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Abstract

Polydisperse Colloid Transport in Fractured Media

by

Scott C. James

Doctor of Philosophy in Engineering

University of California at IRVINE

Professor Constantinos V. Chrysikopoulos, Chair

The initial phase of the study will analytically solve for the transport characteristics of
finitely sized particle in a uniform aperture fracture. Results show that the larger the constituents of a
colloid plume, the greater the mean plume velocity and the lesser the plume dispersion. Incorporating
these parameters into analytical solutions for the transport of polydisperse colloid plumes in a
uniform aperture fracture shows that not only does the size of the constituents affect the transport
of the plume, but that a distribution of particle sizes further increases the spreading of the plume.

Next, a new constant spatial step particle tracking equation is developed to solve for the
transport characteristics of both monodisperse and polydisperse reactive colloids in a single fracture.
Using both the traditional and the new particle tracking algorithms, the transport characteristics of
colloid plumes in a uniform aperture fracture are investigated. Matrix diffusion and surface sorption
characteristics are incorporated into the model. Both perfect sink and kinetic colloid sorption onto
fracture surfaces are investigated. The finite size of a colloid particle as well as the size distribution
of the colloid plume will implicitly change the transport parameters of a plume as its constituents

travel through a fracture, sorbs onto the fracture surface, or diffuses through the rock matrix.



As an extension to this, the parallel plate model is generalized to the more realistic case of
polydisperse colloid transport in a fracture with spatially variable aperture. The fracture aperture
spatial variability is considered a stochastic variable and finite differencing techniques are used to
develop the flow field in each variable aperture fracture. These flow fields are used as input data for
the new particle tracking algorithm. Normalized cumulative breakthrough curves of polydisperse
colloid plumes are produced by repeatedly tracking a plume of particles through unique realizations
of stochastically generated fractures and incorporated into an ensemble average. Further, the effects
of kinetic sorption of colloids onto the walls of a variable aperture fracture are studied. It is shown
that not only does the variability in size of the polydisperse colloids affect their transport, but also

that the variability of the fracture aperture has a significant influence as well.

Professor Constantinos V. Chrysikopoulos
Dissertation Committee Chair



Chapter 1

Introduction

1.1 Significance of Research

Hazardous wastes, especially radioactive materials, are often disposed in canisters and
buried in deep, fractured, low—permeability rock formations (e.g., granites, slates, gneisses, and
clays). In the United States, the first federally funded disposal site of this type, opening in 2004,
is the Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive
Waste at Yucca Mountain, in Nye County, Nevada. Research activities surrounding the design and
construction of this site have stimulated a great deal of interest in characterizing subsurface colloid
and contaminant migration in fractured media, and in investigating the capacity of natural barriers to
retard the movement of leaked contaminants [e.g., Neretnicks et al., 1982; Abelin, 1986; Raven et al.,
1988; Haldeman et al., 1991; Johns and Roberts, 1991; Krishnamoorthy et al., 1992]. Although the
diffusion of contaminants and colloids through rock medium is often negligible, fractures, ubiquitous
in these formations, have been shown to provide preferential flow paths. Unlike transport phenomena,
observed in porous media, contaminants do not disperse through fractured media as a plume, instead
fingering through the fracture network, often resulting in contamination at great distances from the

source.
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Transport of colloids in subsurface formations has increasingly captured the attention of
many researchers, because of the potential impact of colloids in facilitating the transport of pollutants
and toxic elements [e.g., McDowell-Boyer et al., 1986; Torok et al., 1990; Puls and Powell, 1992;
Grindrod, 1993]. Several experimental and field studies indicate that contaminants can migrate
adsorbed on the surface of colloid particles thereby assuming transport characteristics of colloids
that may vary significantly from their own [e.g., Buddemeier and Hunt, 1988; Champ and Schroeter,
1988; Toran and Palumbo, 1992; Moulin and Ouzounian, 1992]. The results of these studies suggest
that colloids may not only enhance the mobility of contaminants, but may also inhibit the retardation
and dilution of contaminant plumes by reducing the extent of sorption onto fracture surfaces and
diffusion into the rock matrix. Unfortunately, conceptual models that describe fractured systems
usually do not account for the finite size and polydisperse characteristics of a natural colloid plume.

In modeling colloid transport in fractured rocks, a common simplification/assumption em-
ployed by researchers is of infinitely small particles traveling in a single fracture separated by a
constant aperture, known as the parallel plate model [e.g., Grisak and Pickens, 1981; Tang et al.,
1981; Neretnieks et al., 1982; Novakowski et al., 1985; Raven et al., 1988; Shapiro and Nicholas, 1989;
Johns and Roberts, 1991; Ibaraki and Sudicky, 1995; Cormenzana, 2000]. Flow in a single fracture
is often described by the cubic law, where the flow rate is proportional to the cube of the fracture
aperture [Neuzil and Tracy, 1981; Abdel-Salam, 1995]. Colloid transport in a fracture is then cou-
pled with diffusion into or sorption onto the host rock matrix through source/sink terms governing
the interaction between these two systems. Because the simplifying assumptions associated with
the derivation of the cubic law do not represent the actual geometric conditions of a rock fracture,
several modifications to the parallel plate fracture model have been proposed. The shape of the void
is primarily influenced by the mechanical properties of the rock, the geometric characteristics of the
fracture surfaces, the relative displacement of the two surfaces, and the stress to which the rock is
subjected [Abelin, 1986]. A correction term is often included in the cubic law to account for surface

