock

matrix. A linear dynamic blocking function is used to govern attachment of colloid

and contaminant particles onto fracture walls; and an irreversible kinetic isotherm is

employed to describe contaminant sorption onto colloids. Ensemble averaged break-
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through curves of many fracture realizations are used to compare arrival times of

colloid and contaminant plumes at the fracture outlet. Results show that the pres-

ence of colloid particles enhances contaminant transport while matrix diffusion and

sorption onto fracture walls retard the transport of contaminants.
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0.1 Introduction

Colloid facilitated contaminant transport, or co—transport, will be a topic of con-

cern and the subject of considerable research efforts while radioactive waste is stored

in repositories located in either the saturated or unsaturated subsurface. Non—

radioactive, but still toxic and carcinogenic, non—aqueous phase liquids (NAPLs),

both dense (DNAPLs) and light (LNAPLs), and more readily soluble contaminants

such as MTBE, may also be subject to co—transport phenomena. Leaking under-

ground storage tanks, pipe fittings and waste containers, accidental spills, and illegal

dumping activities provide pathways for these contaminants to enter the geosphere.

Although low permeability rock media and salt formations are good candidates for

waste sequestration sites, the presence of fractures and colloids in a saturated en-

vironment may provide an avenue and a means for enhanced transport of escaped

radionuclides and other low solubility contaminants. Studies have revealed radionu-

clides much further afield than often expected, and attributed this to co—transport

effects [Ibaraki and Sudicky , 1995] (more references).

Both high and low level radioactive waste burial or storage sites are often situ-

ated in low permeability bedrock, clay, granite, or salt deposits where diffusion is the

primary transport mechanism available to aqueous particles. When waste storage con-

tainers leak, pools of very low solubility radioactive or toxic contaminants form that

slowly dissolve into the interstitial fluid. Contaminant pools originating from urban

sources such as underground gasoline storage tanks may behave similarly; however,



4

these pools are often located in fresh water aquifers, further emphasizing the need

for accurate characterization of contaminant movement. These contaminant pools

may remain in place for centuries, depending upon the extent of leakage, aqueous

contaminant solubility, and sorption or reaction properties.

Characterizing the fate of colloids and reactive contaminants in fractured subsur-

face formations to better understand contemporary groundwater pollution problems

is the focus of many recent studies [e.g. Abdel-Salam and Chrysikopoulos, 1995a, b;

Ibaraki and Sudicky , 1995; Kessler and Hunt , 1994; Johnson et al., 1996; Chrysikopou-

los and Abdel-Salam, 1997] (reorder). These studies suggest that knowledge of the

coupled hydrodynamic flow, contaminant transport, and surface reaction processes

occuring in a single fracture is fundamental to improving our understanding of reac-

tive contaminant transport in fractured media. Further, recent experimental and field

studies indicate that contaminants can migrate while sorbed on the surface of colloid

particles (add references). Consequently, colloids may affect the mobility of soluble

contaminants in fractures as the sorbed contaminants assume the transport charac-

teristics of the colloids that may be significantly different from their own. Factors

that may have an impact on the extent of co—transport phenomena include individual

particle surface charge, relative size of the particles, the pH or ionic strength of the

water in the fracture, and van der Waals forces.

Colloids are present in the subsurface in the form of metal oxides, humic macro-

molecules, bacteria, and viruses [Chrysikopoulos and Sim, 1996]. In fractured media,
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colloids are often formed by microerosion of minerals present in the solid matrix as

a result of formation crushing in association with tectonic activity [Drever , 1985].

Colloid particles themselves may be contaminants, such as bacteria or viruses, or

may become contaminants after a sorption reaction with contaminant particles, like

radionuclides. Because colloids have a high surface area per unit mass, they provide

contaminant particles with the opportunity to transport while sorbed onto their sur-

face [McCarthy and Zachara, 1989] (another reference). The omnipresence of colloids

in the subsurface and their characteristic large surface areas have inspired extensive

research in the area of co—transport of discrete plumes.

Aqueous contaminant particles, with diameters ranging from molecular to col-

loidal, are carried away from their source with the prevailing groundwater velocity,

and plumes spread under the combined effects of advection and diffusion in porous

media. Groundwater velocities in rock media are typically low, leaving molecular

diffusion the primary contaminant driving force. Low porosity media often serve

to retard particle transport as the advective travel distance such media is negligi-

ble. However, if a particle plume enters a water saturated fracture/fracture network

within the porous bedrock, the local advective velocity typically increases by orders

of magnitude, thereby enhancing particle transport. Thus, fractures provide prefer-

ential pathways for colloid and contaminant migration within the low permeability

porous media.

Often contaminants have a high sorption affinity for the surrounding porous ma-
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trix, resulting in significantly decreased contaminant concentrations short distances

from the source. However, detection of contaminants far beyond expected travel dis-

tances suggests that an alternate transport mechanism exists. Colloids, ubiquitous

in groundwater [McCarthy and Degueldre, 1993], are often considered a mobile third

phase [McCarthy and Zachara, 1989]. Because colloids are present in groundwater,

and because contaminant species often have a strong affinity for colloid particles, co—

transport is the likely mechanism responsible for the observed enhanced transport of

a contaminant plume.

The co—transport model assumes that complexed colloid and contaminant particles

will travel according to the transport characteristics of the larger colloid particles.

Therefore, a contaminant that has sorbed onto a colloid does not affect the colloid

particle’s transport due to the large difference in the size of the particles. This

assumption, based on observations of enhanced contaminant transport in field studies,

laboratory experiments and numerical modeling, has several explanations. First,

colloids may travel at a velocity greater than the mean fluid velocity because they

are excluded from the slowest moving portion of the flow (nearest the fracture walls)

due to their finite size [Small , 1974]. Secondly, because of their low diffusivity and

such factors as lift forces and possible electrostatic repulsion, colloids tend to remain

in the center of the fracture and therefore are less likely to encounter a fracture wall,

thereby reducing sorption probability [McTigue et al., 1986]. Further, a contaminant

that has sorbed onto a colloid may no longer sorb onto the fracture walls unless the
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colloid to which it is attached does so, nor may it diffuse into the surrounding porous

matrix due to the colloids’ inability to enter small matrix pores, yielding a greater

percentage of contaminants remaining within the fracture. Clearly, if co—transport

mechanisms are not considered when modeling contaminant transport, the extent of

contaminant migration may be grievously underestimated [Grindrod , 1993;McCarthy

and Degueldre, 1993].

This research is based on a novel particle tracking algorithm that may be used to

simulate laboratory or field situations through application of case—specific model pa-

rameters and evaluation of resulting breakthrough curves. Colloids and contaminants

are tracked through many realizations of stochastically generated, three—dimensional,

variable aperture fractues. The fracture models all have a constant specified mean,

variance, and correlation length of fracture aperture fluctuations, with random seeds

making each realization unique. Individual elution times for each colloid and con-

taminant particle from each fracture realization are incorporated into cumulative

normalized ensemble average breakthrough curves. By comparing the shape of these

curves, the individual and combined effects of various transport mechanisms and

model parameters on particle transport behavior may be investigated.