roughness (roughness perturbations in the fracture surface), existence of asperities or contact points,
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and/or the tortuosity of the flow system [e.g., Witherspoon et al., 1980; Neuzil and Tracy, 1981].
Zimmerman and Bodvarsson [1996] indicated that a correction for roughness alone is not adequate
for fractures with surfaces highly in contact (i.e., very small apertures), wherein preferential flow
paths may exist. This phenomenon has been observed in several field and laboratory experiments
[Neretnicks, 1983; Abelin, 1986; Haldeman et al., 1991]. Several conceptual models have been pro-
posed to simulate preferential flow, including two— and quasi—three—dimensional variable aperture
fractures [Tsang and Tsang, 1987; Moreno et al., 1988; James and Chrysikopoulos, 2000].

In this dissertation analytical and theoretical investigations are undertaken to gain a bet-
ter understanding of transport of finitely sized polydisperse colloids in single saturated fractures.
Initially, analytical solutions to the mathematical model describing the transport of finitely sized
colloids in a one—dimensional semi—infinite fracture subject to several different boundary conditions
are developed. Then a novel particle tracking algorithm is developed and verified through compar-
ison with the analytical solutions. This particle tracking algorithm is then used to examine more
general transport in a uniform aperture fracture. Finally, because natural fractures have variable
apertures along their length, the particle tracking algorithm is extended to examine polydisperse

colloid transport within a quasi—three—dimensional spatially variable aperture fracture.

1.2 Research Objectives

This research focuses on polydisperse colloid transport in single saturated fractured media.
As a first step, colloid and contaminant transport are studied within the framework of a single
fracture conceptualized as a pair of parallel plates. The finite size of the colloid particles are found
to affect their transport properties. Analytical solutions are derived that model the transport of
finitely sized polydisperse particle plumes in uniform aperture fractures. Next, a novel particle
tracking algorithm is developed and validated upon comparison to analytical solutions for colloid

transport in a uniform aperture fracture. Then, assuming that the aperture of a two—dimensional
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fracture is a stochastic variable, the effect of colloid size on colloid transport is examined. The

specific objectives of this research are to:

e specify the size effect of finitely sized colloids on their transport properties;

e develop analytical solutions for the transport of polydisperse colloids in a one-dimensional
semi—infinite fracture subject to several sets of boundary and initial conditions without pene-
tration into the rock matrix, but accounting for both irreversible and reversible reaction with

the fracture walls;

e derive and verify a novel particle tracking algorithm through comparison with the analytical

solution;

e investigate the effect of polydispersity on colloid transport in a single fracture idealized as two

parallel plates where the effects of matrix diffusion and surface sorption are included; and

e model polydisperse colloid transport in a two—dimensional spatially variable aperture fracture

and investigate the effects of finite size and aperture variation on colloid transport.

1.3 Dissertation Overview

This dissertation is divided into nine chapters. Chapter 1 is an introduction with an outline
of the specific objectives of this study. Chapter 2 provides the background material and literature
review.

Chapter 3 derives the effective velocity and dispersion coefficient for a plume of finitely
sized particles traveling in a water saturated uniform aperture fracture.

Chapter 4 develops models describing the transport of colloids in a one-dimensional semi—
infinite fracture. Several analytical solutions are constructed for both instantaneous particle injection
and constant concentration particle injection boundary conditions as well as for cases of reversible

and irreversible sorption onto the fracture walls.
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In Chapter 5, a new particle tracking algorithm is presented. In this new equation, instead
of a constant time step, a constant spatial step is specified. The time for a particle to move this
specified distance is selected from a distribution of random numbers that is a function of the particle
diameter and the distance traveled. This algorithm is verified against previously derived analytical
solutions.

In Chapter 6, a more general particle tracking model describing the transport of a polydis-
perse colloids in a uniform aperture fracture is developed. Colloids are allowed to either diffuse into
the surrounding rock matrix or sorb onto the fracture surfaces.

In Chapter 7, the polydisperse colloid particle tracking algorithm presented in Chapter 6
is extended to quasi—three—dimensional fractures with spatially variable aperture. The system is
investigated using the new particle tracking algorithm with a specified spatial step and variable time
step. The effect of size exclusion and variable aperture on colloid transport is examined. Moreover,
the influence of colloid attachment onto the wall is taken into account.

Finally, the implications and the significance of the results of this research is outlined along
with the possible applications are discussed in Chapter 8. Then, Chapter 9 summarizes and presents

the major conclusions of this research with recommendations for future research.



Chapter 2

Literature Review

2.1 Flow and Transport in Saturated Fractured Media

The term fracture is a general one referring to various types of discontinuities (joints,
fracture zones, and shear zones) that can break a subsurface medium into blocks [Drever, 1985].
Fractures are found in almost all types of rocks: sedimentary (e.g., sandstone), metamorphic (e.g.,
limestone), and igneous or crystalline (e.g., granite). Naturally fractured systems contain extreme
and abrupt changes in porosity and permeability, and can be characterized by two distinct com-
ponents, fractures and matrix blocks. Fractures are the primary transmission conduits for fluids,
colloids, and contaminants and have permeabilities several orders of magnitude greater than the

permeability of the surrounding rock matrix [Abdel-Salam, 1995].

2.1.1 Methods of Analysis

Fractured media are complex, heterogeneous, and anisotropic systems necessitating certain
idealizations when modeling flow and transport. Three different approaches are commonly used
that depend on the number and location of fractures, size of the study area, and purpose of the

study: the equivalent porous medium approach [e.g., Bear, 1972; Grisak and Cherry, 1975; Bear
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and Verruijt, 1987; Rubin et al., 1999]; the discrete fracture approach [e.g., Gringarten et al., 1974;

Neuzil and Tracy, 1981; Schwartz et al., 1983; Long and Witherspoon, 1985; Cacas et al., 1990a, b;

Grindrod, 1993; Grindrod and Lee, 1997; James and Chrysikopoulos, 1999, 2000]; and the dual

porosity approach [e.g., Tang et al., 1981; Sudicky and Frind, 1984; Johns and Roberts, 1991; Ibaraki

and Sudicky, 1995; Cormenzana, 2000].

(1)

The equivalent porous medium (or the single—continuum) approach assumes that the fractured
medium behaves as a porous medium and is appropriate when the medium of interest contains
many interconnecting fractures, i.e. the local effects of fractures may be incorporated into the
parameters describing the system. In this approach, concepts and laws describing flow and
transport in porous media are employed. To be able to use this approach, effective values
for the important parameters (e.g., hydraulic conductivity for fluid flow and dispersivity for
solute transport) need to be defined; however, obtaining estimates of these parameters is often

difficult.

When fractures are sparse, it is not a good approximation to define the entire fractured medium
by averaged quantities, therefore the discrete fracture approach is employed. In this approach
each fracture is regarded as a separate entity and its detailed geometry is incorporated into
the modeling process, deterministically or stochastically. Discrete fractal or stochastic repre-
sentations of fractures have been used in the problem of flow [e.g., Robinson, 1983; Long and
Witherspoon, 1985; Brown, 1995], and solute transport [e.g., Schwartz et al., 1983; Rasmuson,
1985; Tsang and Tsang, 1987; Moreno et al., 1997]. Based on statistical distributions of frac-
ture aperture, fracture length, fracture spacing, and fracture orientation, a fracture network

may be generated.

For smaller scale problems (e.g., flow to wells) or when the interaction between fractures and
the rock matrix is important, a dual porosity model is employed. This conceptual model was

first introduced by Barenblatt et al. [1960]. In this approach the fractures and the rock matrix
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are modeled separately and then coupled by a source/sink term governing their interaction.
Because of the difference in conducting properties between fractures and the rock matrix, it
is often assumed that flow and transport are primarily generated by the fractures while the
rock matrix provides a sink for contaminants. Further, the rock matrix may act as a source

for back diffusion after the bulk of a contaminant pulse has traveled down the fracture.

In a fractured subsurface medium, a fracture network generally controls flow and transport
[Lowell, 1989]. The basic constructive unit in fractured media is a single fracture, and a single frac-
ture is often used as a starting point to represent a medium consisting of a series of parallel fractures
[Tang et al., 1981; van der Lee et al., 1992; Robinson et al., 1998]. Furthermore, a single fracture
may significantly influence overall fluid, contaminant, and colloid movement within a fracture net-
work. Therefore, to study contaminant and colloid transport in fractured networks, it is important
to understand the transport mechanisms in a single fracture. Significant efforts have been directed
toward modeling flow and contaminant transport in single fractures [e.g., Neuzil and Tracy, 1981;
Neretnieks et al., 1982; Neretnieks, 1983; Novakowski et al., 1985; T'sang and Tsang, 1987; Moreno
et al., 1988; Raven et al., 1988; Shapiro and Nicholas, 1989; Abdel-Salam, 1995; Brown et al., 1995;

James and Chrysikopoulos, 1999, 2000].

2.1.2 Flow in a Fracture

In many geological formations with low matrix permeability, fluid flow takes place through
a single fracture or fault, while in other cases the flow occurs through a network of fractures. In either
case, an understanding of flow through a single rock fracture is needed. A single fracture may be
regarded as a void enclosed by two surfaces [Abdel-Salam, 1995]. The shape of the void is primarily
influenced by the mechanical properties of the rock, the geometric characteristics of the fracture
surfaces, the relative displacement of the two surfaces, and the stress (overburden) applied to the
rock. The fracture void may be subjected to weathering by the flowing water due to dissolution,
precipitation or clogging with small particles (e.g., colloidal particles). Typically, the fracture void

(aperture) decreases with depth because of increasing overburden pressure [Abdel-Salam, 1995].
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Figure 2.1: Idealization of a natural fracture as two parallel plates with constant aperture b and a
Poiseuille flow profile.