To verify the accuracy of the particle tracking model, breakthrough curves for each

plume are first compared with an analytical solution for a uniform aperture fracture,

yielding excellent agreement. The first case presented shows results from a simplified

simulation of two non—reacting plumes, colloids and contaminants, moving through
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a uniform aperture fracture subject to advective and diffusive mass transfer. This

model provides a base case, or reference for comparison as well as an opportunity

to observe, unhindered by other processes, the individual effects of Taylor dispersion

on each plume before implementing more complicated models. Next, model results

of non—reacting colloid and contaminant plumes moving through a variable aper-

ture fracture are presented and compared with the results from the uniform aperture

fracture. Sorption and desorption reactions of colloids and contaminants with the

fracture walls are considered, subject to a linear dynamic blocking function (DBF).

The DBF accounts for the presence of previously deposited particles and serves to

restrict further particle deposition as complete monolayer coverage of the fracture

walls is approached. Cumulative normalized breakthrough curves for a range of con-

taminant wall sorption parameters, resulting in retardation of plume transport, are

compared to the case of no fracture wall deposition. Next, matrix diffusion of conta-

minants is examined, with results again compared to the model simulation with no

diffusion into the surrounding medium. Also, once a contaminant diffuses into the

porous matrix it may sorb onto the walls of the matrix. Fracture wall deposition

and matrix diffusion, the two retarding processes affecting the contaminant plume

are then implemented simultaneously. This model manifestation, incorporating all of

the transport mechanisms discussed so far is used for comparison with a co—transport

case.

Each of the previously described simulations has superimposed additional trans-
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port or retardation processes so that the model approaches an increasingly accurate

simulation of a natural system. These preliminart model results have been developed

so the effect of co—transport mechanisms may be observed in relation to each trans-

port or retardation process affecting the plumes. Snapshots in time of the locations

of contaminants as well as breakthrough curves are used to illustrate the effects of

co—transport. Initially, the effect of variation of only the co—transport parameter

(governing the affinity of the colloid and contaminant particles) within a variable

aperture fracture is considered by comparison with the transport characteristics of a

colloid plume and a non—reacting contaminant plume. Ultimately, the model incor-

porates the processes of matrix diffusion, wall sorption and desorption, and reversible

particle—particle reaction to examine their combined effect on colloid and contaminant

co—transport.

0.2 Numerical Formulation

0.2.1 Fracture Generation

Figure 0.1 is a simplified illustration of the general system modeled in this work;

the quasi—three—dimensional fracture used in this study is 8 m long (x—direction)

and 4 m wide (y—direction). The fracture plane is partitioned into 12,800 discrete

square elements such that each 5 × 5 cm element exhibits a distinct aperture as

illustrated in Figure 0.2. The aperture field in the fracture is generated stochastically
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Figure 0.1: Schematic illustration of a quasi—three—dimensional fracture with spatially
variable aperture, b(x, y). Two migrating plumes (finitely sized colloid particles and
molecular or point contaminant particles) are shown undergoing surface sorption, wall
deposition, matrix diffusion and co—transport. Note that z = 0 m at the center of
the fracture.

by the geostatistical code SPRT2D [Gutjahr , 1989]. It is assumed that the aperture

distribution in the fracture plane follows a log—normal distribution [Johns et al., 1993;

Reimus et al., 1993; Keller , 1998] with preselected mean and variance. Furthermore,

the aperture distribution was assumed to vary spatially according to an isotropic

exponential autocovariance function with specified correlation length. In this work,

the average aperture of each fracture is b = 5×10−5 m, the variance of the log aperture

is σ2ln b = 0.015, and the isotropic correlation length is ξ = 1 m. By definition, a

correlation length implies that for distances along the fracture plane smaller than

the correlation length the aperture values are likely to be similar, but at distances

greater than the correlation length there is no relation between apertures. Unique



11

x (m)

y
(m
)

0 1 2 3 4 5 6 7 80

1

2

3

4

Figure 0.2: A realization of the aperture spatial distribution in the fracture plane.
The fracture is partitioned into 160 × 80 equally sized elements. The gray scale
illustrates apertures between 0.01 and 0.15 mm (here 0 ≤ x ≤ 8.0 m, 0 ≤ y ≤ 4.0 m,
b = 5× 10−5 m, σ2ln b = 0.15, and ξ = 1 m).

realizations of the aperture field are obtained by changing the seed number of the

random field generator.

A large number of fractures as well as a large number of particles per plume is used

so that random noise, everpresent in stochastic simulations, is smoothed out through

the averaging process. The same set of one hundred unique fracture realizations

is used for each variation of model parameters. Ensemble averages of the resulting

colloid and contaminant elution times are used to generate the cumulative normalized

number breakthrough curves.
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0.2.2 Calculation of Flow Field

The two—dimensional, steady—state partial differential equation describing flow

within a spatially variable aperture fracture is [Chrysikopoulos and Abdel-Salam, 1997;

James, 2001]

∂

∂x

^
b3 (x, y)

∂h (x, y)

∂x

�
+

∂

∂y

^
b3 (x, y)

∂h (x, y)

∂y

�
= 0, (0.1)

where b(x, y) is the local fracture aperture and h(x, y) is the piezometric head. Equa-

tion (0.1) is a stochastic partial differential equation because one of its parameters,

namely b(x, y), is a stochastic variable.

For each realization of the aperture field, the following five—point central finite

difference numerical approximation is employed for the solution of the governing flow

equation [Hoffman, 1992]

b3i,j+1/2hi,j+1 + b
3
i,j−1/2hi,j−1 + b

3
i+1/2,jhi+1,j + b

3
i−1/2,jhi−1,j

−hi,j
p
b3i,j+1/2 + b

3
i,j−1/2 + b

3
i+1/2,j + b

3
i−1/2,j

Q
= 0, (0.2)

where the subscripts i and j are the discretized distance along the x— and y—directions,

respectively. The five—point finite difference stencil is shown in Figure 0.3. The aper-

ture at the interface of two adjacent elements in the x— and y—directions is obtained

by employing the harmonic mean [Reimus, 1995; James and Chrysikopoulos , 2001b]

b3i,j±1/2 =
2b3i,jb

3
i,j±1

b3i,j + b
3
i,j±1

, (0.3)

b3i±1/2,j =
2b3i,jb

3
i±1,j

b3i,j + b
3
i±1,j

. (0.4)
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Figure 0.3: Five—point finite difference stencil.

Using the finite difference numerical approximation (0.2) for the solution of the

governing flow equation (0.1) for each node on the grid of the fracture plane results in

a set of linear equations with as many unknowns as the number of unspecified nodes

on the fracture grid [Hoffman, 1992, p. 825]. The resulting set of linear equations is

solved using a banded LU decomposition matrix solver algorithm [Press et al., 1992,

p. 963]. Average velocity components in the x— and y—directions are then calculated

for every element from the steady—state volumetric fluxes by the following expressions:

ux = −γb
2 (x, y)

12µ

∂h (x, y)

∂x
, (0.5)

uy = −γb
2 (x, y)

12µ

∂h (x, y)

∂y
, (0.6)

where γ is the specific weight of water, and µ is the dynamic viscosity of water.