Early studies of fracture hydrology idealized single fractures as a pair of smooth parallel
plates separated by a constant aperture. This simplification, motivated by the observation that
parallel plate geometry resembles the general geometry of a fracture allows flow rate and other
transport properties in the fracture to be described by a parallel plate model [Abdel-Salam, 1995;
James and Chrysikopoulos, 1999].

Figure 2.1 displays an idealization of a natural fracture as two parallel plates. Surrounding
the two fracture plates is the host rock matrix that is assumed to be a very tight porous medium.
Although various methods have been devised for specifying the flow field in a single rough walled
fracture [e.g., Kirkpatrick, 1973; Ge, 1997; di Federico, 1998; Gavrilenko and Guéguen, 1998; Skjetne
et al., 1999], one technique has emerged as the primary method of solution to flow in a single fracture;
solution of the Navier—Stokes equations. Several assumptions and simplifications are applied to the
Navier—Stokes equations to make them more amenable to numerical or analytical solution. Initially,
the viscous fluid within the fracture (water) is assumed to be Newtonian and incompressible. Further,
the ‘no slip’ condition is enforced implying that both the normal and tangential components of
velocity vanish at the walls. Fracture flow is generally defined under the assumption of steady—state

flow subject to a uniform piezometric head gradient, eliminating the transient term in the Navier—
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Stokes equation. Finally, slow, laminar flow is assumed in the fracture and the advective component
of acceleration disappears, linearizing the Navier—Stokes equations (see Appendix A). The solution of
the linearized Navier—Stokes equations results in fracture flow that varies as the cube of the fracture
aperture (see Appendix B). For the ideal case of a parallel plate fracture, the volumetric flow rate

per unit fracture width normal to the flow can be expressed as [Fox and McDonald, 1992, p. 330]

By [ dh
_ 2.1
=1, <d$> ; (2.1)

where b is the aperture separating the fracture surfaces; u is the fluid dynamic viscosity; v is the
specific weight of the interstitial fluid; A is the piezometric head; and z is the coordinate along the
fracture axis. The preceding equation is well known in the literature as the cubic law or the parallel
plate equation, and is valid for laminar flow conditions in a fracture with no surface contact and
negligible surface roughness. Equation (2.1) is also a form of Darcy’s law with hydraulic conductivity,

K, expressed as
_ P
C12u

(2.2)
Schrauf and Evans [1986] indicated that the principle argument against the use of the parallel plate
model is that it ignores the roughness, waviness, and tortuosity of natural fracture surfaces, as well
as the existence of surface contact between the fracture surfaces, all of which serve to reduce the
flow rate. Moreover, at high normal stresses caused by overburden pressure, fracture surfaces tend
to close, the contact area between these surfaces increases, and consequently, the fracture aperture
takes on a range of values rather than one single value [Moreno et al., 1988]. Many laboratory
and field studies [e.g., Novakowski et al., 1985; Rasmuson and Neretnieks, 1986; Raven et al., 1988;
Novakowski et al., 1995] indicate that the classical view of a rock fracture as a pair of smooth, parallel
plate is not adequate for the description of flow. Theoretical studies of single—fracture flow [e.g.,

Brown, 1987; Moreno et al., 1988; Oron and Berkowitz, 1998]; however, have postulated that the

fracture flow field is well described by the Reynolds equation derived by combining the continuity
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equation and the Navier—Stokes equations to yield
V- [ (z,y) VR] =0, (2.3)

where b(z,y) is the local fracture aperture;  and y are the coordinates in the plane of the fracture;
and V- denotes divergence (V - v = 0v,/0x + Ov, /0y, where v is an arbitrary two-dimensional
vector). Hasegawa and ITzuchi [1983] concluded that the local cubic law is in general an adequate
approximation when applied to a fracture with a sinusoidally varying aperture; however, the ap-
plicability of the local cubic law to real fractures remained in question. Oron and Berkowitz [1998]
performed an order—of-magnitude analysis of the Navier-Stokes equations and concluded that if
the local cubic law was applied not on a point—by—point basis, but rather as an average over a
certain length, that it was a valid method for determining the fracture flow field. Dijk et al. [1999]
applied nuclear magnetic resonance imaging to the direct three—dimensional measurement of flow
in a rough-walled water—saturated rock fracture. They determined that the velocity profiles are
generally parabolic, but often asymmetric. The effects of the measured asymmetry on volumetric
flow rates and hydraulic conductivities were found to be insignificant while the overall flow inside
rough walled fractures still obeyed the cubic law. Deviations from the cubic law may be expected
if there is significant surface roughness or if a large number of asperities exist. It is of note that
contact areas within the fracture, b(x,y) = 0, eliminate the cubic law as a method for determining
the fracture flow field, necessitating alternate solution techniques [Kumar et al., 1990; Zimmerman
and Bodvarsson, 1996]

Other problems with the application of the local cubic law to flow in a fracture may exist.
Field studies of solute migration in single fractures in the Stripa mine in Sweden showed that
the flow was very unevenly distributed along fracture planes and that large areas did not carry
any water [Neretnieks, 1983]. The amount and residence time of non—sorbing tracers collected at
sampling points within the same fracture varied significantly, and many aliquots registered no tracer

concentration at all. This indicates that the majority of flow took place along a few selected paths, or
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flow channels, that make up only a small percentage of the fracture plane. Another field experiment
carried out in a single fracture in granitic rock at Cornwall in Wales, demonstrated that the majority
of flow in a single fracture also took place in a limited number of channels, occupying a small area
of the fracture plane [Abelin, 1986]. These results are strongly indicative of localized channel flow
within individual fractures.

Haldeman et al. [1991] performed a laboratory study of fluid flow and solute transport
through a fracture embedded in porous tuff. Breakthrough curves and temporal moments analyses
show that channeling of flow in the fracture segment probably occurred within at least one pref-
erential flow path. Laboratory experiments have been performed where molten wood’s metal was
injected into single fractures, at different levels of applied stress. The fractures were opened up when
cooled, and direct evidence of the formation of tortuous paths in single fractures was observed. This
is an indication that the channels are tortuous, yet may or may not intersect each other. Channeling
will lead to earlier initial breakthrough of contaminants than would be found in a uniform aperture
fracture with an equivalent fracture volume.

Several conceptual models attempt to replicate channeling phenomenon. For instance,
Neretnieks et al. [1982] modeled channeling as a bundle of independent channels, each with a con-
stant aperture selected from a representative aperture statistical distribution (e.g., a log—normal
distribution). Tsang and Tsang [1987] described fluid flow through a system of independent flow
channels, each with a variable aperture along its length. The local channel aperture follows a given
statistical distribution, and the variation of the aperture along each channel is regulated by a finite
spatial correlation length. Brown [1987] used a fractal model to generate a mathematical represen-
tation of fracture surfaces that emulates channeling. Moreno et al. [1988] modeled the channeling
phenomenon by superimposing the fracture plane onto a two—dimensional regular grid with a distinct
aperture assigned to each element. The apertures are sampled from a log—normal distribution and
vary according to an isotropic finite spatial correlation length. Tsang and Tsang [1987] extended

the model of Moreno et al. [1988] to include an anisotropic finite spatial correlation length. Al-
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though these studies identify fracture flow phenomena, some contaminant transport characteristics
were examined as well. However, the driving force for the contaminants was restricted to advection—
dominated dispersion and did not account for the effects of molecular diffusion, sorption, matrix

diffusion, and Taylor dispersion.

2.1.3 Transport Mechanisms

The study of contaminant and colloid transport in fractured media has its roots in the
pioneering work of Sir Geoffrey Taylor [1953]. When a soluble substance is introduced into a fluid
flowing slowly through a small-bore tube, it moves under the combined action of molecular diffusion
and the variation of velocity over the cross—section. Taylor [1953] showed that the distribution of
the solute is symmetrically centered about a point moving with the mean solvent velocity; however,
the dispersion along the tube is not only a function of the molecular diffusion coefficient, but of
the system characteristics as well (i.e., tube radius and maximum or centerline flow velocity). The
rate of spreading of the solute is described by the Taylor dispersion coefficient and may be orders
of magnitude greater than spreading under the action of molecular diffusion alone. Aris [1956)
extended Taylor’s groundbreaking work by employing moment analysis to obtain results in a more
generalized manner. These original studies, however, apply only to non-reactive solute transport.
Sankarasubramanian and Gill [1974] and Brenner [1980, 1982] continued the study of internal flow
and transport by developing exact solutions for the dispersion of reactive solutes in a tube. Following
the Taylor—Aris procedures, scientists have examined various aspects of contaminant transport in
parallel plate systems. DeGance and Johns [1978] and Shapiro and Brenner [1986, 1987, 1988]
have obtained approximate analytical models for the dispersion of reactive solutes in cylindrical or
parallel plate geometries and concluded that the Taylor dispersion coefficient needs to be modified
to account for solute flux at the system boundaries due to reactions with the walls.

Analytical solutions for contaminant transport in fractured porous media where contami-

nants are subject to plug flow advection, dispersion, matrix diffusion, surface and matrix sorption,
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and decay have been presented [Tang et al., 1981; Sudicky and Frind, 1982; Cormenzana, 2000].
Abdel-Salam and Chrysikopoulos [1994] derived closed—form analytical solutions for colloid trans-
port in single, uniform rock fractures with and without colloid penetration into the rock matrix
for constant concentration as well as constant flux boundary conditions. It was shown that axial
advection, transverse diffusion, and penetration into or reaction with the solid matrix govern colloid
migration in uniform aperture fractures.

For the more realistic case of a variable aperture fracture, other mechanisms may contribute
to the dispersion of contaminants and colloids in a fracture. Dispersion in fractures is strongly
dependent on the variability of fracture aperture [Keller et al., 1999]. This type of dispersion
is known as ‘channeling dispersion.” When channeling exists (with no or few interconnections),
velocity variations among the different channels due to the differences in channel width and/or flow
resistance give rise to dispersion [Neretnieks, 1983]. Large aperture regions result in significant
channeling of the fluid flow, accelerating the movement of solutes in a particular direction, that
may differ locally with respect to the main flow direction from high to low piezometric head. This
often results in earlier breakthrough than predicted by the conventional parallel plate simplification.
Johns and Roberts [1991] indicated that diffusion from the channels to neighboring small aperture
regions may be an important contaminant retardation mechanism. For a system of channels with
few intersections, Rasmuson [1985] showed that a the number of mixing points (points where the
channels intermix) that is needed to get a Fickian dispersion is dependent on the fracture aperture
distribution, i.e., a wider distribution requires more mixing points. Dispersion may also arise because
of varied residence times in different fractures of a fracture network.