Second order accurate finite difference forms of (0.5) and (0.6) used in this analysis
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Figure 0.4: The velocity field in the variable aperture fracture shown in Figure 0.2.
Arrow lengths are tangential and proportional to the local mean velocity.

are given as

uxi,j = −
γb2i,j
12µ

hi+1,j − hi−1,j
2∆x

, (0.7)

uyi,j = −
γb2i,j
12µ

hi,j+1 − hi,j−1
2∆y

. (0.8)

Because the fluid flow is laminar, a parabolic velocity profile develops within each

element; the velocities in the x— and y—directions are functions of z and expressed as

ux (x, y, z) = ux (x, y)
3

2

1− 4
^

z

b (x, y)

�2 , (0.9)

uy (x, y, z) = uy (x, y)
3

2

1− 4
^

z

b (x, y)

�2 . (0.10)

There is no advective component in the z—direction, normal to the fracture surface.

Equations (0.9) and (0.10) are consequences of the no slip boundary conditions at the

fracture walls, and therefore functions of the spatial (x, y, z) location in the fracture.
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The corresponding velocity field for the variable aperture fracture realization of Figure

0.2 is shown in the vector plot of Figure 0.4.

Zero fluxes at the upper and lower bounds (y = 0 m and y = 4 m) of the fracture

are imposed by the boundary conditions employed in the solutions of (0.5) and (0.6),

and insure conservation of mass in the system. In the event that a particle diffuses

a distance past the upper or lower y boundary, it is reflected back into the fracture

by an equal distance. Thus, particles may enter only at the left hand (upstream)

boundary of the system, and exit at the right hand (downstream) boundary.

0.2.3 Time Step Selection

Both solution accuracy and computational efficiency must be considered when

choosing the time step for a particle tracking algorithm. Unfortunately, improving

solution accuracy compromises computational efficiency and vice versa. Increased

accuracy is achieved by decreasing the time step to gain finer resolution of the parti-

cles’ motion, while computational efficiency is improved by increasing the time step,

thereby reducing the number of steps necessary to attain the desired solution. Thus,

an appropriate balance between these two objectives must be struck that satisfies

each to a reasonable degree. The challenge of selecting a single appropriate time step

for both colloids and contaminants lies in their significantly different transport prop-

erties, particularly their diffusion coefficients, that differ by four orders of magnitude.
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Figure 0.5: Probability distribution of z—locations for colloids diffusing through a
time step ∆t = 100 s released at z = 0 m.

The selection of the time step is based on colloid diffusion in the z—direction. A

value is chosen such that a colloid released at z = 0 m (the center of the fracture)

would be unlikely to diffuse more than 40% of the average aperture, b, in a single

time step. Figure 0.5 shows the probability density of final z—locations after one time

step of ∆t = 100 s for colloid particles released at z = 0 m. Note that the average

aperture of the fracture, b = 5× 10−5 m, is represented by the left and right vertical

axes and that 99% of the distribution lies between ±1.4× 10−5 m, virtually insuring

that the above criterion is met. Note that in Figure 0.5 the combination of the

extremely small range along the x—axis and the fact that the area under a normalized
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probability density curve is unity, results in the large peak of the distribution. This

time step selection also insures that a colloid will never diffuse a distance sufficient

to reflect from one wall, cross the fracture, and embed itself in the opposite wall.

When considering isotropic diffusion from a line source, the distribution is normal

(centered about zero); with standard deviation, σ, proportional to (∆t)1/2. Recall

that the root mean square (RMS) value of the standard normal distribution, Z(0, 1),

is equal to one and that colloid diffusion in the z—direction is estimated as

∆z = Z(0, 1)
√
2D∆t. (0.11)

The RMS of the standard normal distribution may be defined as:

RMS =

>���: N�
n=1
[Z (0, 1)]2

N
= 1; (0.12)

the general expression for the standard deviation of any distribution is:

σ =

>���: N�
n=1
(x− x)2

N
. (0.13)

For the standard normal (Gaussian) distribution, µd = 0 (x = 0) and equations

(0.12) and (0.13) are equivalent, i.e., σ = RMS. Multiplication of the RMS (or σ) by

a constant, κ, scales the standard deviation of the distribution:

>���: N�
n=1
[κZ (0, 1)]2

N
= κ. (0.14)

Thus, according to (0.11), the standard deviation of the diffusion equation is equal

to
√
2D∆t, and σ is shown to be proportional to (∆t)1/2.
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Figure 0.6: Probability distribution of z—locations for contaminants diffusing for a
single time step of ∆t = 100 s released at z = 0 m.

The Gaussian distribution has probability density [Banks et al., 1996]

f (x) =
1

σ
√
2π
exp

^
−1
2

w
z

σ

W2�
. (0.15)

Recall that the mean diffusion distance is zero, yielding the probability density func-

tion in Figure 0.5 with form:

Ω(z) =
1√

2D∆t√2π exp
−1
2

X
z√
2D∆t

~2 . (0.16)

For a contaminant particle, the time step appropriate for colloids does not limit

the diffusive travel distance to 40% of the mean fracture aperture. Figure (0.6), is
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obtained by substituting the contaminant diffusion coefficient in (0.16), and shows

the probability density of final z—locations for a plume of contaminant particles re-

leased at z = 0 m, after a single time step of ∆t = 100 s. The range of probable

diffusion distances for contaminants extends far beyond the average fracture aperture,

represented in Figure 0.6 by the two vertical lines near the origin, clearly illustrating

that a time step deemed appropriate for colloids is highly impractical when applied

to contaminants. Quantitatively, when the contaminant diffusion coefficient is sub-

stituted in (0.11) the resulting contaminant RMS diffusion distance is two orders of

magnitude larger than that for colloids due to the four order of magnitude difference

between the diffusion coefficients. Consequently, implementation of a single time step

appropriate for a colloid is likely to cause a contaminant to diffuse deeply into the

porous matrix.

To accurately track contaminant movement in the z—direction, the particle track-

ing time step should be four orders of magnitude smaller than the time step for col-

loids, ∆t = 0.01 s. This time step, while providing good resolution of the movement

of contaminant particles, is computationally costly, with implementation increasing

the simulation time by approximately four orders of magnitude.

Because of the strict time step requirements for contaminants, they are modeled

two—dimensionally, that is, only the x— and y—movements are determined by the

particle tracking equations, with a time step of ∆t = 100 s. Contaminant particles

need not be tracked in the z—direction while flowing in the fracture, based on the
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assumption that a contaminant plume travels with the local average fluid velocity.

0.2.4 Plume Descriptions

Two individual plumes with 5,000 contaminant and 5,000 colloid particles are

released instantaneously (t = 0 s) at the inlet (x = 0 m) of the fracture. The

colloid plume is assumed to be monodisperse with respect to size and species, with

diameter dp = 5 × 10−6 m. Each colloid particle is assigned a finite number of

contaminant sorption sites. When all sorption sites on a colloid have been filled, that

particle is removed from consideration for any further co—transport phenomena. The

contaminant plume is composed of a single dissolved species of molecular size, and

modeled as point particles, dp = 0 m.