Sorption reactions (ion exchange, physical and chemical sorption) often occur at fracture
surfaces. Because of sorption, contaminant and colloid breakthrough may be affected by the surface
area in contact with the interstitial fluid, surface roughness, and interstitial fluid velocity [Abdel-
Salam, 1995]. Attachment of particles onto the fracture matrix may be either reversible or irre-
versible, depending on the shear forces in the fracture, or upon changes in chemical properties of

the interstitial fluid [Grolimund and Borkovec, 1999)].
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2.2 Physicochemical Characteristics of Colloids

Colloids are very fine particles that range in diameter between 10~2 ym and 1 ym [Bud-
demeier and Hunt, 1988]. Stumm [1977] extended the upper limit of colloids size to approximately
10 pm in diameter. Experiments determining the size of colloids in natural waters show that the
colloids are roughly spherical and have a log—normal distribution of diameters [Ledin et al., 1994,
Atteia and Kozel, 1997; Lartiges et al., 2001]. A wide variety of micro—organisms, organic and in-
organic colloidal material has been found in the subsurface environment. These may include, clay
minerals, metal oxides, silicic acid, viruses, bacteria, and organic matter (e.g., humic substances)
[Lieser et al., 1990]. The composition of colloids is often chemically similar to that of the immo-
bile subsurface material [McCarthy and Zachara, 1989]. Because a colloid has a high surface area
per unit mass, it possesses a high sorptive capacity for contaminants [McDowell-Boyer et al., 1986;
Enfield and Bengtsson, 1988; Toran and Palumbo, 1992]. Furthermore, liquid—phase colloids may
be more accessible to contaminants than solid surfaces. Chemically, colloids behave differently from
dissolved contaminants and are not expected to be affected by the same mechanisms that affect
contaminants during migration.

Colloids may be formed in groundwater as a result gradients in geochemical parameters such
as pH, ion composition, or CO4 partial pressure that induce supersaturation to readily precipitable
solid phases. Further sources of colloid production in groundwater include leachates from the vadose
zone, dissolution of inorganic cementing agents that bind colloid sized materials onto solid surfaces,
release and movement of viruses and bacteria, and formation of micelles from the agglomeration of
humic acids [McCarthy and Zachara, 1989; Puls et al., 1993]. Additionally, well pumping, rising
water tables, and replacement of saline water by fresh water may initiate particle mobilization
[Corapcioglu and Jiang, 1993]. When ionic metal species are at concentrations above their solubility
limit, colloids may be generated [Buddemeier and Hunt, 1988]. Suspended colloids are also subject to

aggregation, filtration, and settling, all of which are relatively complex processes dependent on colloid
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density, colloid size, surface chemistry, water chemistry, and interstitial fluid flow rates [McCarthy
and Zachara, 1989]. Colloids are found in subsurface waters under various geochemical conditions
with concentrations ranging from a few milligrams per liter to a few hundred milligrams per liter
[Moulin and Ouzounian, 1992]. For instance, high particle concentrations were found in granitic
rock fractures at the Nevada test site (63 mg/1) and in Switzerland (10'° particles/l) [Buddemeier
and Hunt, 1988; Mills et al., 1991].

The transport of colloids is affected by hydrodynamic interactions between colloidal par-
ticles, fracture surfaces, and interstitial flow [Goldman et al., 1967]. The stability of colloids is an
important consideration in determining their transport and is controlled by van der Waals attrac-
tive forces that promote aggregation, and electrostatic repulsive forces that keep particles apart.
When electrostatic repulsions are dominant, especially at low ionic strengths, colloidal particles are
electrostatically stabilized and remain in a dispersed state [McCarthy and Zachara, 1989]. Con-
ditions of weak electrostatic repulsive forces may promote coagulation but not necessarily lead to
immediate particle immobilization. Coagulation is a function of several variables, including particle
concentration and particle size, that can influence the extent of particle-particle collisions. More-
over, destabilized colloids can still be transported as aggregates if the aggregates are sufficiently
small relative to the interstitial void space between solid surfaces [McCarthy and Zachara, 1989].
Because of their physicochemical properties, colloids may be transported significant distances from
where they were introduced.