0.2.5 Initial Particle Placement

Figure 0.7 is a representative distribution of initial colloid locations (x = 0 m,

t = 0 s), in the range of 0 ≤ y ≤ 0.8 m. In these simulations, the colloid and

contaminant plumes are introduced at the inlet side of the fracture flow domain

(x = 0 m) and distributed according to the local volumetric flow rate as suggested

by Reimus [1995, p. 93]. A discrete cumulative probability density function based

on the volumetric flow rate into each inlet element of the fracture is constructed by

summing all individual element flow rates at the fracture inlet and determining each

element’s contribution (probability) to the sum. Subsequently, a uniform random
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Figure 0.7: Initial colloid placement in the x = 0 m plane.

number between zero and one is generated for each particle. The random number’s

placement in the cumulative distribution of the flow rates at the inlet designates the

corresponding entrance element. Once the element, j, is specified, a particle’s exact

y—coordinate (in meters) is assigned by the equation:

y =
(j − 1) +Rn (0, 1)

50
, (0.17)

where Rn(0, 1) is a uniformly distributed random number between 0 and 1. It is

assumed that the probability of a colloid entering a fracture element at a given z—

location (perpendicular to the fracture walls) is proportional to the flow rate at that
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particular position. Consequently, the normalized probability of a colloid having a

starting position less than z is [Reimus , 1995; James and Chrysikopoulos , 2000]

P (z) =

$ z
−b/2 Umax

}
1− 4

p
z
b

Q2]
dz$ b/2

−b/2 Umax
}
1− 4

p
z
b

Q2]
dz
; (0.18)

solution of this equation gives:

P (z) = −2
^

z

b (0, y)

�2
+
3

2

z

b (0, y)
+
1

2
. (0.19)

A uniform random number between zero and one is substituted for P (z) in (0.19)

and the roots of the resulting polynomial in z are evaluated by Newton’s Method.

Roots found outside of the range of ±b(0, y)/2 are discarded due to the restriction on

colloid particles from entering the matrix. Thus, the centroid of the colloid must be

placed a distance of at least dp/2 m from the fracture wall to insure that it is wholly

contained within the fracture.

0.3 Numerical Model

0.3.1 Particle Tracking

A particle tracking algorithm is used to track the movement of each particle in

the system. The position and status (freely moving within the fracture, sorbed to

the wall, time of elution, etc.) of each particle is updated each time step. This

method differs from finite difference and finite element solutions to the advection—

diffusion equation that calculate concentration as a function of time and space. These
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techniques are subject to numerical dispersion due to truncation errors in their for-

mulation. Provided that a sufficient number of particles are used in each simulation

and enough simulations are performed, when the results are combined into an ensem-

ble average to smooth the random noise inherent in a stochastic scheme, a particle

tracking method used with an appropriate time step yields an excellent solution to

the advection—diffusion equation.

As described above, the numerical model used in this research is three—dimensional

for colloid particles, and two—dimensional for contaminant particles within the frac-

ture. Recall that restrictions on time step magnitudes due to computational limita-

tions prevent the contaminants from being tracked in the z—direction as the diffusion

distance for a relatively small time step often results in a contaminant particle dif-

fusing significantly into the fracture matrix.

Colloids are subject to advection, diffusion, and sorption onto the fracture walls.

They may not diffuse into the surrounding porous matrix, based on the assumption

that colloid size is greater than the pore size of the surrounding matrix [Abdel-Salam

and Chrysikopoulos , 1995a]. Contaminants move through the fracture via advection

and diffusion in the x— and y—directions; their transport is retarded via sorption

onto the fracture walls and diffusion into and sorption onto the surrounding porous

rock matrix. Contaminants may sorb onto colloid particles, thereby assuming the

transport properties of the carrier colloid and exhibiting enhanced overall transport

of the plume.
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Colloids travel by advection in the x— and y—directions according to the local

parabolic velocity profiles given by (0.5) and (0.6), and diffuse isotropically in all di-

rectons. The general advective/dispersive particle tracking equations used for colloid

particles are [Thompson and Gelhar , 1990; James and Chrysikopoulos, 2000]:

xm+1 = xm + ux (x
m, ym, zm)∆t+ Z (0, 1)

√
2D∆t, (0.20)

ym+1 = ym + uy (x
m, ym, zm)∆t+ Z (0, 1)

√
2D∆t, (0.21)

zm+1 = zm + Z (0, 1)
√
2D∆t (0.22)

where xm+1, ym+1 and zm+1 are the coordinates of a particle at time level m + 1;

ux and uy are the local interstitial x— and y—velocities specified by (0.9) and (0.10)

respectively; ∆t is the time step; Z (0, 1) is a random selection from the standard

normal (Gaussian) distribution; and D is the diffusion coefficient. The diffusion

coefficient for a colloid particle is calculated from the Stokes—Einstein equation [Welty

et al., 1984]:

D = kT

3πµdp
, (0.23)

where k is Boltzmann’s constant; and T is the absolute temperature of the interstitial

fluid.

Upon colloid movement between fracture elements with different apertures, its new

z—location must be determined. Here, a ratio, valid under creeping flow conditions in

slowly converging or diverging channels, is employed that is a function of the former
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and current apertures and the former z—location [Haber and Brenner , 1993]:

znew = zold
bnew
bold

. (0.24)

Colloids may travel either perpendicularly or diagonally between elements, however

only the initial and final z—locations and apertures are employed in (0.24).

The particle tracking equations used for contaminant particles in the x— and y—

directions are:

xm+1 = xm + ux (x
m, ym)∆t+ Z (0, 1)

√
2D∆t, (0.25)

ym+1 = ym + uy (x
m, ym)∆t+ Z (0, 1)

√
2D∆t. (0.26)

Note that contaminants are advected according to the average x— and y—velocities

rather than by (0.9) and (0.10). The use of average velocities for contaminants is

necessitated by the prohibitively small time step that would be required to accu-

rately to track the particles in the z—direction. This approach is justified by their

large molecular diffusion coefficient, and will be verified in the following section. A

representative diffusion coefficient, D = 9.0× 10−10 m2/s was chosen for a molecular

sized contaminant diffusing in water at T = 285 K [Welty et al., 1984].

If a particle diffuses beyond the zero flow boundaries at y = 0 m or y = 4 m it is

reflected back into the fracture by a length equal to the distance from the boundary

it would have reached, thereby preserving conservation of mass within the system.

For example, if a particle’s y—location after a time step is y = 4.004 m, the model

automatically places it back in the fracture at y = 3.996 m, thus the model assumes
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perfectly solid and 100% reflective boundaries.

0.3.2 Dispersion in a Fracture

0.3.2.1 Taylor Dispersion

The movement of a dissolved particle through a fracture is chiefly driven by axial

advection and transverse molecular diffusion. Taylor dispersion, arising from the com-

bination of molecular diffusion and a velocity gradient, is the result of the combined

presence of molecular diffusion and a velocity gradient. According to the Stokes-

Einstein equation, (0.23), the molecular diffusion coefficient is inversely proportional

to the particle diameter, explaining the relatively large diffusivity of a soluble con-

taminant compared to a colloid. This property allows the contaminant to diffuse

rapidly across the width of the fracture and frequently sample all velocities across

the flow profile. A colloid particle in the same fracture however, with a much larger

diameter and therefore a smaller diffusion coefficient, will experience less transverse

diffusion and sample fewer streamlines, thus traveling at a nearly constant velocity

for longer time intervals. Thus, a contaminant plume experiences a lesser degree of

Taylor dispersion than a colloid plume in the same fracture. The molecular diffusion

coefficient and the Taylor dispersion coefficient are inversely related as shown [Taylor ,

1953]:

DTaylor = D + 2

945

U2maxb
2

D . (0.27)
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Because a dissolved contaminant or solute rapidly diffuses across flow streamlines

(z—direction), adopting local velocities along the way, it ultimately travels with the

mean fluid velocity, decreasing axial spreading of the plume. A colloid’s relatively

small diffusion coefficient tends to keep it on a single streamline for a longer period

of time, thus each colloid particle travels at a relatively constant velocity over a

time interval, facilitating axial spreading of the plume due to the parabolic velocity

profile. When combined in the particle tracking model, use of the Taylor dispersion

coefficient and the average x— and y—velocities within each element for contaminant

particles allow accurate determination of contaminant movement without the need

to track contaminant movement in the z—direction, thus solving the problem of time

step selection.

An effective dispersion coefficient has been derived that accounts for particle di-

ameter [James, 2001]:

Deff = D + 2

945

U2maxb
2

D
X
1− dp

b

~6
. (0.28)

Because of their finite size, colloids are excluded from the slower moving portions of

the flow field, further differentiating their transport behavior from a dissolved species.

It is important to note that size exclusion of colloids limits the ability of Equation

(0.27) to accurately determine an appropriate Taylor dispersion coefficient due to its

assumption that a particle may sample the entire flow profile. Accounting for size

exclusion of colloids serves to decrease the effect of Taylor dispersion because colloids

may not sample the full range of velocities across the fracture; size exclusion also



28

serves to increase the average velocity of a colloid plume.

The magnitude of the individual effect of Taylor dispersion on two non-reacting

plumes, colloids and dissolved contaminants, is presented and discussed in detail

for a uniform aperture fracture model. To illustrate the difference in the values

of a molecular diffusion coefficient and a Taylor dispersion coefficient, consider a

contaminant (Dcont = 9 × 10−10 m2/s) and a colloid (dp = 1 × 10−6 m, Dcoll =

8.65 × 10−14 m2/s) flowing in a fracture (u = 1 × 10−5 m/s, b = 5 × 10−5 m). The

Taylor dispersion coefficient for the contaminant is Dcont = 9.22 × 10−10 m2/s; the

effective Taylor dispersion coefficient for the colloid is Deffcoll = 9.90 × 10−8 m2/s.

The value of the Taylor dispersion coefficient for a soluble contaminant does not

depart significantly from the molecular diffusion coefficient, but the change from

diffusion to dispersion coefficient for a colloid increases the coefficient by 6 orders of

magnitude. Two conclusions may be drawn from this example, first it is shown that

use of the Taylor dispersion coefficient for a contaminant does not significantly impact

the transport of the plume; second the magnitude of the Taylor dispersion coefficient

is shown to be far greater for a colloid than a soluble contaminant, a result that

directly correlates to the extent of Taylor dispersion experienced by the individual

species.
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0.3.2.2 Mechanical Dispersion

In systems of variable aperture fractures or fracture networks, mechanical disper-

sion is the primary mechanism contributing to spreading of a plume of particles. A

fluid will preferentially flow through a channel that offers the least resistance, specif-

ically paths that exhibit the widest apertures. A particle that flows along these

preferential flow paths will experience a decreased residence time within the fracture,

exiting the system far earlier than a particle that travels through a narrower and

therefore slower moving section of the same fracture. A range of residence times cor-

responding to various paths along a fracture may result in a wide range of elution

times for a plume of particles.

An increase in the heterogeneity of fracture apertures, resulting in increasingly

tortuous flow paths, is yet another factor that may contribute to mechanical disper-

sion. The effects of mechanical dispersion on a contaminant and a colloid plume are

presented using breakthrough curves from a model incorporating a variable aperture

fracture by comparison with a results from a uniform aperture simulation in which

Taylor dispersion is the main driving force for spreading of a plume.

0.3.3 Matrix Diffusion

Colloid particles were excluded from the porous matrix because of size constraints,

(i.e., the particles are larger than the pores in the fractured medium) [Reimus, 1995].

The probability of a contaminant diffusing from the fracture into the surrounding
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matrix during a time step ∆t was given by Liu et al. [2000] as:

Pfm =
Ffm∆t

VfCf
(0.29)

where Ffm is the solute transport rate from the fracture element to the matrix, Vf

is the liquid volume in the fracture, defined as the grid block volume multiplied by

the porosity and volumetric liquid water saturation corresponding to the continuum,

and Cf is the solute concentration in the fracture.

The probability of diffusing into the surrounding matrix is determined for each

contaminant that is moving freely within the fracture during the current time step.

A uniformly distributed random number between zero and one is generated and com-

pared with the diffusion probability, Pfm; if the random number is less than Pfm, the

particle will diffuse into the fracture matrix during that time step, otherwise, it will

remain in the fracture.

After a particle successfully diffuses into the porous matrix, the particle tracking

model records its movement in the x—, y—, and z—directions, becoming fully three—

dimensional for contmainants within the surrounding media. Due to the abrupt

spatial variance in both the diffusion coefficient and porosity between the fracture

and the matrix it becomes necessary to subject it to diffusive transport as well as

two additional deterministic velocities within a specified distance from the fracture—

wall interface, termed the transition layer. Reimus [1995] determined that failure to

incorporate these terms in the particle tracking equation for contaminants within the

porous matrix would result in false accumulation of particles in stagnant and/or low
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porosity zones within the flow system. These velocities are expressed as:

UD = (∇ · D) , (0.30)

Uθ = D (∇ · ln θ) . (0.31)

When these terms are incorporated, the model may be considered to exhibit three

regions, symmetric about the center of the fracture (z = 0 m), each governed by a

unique set of particle tracking equations. These regions are: (1), the fracture void

space where contaminants and colloids are free to undergo advection and diffusion

according to their respective particle tracking equations using the Taylor dispersion

coefficient, (0.25) and (0.26); (2), a pair of transition layers that begin at the upper

and lower fracture walls, (z = ±b(x, y)/2 m), where the diffusivity and porosity

decrease linearly from the values within the fracture (Dcont = 9.0 × 10−10 m2/s and

θ = 1.0) to the values inside the deep matrix (Dmatrix = θDcont = 9.0 × 10−10 m2/s

and θ = 0.1) according to (0.30) and (0.31) respectively; and (3), the deep porous

matrix, beyond the transition layer where the diffusion of the particle is governed

by only the diffusive term, with the Taylor dispersion coefficient multiplied by the

matrix porosity, θ = 0.1. The dependence of the contaminant diffusion coefficient on

the z—location is illustrated in Figure 0.8.

Inspection of the slope of the transition layer section of Figure 0.8, or the deter-

ministic expressions, (0.30) and (0.31), reveals that both terms are positive in the

direction toward the fracture. Once a contaminant has diffused into the rock matrix,

it is assigned a zmatrix—location within the matrix of zmatrix = 0.000005 m, where
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Figure 0.8: Contaminant diffusion coefficient in the fracture, transition layer and deep
porous matrix.

zmatrix = 0 m at the fracture—matrix boundary. A contaminant that diffuses into the

matrix by (0.29) becomes subject to the transition layer particle tracking equation, in

which only the diffusive term may serve to move the particle further into the matrix.