The surface charge of colloids is important in modeling their transport and it is sensitive
to solution pH [Abelin, 1986]. For every type of colloid there is a pH where the surface charge is zero
known as the point of zero charge or the isoelectric point. At this pH, the attractive van der Waals
forces start to play a role in particle-particle aggregation. Recall that the velocity distribution in
the void space between solid surfaces in subsurface formations (e.g., fracture surfaces) is parabolic,
with the maximum velocity along the centerline. Zero—charged colloids will randomly sample, by

diffusion, this velocity distribution, but they will not reach the solid surface because their dimensions
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physically exclude them from the slowest moving portion of the velocity profile [de Marsily, 1986;
Mills et al., 1991]. Therefore, the average velocity of non-reactive particles is higher than the mean
interstitial fluid velocity, particularly for large size colloids [Brenner and Edwards, 1993; James and
Chrysikopoulos, 1999, 2000]. This phenomenon may be further affected by the ionic strength of
solution. For colloids and solid surfaces having the same charge, repulsion effects tend to increase
the average velocity of the particles by keeping them away from solid surfaces [de Marsily, 1986].
The adsorption process of colloids onto solid surfaces is conventionally termed as sorption, filtration,
deposition, retention, or attachment, while colloid desorption is known as detachment. However,
if the solution ionic strength increases, repulsive forces decrease, and the attractive van der Waals
forces begin to play a role in slowing down or retaining the particles through particle-wall interactions
[de Marsily, 1986]. For colloids and solid surfaces having opposite charge, sorption mechanisms slow
down or filter the colloids [de Marsily, 1986]. Generally for charged colloids, particles move more
slowly than the average interstitial velocity because of reactions with the fracture matrix [de Marsily,

1936).

2.3 Transport and Deposition of Colloids

Recent experimental and field studies indicate that contaminants can migrate not only
as dissolved species in the liquid phase, but also adsorbed onto the surface of suspended colloidal
particles [e.g., Chiou et al., 1986; Buddemeier and Hunt, 1988; Torok et al., 1990]. At the Nevada
test site, radionuclide analyses for detonation—cavity samples indicated that substantial fractions of
selected nuclides are associated with colloid—sized particles. Colloid particles may serve as carriers for
contaminants thereby significantly influencing the net rate of contaminant migration. These results
spurred researchers to model colloid—facilitated contaminant transport in subsurface environments
[Grindrod, 1993; Abdel-Salam and Chrysikopoulos, 1995a, b]. Smith and Degueldre [1993] modeled
the co—transport of a radioactive material in the presence of colloids in a single fracture and showed

that depending on system conditions, colloids may either enhance or retard contaminant transport.
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In addition to enhancing contaminant transport, certain types of colloids are also hazardous
to human health (e.g., supersaturated nuclear species, viruses, microorganisms). Puls and Powell
[1992] concluded from laboratory experiments that iron oxide colloids may be significantly mobile,
and under some conditions these colloids may be transported faster than conservative tracers. In
heterogeneous porous formations, colloids are expected to travel faster than conservative tracers (e.g.,
tritiated water), because colloids bypass small size pores [Bales et al., 1989; Haber and Brenner,
1993]. A retardation factor < 1 has been observed in several colloid transport studies [e.g., Champ
and Schroeter, 1988; Harvey et al., 1989; Toran and Palumbo, 1992]. Rapid transport of bacterial
colloids, relative to conservative tracers, was observed in a laboratory experiment using a natural
fracture [Bales et al., 1989] and in a field experiment in crystalline fractured rocks [Champ and
Schroeter, 1988]. At two separate sites at Los Alamos, New Mexico, plutonium and americium were
detected at distances much further than distances predicted by dual porosity modeling techniques
[Corapcioglu and Jiang, 1993].

As colloids are transported through fractures, they may be deposited onto fracture sur-
faces. A field experiment in crystalline rock fractures has demonstrated that the primary removal
mechanism of bacterial and non-reactive colloids from solution is deposition [Champ and Schroeter,
1988]. Deposition of colloidal particles is generally considered to involve two processes: transport
of particles to the solid-liquid interface which is primarily controlled by Brownian motion for sub-
micron particles; and attachment of particles to fracture surfaces that is mainly affected by the
repulsive electric double layer, the attractive van der Waals forces, and viscous interaction [Bowen
and Epstein, 1979; Mills et al., 1991]. Particle deposition is also affected by particle shape, wall
roughness and whether fracture surfaces are clean or if deposition occurs on previously collected
particles [Chrysikopoulos and Abdel-Salam, 1997]. Comprehensive compilations of particle deposi-
tion mechanisms have been presented by McDowell-Boyer et al. [1986] and McCarthy and Zachara

[1989]. The kinetics of local adsorption of colloid particles in parallel plate systems have been studied
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in depth [e.g., Adamczyk and van de Ven, 1980; Adamczyk et al., 1983, 1991, 1992a, b, 1997]. Par-
ticle deposition may be represented mathematically by an empirical coefficient (filter or deposition
coefficient), that is often considered an irreversible adsorption term accounting for the mechanisms
governing the deposition process [Schaaf and Talbot, 1989; Chrysikopoulos and Abdel-Salam, 1997).
Because the deposition coefficient depends on the absolute temperature, the viscosity of the aqueous
medium, the average particle size, and other parameters accounting for the electric double layer
and van der Waals forces, it is usually determined from laboratory columns or field experimental
measurements [e.g., Champ and Schroeter, 1988; Toran and Palumbo, 1992].