As long as the contaminant is in the transition layer of the matrix, (0.30) and (0.31)

will move it in the direction of the fracture with each time step; serving to eliminate

false accumulation of contaminants within the matrix. The complete particle tracking

equations within the transition layer are:

xm+1 = xm + Z (0, 1)
�
2θDTaylor∆t, (0.32)

ym+1 = ym + Z (0, 1)
�
2θDTaylor∆t, (0.33)
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zm+1 = zm + Z (0, 1)
�
2θDTaylor∆t+ (∇ · DTaylor)∆t+DTaylor (∇ ln θ)∆t, (0.34)

and in the deep porous matrix, beyond the transition layer:

xm+1 = xm + Z (0, 1)
�
2θDTaylor∆t, (0.35)

ym+1 = ym + Z (0, 1)
�
2θDTaylor∆t, (0.36)

zm+1 = zm + Z (0, 1)
�
2θDTaylor∆t. (0.37)

In the event that a contaminant particle diffuses out of the matrix, its zmatrix value

becomes negative and its transport is once again governed by the original contaminant

particle tracking equations, (0.25) and (0.26).

0.3.4 Fracture Wall Deposition

0.3.4.1 Colloids

When a colloid encounters a fracture wall, it either reflects back into the fracture,

or it attaches to the wall. The probability, p, of colloid deposition onto fracture walls

is governed by an equation derived from the Boltzmann law [Adamczyk et al., 1991;

James, 2001]

p = exp
w
− Φ

kT

W
F (n∗ (t, x, y)) , (0.38)

where Φ is the repulsive energy of interaction between the particle and the fracture

surface. A standard value of Φ = 10kT joules is suggested by [Adamczyk et al., 1992a]

and is used for all colloids in this model. n∗ (t, x, y) is the time and space dependent

number of previously sorbed colloids per unit fracture element.
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The linear, normalized dynamic blocking function (DBF), F (n∗ (t, x, y)), accounts

for the area occupied by previously deposited colloids, and, as coverage of the fracture

wall increases, increasingly limits the probability of both colloid and contaminant

fracture wall deposition. Sorbed contaminants are assumed to have an insignificant

impact on the value of the DBF due to their infinitesimally small size. The value of

F (n∗) for a clean fracture (no previous deposition) is unity, and approaches zero as

a fracture wall nears monolayer coverage. This insures that in the event of complete

monolayer coverage of the fracture walls, further sorption is impossible [Song and

Elimelech, 1994; Chrysikopoulos and Abdel-Salam, 1997]. The DBF is expressed as

[Elimelech et al., 1995]:

F (n∗ (t, x, y)) =
6max − 6 (t, x, y)

6max
, (0.39)

where

6 (t, x, y) = Apn
∗ (t, x, y) (0.40)

and

6max =
1

β
, (0.41)

where Ap = πd2p/4 is the cross—sectional area of a colloid particle and β (≥ 1) is a

dimensionless parameter representing the ratio of the fracture surface area blocked

by a deposited colloid particle to the projected area of the particle (shadow effect).

Thus, with each colloid particle that is deposited onto the fracture surface, an area

of the fracture wall equal to the profile of the colloid plus an added area due to a
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hydrodynamic shadow effect is removed from the area available for further particle

deposition [Rajagopalan and Chu, 1981]. The DBF is multiplied by exp(−Φ/kT ),

the probability of attachment to a clean fracture wall, as shown in (0.38) to yield

the total sorption probability per wall encounter. To ultimately determine whether

a particle will be deposited onto the wall or be reflected back into the fracture each

time a wall encounter is recorded, a uniformly distributed random number between

zero and one is generated and compared to the time, location and concentration

dependent sorption probability, (0.38). If the random number is less than the sorption

probability, the colloid attaches to the wall, and F (n∗) is updated for that fracture

element. Otherwise, the particle is reflected back into the fracture.

0.3.4.2 Contaminants

A wall encounter by a contaminant may result in deposition onto the wall, diffusion

into the porous matrix or reflection back into the fracture. Because the model does

not track the motion of the contaminants in the z—direction, and therefore cannot

count the number of wall encounters in a time step, it is necessary to use an expression

to calculate the probability of contaminant wall sorption as a function of the time

step:

Pcont(z) = 4 exp(− Φ

kT
)

√
πD∆t
b(x, y)

erf
(b(x, y))

4
√D∆t . (0.42)

Once the probability of contaminant sorption is determined, the model follows a

process that is analogous to colloid wall sorption. The probability is multiplied by
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the DBF for the particular fracture element and compared to a uniformly distrib-

uted random number between zero and one. If the random number is less than the

probability, the particle is deposited on the fracture wall and removed from further

transport calculations; otherwise it is reflected back into the fracture. The DBF is

not affected by a contaminant sorption phenomenon; it is assumed that the small

relative size of a contaminant to a colloid would have a negligible effect on its value.

0.3.5 Particle—particle Sorption

An irreversible first-order kinetic sorption model suggested by (reference—Fetter),

∂C∗ (x, y)
∂t

= KnC (x, y) , (0.43)

is modified for use in the particle tracking model. In this equation, C∗(x, y) (kg/m2)

is the concentration of sorbed contaminants, C(x, y) (kg/m3) is the contaminant

concentration, andKn (m/s) is a first—order sorption rate constant. Because a particle

tracking model determines particle number per fracture element rather than particle

mass per volume, (0.43) was modified as follows:

∂C∗ (x, y)
∂t

= Kn
C (x, y)

b (x, y)
, (0.44)

where now C∗(x, y) (number/m2) is the maximum number of contaminants that may

undergo cotransport in a particular fracture element, C(x, y) is the number of conta-

minants in an element, Kn is still the first—order sorption constant, and b(x, y) (m) is

the aperture of the particular fracture element. The number of contaminants expected
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to undergo cotransport in a particular fracture element is inversely proportional the

aperture of that element (i.e. the same number of contaminants in a small aperture

element vs. a larger aperture element results in greater particle density, thus more

potential sorption phenomena). For this reason, the factor b(x, y) is used to trans-

form the equation to contaminant number per element from contaminant mass per

volume. The sorption rate constant, Kn, effectively measures the affinity of the two

species for one another. The sensitivity of the model to the value of Kn is extensively

investigated and adjusted to account for and explore the effects of varying degrees of

attraction or repulsion based upon the characteristics of the contaminant and colloid

species under consideration.

Equation (0.44) is separated and integrated to determine the maximum change in

the number of sorbed contaminants in an element during a time step:

∆C∗ (x, y) = Kn
C (x, y)

b (x, y)
∆t. (0.45)

This equation gives the change in the number of cotransporting contaminants per

element per time step. The result is then compared with the number of cotransport-

ing contaminants in the corresponding element at the previous time level. Because

desorption of contaminants is not considered, if the new number of cotransportng con-

taminants is negative, the model ignores the result and no cotransport phenomena

occur.

Once the number of contaminants predicted to sorb onto colloid particles in each

fracture element during a time step is determined, it is necessary to choose the colloid
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particle to which the contaminant attaches. The number of sorption phenomena

predicted to occur per time step and per fracture element is limited by the number of

available sorption sites on the colloids in that element. To preserve spatial continuity,

the contaminant particle can sorb only onto a colloid particle that is in the same

fracture element. If a suitable colloid particle is found, i.e., a colloid with available

sorption sites that is within the same element, the contaminant will sorb onto it and

assume its transport properties. Once a contaminant particle attaches to a colloid,

its new x— and y—location are updated according to the movement of the colloid to

which it is attached. The contaminant is now prevented from diffusing into the porous

matrix, and will only sorb onto the fracture wall if the carrier colloid is deposited. The

transport properties of the colloid are unaltered by the contaminant on its surface.

Once a contaminant sorbs onto a colloid, the number of available sorption sites for

that particle is reduced by one until all of the sites are occupied. In the event that

there are insufficient colloid particles with available sorption sites within an element,

the contaminant particle does not sorb onto a colloid, but rather continues moving

freely within the fracture.

Contaminants may also sorb onto colloids that have been deposited on the fracture

walls. An equation analogous to (0.45) is used to predict the change in the number

of contaminants sorbed onto deposited colloids using a new sorption rate constant,

K∗n, equal to Kn/2.
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Table 0.1: Constant model parameters and values.

Parameter Value Reference

Dcont 9.0× 10−10 m2/s Welty et al. [1984]
Dcoll 8.65× 10−14 m2/s Welty et al. [1984]
Dmatrix 9.0× 10−11 m2/s Reimus [1995]; James and Chrysikopoulos [1999]
dp 5× 10−6 m
θ 0.1 James and Chrysikopoulos [1999]
b 5× 10−5 m James and Chrysikopoulos [1999]
∆x,∆y 5 cm
∆t 100 s

Table 0.2: Model variables and corresponding ranges.

Parameter Range Reference

Φcoll 0, exp (−10) Adamczyk et al. [1992b]
Φcont 0 − exp (−10) Adamczyk et al. [1992b]
Kn 0 − 5× 10−8
sorption sites/colloid 0, 1, 4

0.3.6 Model Parameters

The study of particle movement and reaction in a subsurface fracture incorpo-

rates the use of many model parameters. Because of the vast number of variables

it was necessary to limit the scope of this research by selecting the parameters most

likely to impact co—transport behavior. The model parameters that were held con-

stant throughout this work are listed in Table 1; Table 2 presents the ranges of the

parameters that were allowed to vary.
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0.4 Numerical Simulations and Results

0.4.1 Uniform Aperture Fracture

The simplest particle tracking model studied is of a saturated fracture with uni-

form aperture, b = 5 × 10−5 m and an average velocity of u = 6 × 10−5 m/s. The

value of the Reynolds number, Re = ρub/µ, is 2.3 × 10−3, well within the laminar

range. Thus the fluid flow is characterized by a parabolic (Poiseuille) velocity profile.

In this model variation, advection and diffusion (leading to Taylor dispersion) are the

important transport mechanisms. Figure 0.9 shows a pair of breakthrough curves for

two nonreacting plumes, one composed of colloids and the other of aqueous conta-

minants. Inspection of the breakthrough curves from this simplified model provides

information about the basic transport behavior of each plume before additional model

parameters are implemented. These curves are also used as references for comparison

with results from more complicated models.

Note that constituents of the colloid plume are the first to reach the end of the

fracture. This is a direct result of the size exclusion effect, otherwise known as

hydrodynamic chromatography, which serves to accelerate the overall velocity of the

plume [Small , 1974], and Taylor dispersion, which affects axial spreading. Because

colloids can come only as close as dp/2 m to the fracture walls and because colloids

travel with the velocity found at their centroids, they are excluded from the slowest

portions of the velocity profile. This results in an average colloid velocity greater
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Figure 0.9: Colloid and contaminant breakthrough curves in a uniform aperture
fracture.

than the average flow velocity. The average flow velocity within the fracture is found

by integrating the expression for the velocity profile, (0.5), across the aperture, and

dividing by the aperture,

U =
1

b

8 b/2
−b/2

uz (z) dz

=
2

3
Umax. (0.46)

To find the average or effective velocity of a colloid particle, the limits of integra-

tion and the normalizing factor are adjusted to account for the particle’s size [James,
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2001]:

Ueff =
1

b− dp
8 b−dp

2

−b+dp
2

uz(z)dz

=
2

3
Umax

1 + dp
b
− 1
2

X
dp
b

~2 . (0.47)

The preceding equation is a function of the fracture aperture that is available to a

colloid. Thus, the average velocity experienced by a colloid plume increases with

increasing colloid diameter to aperture ratio [James and Chrysikopoulos, 2001a]. The

effective velocity of a colloid plume is confirmed by examining the average elution

times of each plume. The average elution time of the colloid plume is 33.8 hours;

the average elution time of the contaminant plume is 37.0 hours, corresponding to

average velocities of 6.57× 10−5 m/s and 6.0× 10−5 m/s respectively. Note that the

effective velocity of the colloid plume (dp = 5× 10−6) from (0.47) is also 6.57× 10−5

m/s.

The second important characteristic of note in Figure 0.9 is the difference in slopes

of the breakthrough curves. The contaminant breakthrough curve is significantly

steeper than the colloid curve, indicating less axial spreading of the contaminant

plume. This is due to the more pronounced effect of Taylor dispersion on the colloid

plume. The molecular diffusion coefficients of the two plumes differ by four orders of

magnitude, with the larger diffusion coefficient belonging to the contaminant plume

(recall that the diffusion coefficient is inversely proportional to the diameter). How-

ever, it was shown in (0.27) that the Taylor dispersion coefficient of the contaminant
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Figure 0.10: Comparison of analytically and numerically derived colloid breakthrough
curves in a uniform aperture fracture, b = 5×10−5 m, ux = 6×10−5 m/s, dp = 5×10−6
m.

plume is virtually the same as its diffusion coefficient, while the dispersion coefficient

of a colloid is six orders of magnitude larger than its molecular diffusion coefficient.

Figure (0.10) is a comparison of two breakthrough curves for a plume of colloid

particles, one curve obtained using an analytical solution to the transport equation

in a uniform aperture fracture [James and Chrysikopoulos , 1999],

n(x, t) =
no

(4πDefft)1/2 exp
^
−(x− Uefft)

2

4Defft
�
, (0.48)

and the other from a particle tracking algorithm incorporating both molecular dif-

fusion and size exclusion. Excellent agreement is shown between the two solutions,
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Figure 0.11: Analytically and numerically derived contaminant breakthrough curves
in a uniform aperture fracture, b = 5× 10−5 m, ux = 6× 10−5 m/s.

indicating the degree of accuracy of the particle tracking model.

Figure 0.11 compares contaminant breakthrough curves obtained using three meth-

ods: an analytical solution, a particle tracking algorithm using a time step small

enough (∆t = 0.1 s) to track the contaminants in the z—direction, and a particle

tracking algorithm using the Taylor dispersion coefficient, average velocity, and a

time step of ∆t = 100 s. Once again, the agreement between the solutions illustrates

the accuracy of the particle tracking model. This figure also supports the assertion

that modeling contaminant transport using the effective dispersion coefficient, the

average local velocity, and a large time step will provide accurate results.
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Figure 0.12: Colloid and contaminant breakthrough curves in a variable aperture
fracture.

0.4.2 Variable Aperture Fracture

In this section, colloid and contaminant transport in a variable aperture fracture

is investigated and compared to the results from the uniform aperture model. Fig-

ure 0.12 shows ensemble averaged breakthrough curves of two nonreactive plumes,

colloids and contaminants, traveling through a variable aperture fracture under the

influence of advection, diffusion, and dispersion. Both breakthrough curves exhibit

elongation when compared to curves from the uniform aperture model of Figure 0.9

due to the influence of mechanical dispersion arising from the flow field. In a vari-

able aperture fracture, water preferentially flows along the least resistive pathway,
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i.e. the path where the fracture elements are widest (see Figures 0.2 and 0.4). The

tortuosity of these preferential pathways combined with diffusion across streamlines

causes spreading, or mechanical dispersion. It is interestng to note that the slopes of

the curves are similar, indicating that mechanical dispersion in a variable aperture

fracture has a more pronounced effect than Taylor dispersion. This may be explained

by taking the variability of fracture apertures sampled by the particles as they travel

through the fracture into account; the variety of z—locations and therefore velocities

experienced by a particle as it crosses fracture element boundaries of differing aper-

tures produces a scenario similar to Taylor dispersion, with the difference that both

plumes are equally affected, as shown by the similarity in the slopes of the break-

through curves. However, the colloid plume exits the fracture significantly ahead of

the contaminant plume, indicating that size exclusion of colloids is still an important

factor to consider in their transport.

0.4.3 Wall Deposition

The wall deposition parameter, Φ, was varied for a set of simulations to determine

its influence on the total number of particles exiting the fracture. Figure 0.13 shows

the resulting breakthrough curves. As expected, increasing the value of Φ, and thereby

increasing the value of the sorption probability function, results in a decreased fraction

of particles eluted. Each simulation starts with a fracture surface free of deposited

colloids, and the dynamic blocking function is updated with each colloid sorption
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Figure 0.13: Contaminant breakthrough curves showing the effect of increasing the
wall deposition parameter, Φ.

event. However, due to the very small size of the colloid particles relative to the

surface area of the fracture and computational limitations on the total number of

particles in a plume, the DBF never reached a value that significantly affected the

sorption probability.

0.4.4 Matrix Diffusion

When matrix diffusion of contaminant particles is implemented in the model, sig-

nificant retardation of the contaminant plume transport is shown in the corresponding

breakthrough curve in Figure 0.14. Over long times, many of the particles diffuse back
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Figure 0.14: Colloid and contaminant breakthrough curves illustrating the retardation
effect of matrix diffusion.

into the fracture, although some remain in the matrix. Under these conditions, as

the plume passes through the fracture, the concentration gradient between the frac-

ture and the rock matrix drives contaminants into the rock matrix in an attempt to

achieve equilibrium. Once the bulk of the plume has passed and the direction of the

concentration gradient has reversed, contaminants tend to emerge from the matrix

and resume their flow toward the end of the fracture. This results in tailing of the

breakthrough curves because plume constituents that have entered and exited the

matrix have significantly increased residence time. When deposition of contaminants

onto either fracture or matrix walls is included in the model the effect of matrix
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Figure 0.15: Colloid and contaminant breakthrough curves illustrating the combined
effect of fracture wall deposition and matrix diffusion.

diffusion is vastly increased, as shown in the following section.

0.4.5 Wall Deposition and Matrix Diffusion

The combined effects of wall sorption, or deposition, and matrix diffusion, the

two processes that serve to retard the transport of a contaminant plume as it travels

through a fracture, are illustrated in Figure 0.15. A reference curve (no wall depo-

sition or matrix diffusion), showing earlier breakthrough of the contaminant plume

is included for comparison with the combined wall deposition and matrix diffusion

model results.
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Figure 0.16: Colloid and contaminant breakthrough curves showing the effect of vari-
ation of the co—transport parameter, Kn.

The breakthrough curve in Figure 0.15 from a model including both matrix dif-

fusion and fracture wall deposition illustrates the extensive retardation experienced

by a plume under these conditions. In this simulation, the wall deposition parameter

was Φ = 5 × 10−6; comparison with the corresponding curve in Figure 0.13 shows

that significantly fewer contaminants reach the end of the fracture for the same value

of Φ. This result may be attributed the contaminant particles that have diffused into

and subsequently sorbed onto the fracture matrix.
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0.4.6 Co—Transport Effects

Variation of the co—transport parameter, Kn, affects the transport behavior of

contaminants as shown in Figure 0.16. The leading breakthrough curve corresponds

to the colloid plume, unaffected by the transport conditions to which the contami-

nants are subjected; the slowest curve corresponds to a contaminant plume that does

undergo sorption onto the colloids (Kn = 0.0). It is evident that as the co—transport

parameter is increased, more contaminants undergo sorption onto colloids, and the

contaminant breakthrough curve approaches the colloid breakthrough curve.

Figure 0.17 illustrates a succession of snapshots in time showing the x— and y—

locations of the individual components of a contaminant plume undergoing advection,

diffusion, and co—transport processes. The contaminant particles that are sorbed onto

colloid particles are clearly toward the front of the plume due to their adoption of the

transport properties of the faster moving colloid plume. Contaminants that have not

undergone sorption onto colloid particles make up the trailing part of the plume.

0.4.7 All Parameters

Figure 0.18 shows the effect on the contaminant breakthrough curves when matrix

diffusion, wall sorption and co—transport processes are incorporated in the model.

Three reference curves are included to aid in the comparison. The first curve shows

the effect of co—transport only, resulting in complete breakthrough of the plume (due

to the lack of wall sorption) and significantly earlier breakthrough times in relation
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Figure 0.17: Snapshots in time of a contaminant plume traveling through a variable
aperture fracture undergoing advection, diffusion, and co—transport.
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Figure 0.18: Contaminant breakthrough curves resulting from inclusion of matrix
diffusion, wall sorption and co—transport processes.

to the other cases. The second curve shows the result of subjecting the plume only

to advective and diffusive forces, and is considered the base or reference case. The

last curve shows the effects of including only retardation forces (i.e., wall sorption

and matrix diffusion) in the model. This curve indicates that a significant portion

of the plume remains sorbed on the fracture walls or diffused within the surrounding

medium.

When the model is run with all transport, retardation and reaction phenomena

acting on the plumes, the effect on the breakthrough curves may be seen by looking

at the normalized number of particles eluted. Rather than sorb onto the walls of the
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fracture, many contaminant particles sorb preferentially onto colloid particles and

continue moving through the fracture, resulting in increased elution.

0.5 Conclusion

A quasi—three—dimensional particle tracking model is used to investigate the effects

of matrix diffusion, wall deposition, and co—transport on the transport properties of

plumes of contaminants and colloids flowing through a variable aperture fracture

subject to advective and diffusive mass transfer. Using breakthrough curves plotting

the cumulative normalized number of particles eluted as a function of residence time,

it is shown that matrix diffusion and wall sorption processes serve to retard the

transport of a contaminant plume, while co—transport enhances contaminant mobility.

Wall sorption was shown to decrease the number of colloids eluted from the fracture,

however colloids were not subjected to matrix diffusion and their transport properties

were unaffected by sorption phenomena with contaminants.

Linear correlations between the fifty percent elution time of a contaminant plume

and the co—transport parameter were shown for the cases of co—transport both in the

presence and absence of wall sorption and matrix diffusion processes.

Due to computational limitations, an instantaneous injection rather than constant

concentration case is considered in this work. A constant concentration boundary

condition merits further exploration, and will be studied as computational resources

and technology decrease in cost. Further investigation of correlation between elution
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time and co—transport parameters is merited to determine the functional relation-

ships among the relevant parameters. A polydisperse case should also be considered,

with the particle—particle sorption parameter defined as a function of particle diame-

ter. Reversible sorption cases, incorporation of gravititational forces and variation of

fracture characteristics may be investigated as well.
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