Detachment of colloids is not expected in fractured rocks where flow velocities are low, and
Bowen and Epstein [1979] have shown experimentally that the rate of release of deposited colloids
from a smooth parallel plate channel is negligible when the aqueous geochemistry of the interstitial
fluid is constant. However, several studies have indicated that high fluid shear or changes in the
chemistry of the interstitial fluid may allow for the resuspension of previously deposited colloids
[Grolimund and Borkovec, 1999; Legdsmand et al., 1999; Bergendahl and Grasso, 2000]. Further,
some studies of colloid transport in fractures suggest that colloids do not penetrate low porosity
rock matrices [Bowen and Epstein, 1979]. For instance, Bradbury and Green [1986] reported that
particles in the size range of 0.091-0.312 ym do not penetrate a crystalline rock matrix with 0.14
pm micro—fissures. Because the size of colloids ranges between 1072 to 10 um and the size of matrix
micro—fissures ranges between 1072 to 10 um , the possibility of colloids diffusing into the rock

matrix can not be eliminated.

2.4 Boundary Conditions

In any modeling process, boundary conditions are important because they account for
effects of the system outside of the region of interest. Usually, contaminant transport models assume

that mass is introduced to the system through either a constant concentration (first—type or Dirichlet)
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or a constant flux (third—type or Cauchy) inlet boundary condition [van Genuchten and Alves, 1982].
The constant concentration boundary condition represents the case where colloids exist at the inlet
boundary at a prescribed concentration (this includes instantaneous or pulse injection), while the
constant flux boundary condition represents the case where colloids are added at a constant rate
to the fluid that enters the fracture. The constant concentration boundary condition indicates that
with steady velocity, the advective flux across the boundary is constant, while the constant flux
indicates that the sum of advective and dispersive fluxes is constant. Solutions resulting from both
boundary conditions can be used in the analysis of experimental breakthrough curves obtained by

injecting colloids into a rock fracture.

2.5 Particle Tracking

With the ever expanding capabilities of computers, particle tracking solutions to vari-
ous engineering problems are becoming increasingly complex and realistic. Although random walk
methods, Monte Carlo simulations, and Fokker—Planck solutions to differential equations have been
employed for many years [Ahlstrom et al., 1977], the availability of inexpensive high speed proces-
sors and vast memory storage has allowed the application of these solution techniques to increas-
ingly complex problems [e.g., Uffink, 1989; Valocchi and Quinodoz, 1989; Yamashita and Kimura,
1990; Kitanidis, 1994; Grindrod and Lee, 1997; Lu, 2000; Liu et al., 2000; Michalak and Kitani-
dis, 2000]. Although particle tracking techniques were originally applied to contaminant transport
in porous media [e.g., Thompson and Gelhar, 1990; Thompson and Dougherty, 1992; Thompson,
1993; Thompson et al., 1996], extensions to fractured media have been made. For example, particle
tracking schemes that model the transport of colloids in both uniform [Yamashita and Kimura,
1990; James and Chrysikopoulos, 1999] and variable aperture fractures [Reimus, 1995; Grindrod and
Lee, 1997; James and Chrysikopoulos, 2000; Tsang and Tsang, 2001] as well as fracture networks

[Liu et al., 2000] have been developed. James and Chrysikopoulos [2001a, b] have also compared
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a traditional particle tracking algorithm with analytical solutions for the ideal case of polydisperse
colloid transport in a uniform fracture and excellent agreement was shown supporting the validity
of particle tracking techniques as solution methods for the transport of colloids and contaminants
in fractures. Higher order particle tracking schemes have been devised; however, they were found
to only be useful in heterogeneous systems with complicated unsteady flow fields [Bensabat et al.,

2000].
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Chapter 3

Effective Parameters for a Colloid

Plume

In this chapter expressions for the effective velocity and effective dispersion coefficient for
a plume of finitely sized spherical particles with neutral buoyancy flowing within a water saturated
fracture are derived. Consider the miscible displacement of a fluid initially free of particles by
another fluid containing suspended particles of finite size within a fracture formed by two semi—
infinite parallel plates. A parabolic velocity profile is induced by a uniform longitudinal pressure
gradient and the no slip condition at the fracture walls with maximum fluid velocity maintained
along the fracture centerline. Particle spreading occurs due to the combined actions of molecular
diffusion and the dispersive effect of the velocity gradient. Unlike the derivation for the Taylor
dispersion coefficient, here the finite size of the particles is taken into account. It is shown that
because the finite size of a particle excludes it from the slowest moving portion of the velocity

profile, the effective particle velocity is increased, while the overall particle dispersion is reduced.
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3.1 Background

It is often assumed that the solutes are infinitesimally small and that axial advection and
transverse diffusion chiefly govern contaminant fate and transport in fractures. While it is true
that many contaminants are of molecular size, this is not always the case. Many studies have shown
colloids to be ubiquitous in groundwater, often having a high affinity for contaminant sorption [Smith
and Degueldre, 1993; Contardi et al., 2001]. Essentially, if a contaminant sorbs onto a colloid, the
colloid itself becomes a contaminant with transport properties different than the soluble contaminant
[Abdel-Salam and Chrysikopoulos, 1995a, b].

It is well known that for a viscous fluid flowing in a channel, a velocity profile exists such
that the velocity of the fluid is maximum along the centerline and diminishes toward the wall. A
colloidal particle injected into such a channel will, by Brownian motion, make transverse excursions
normal to the direction of the flow thereby sampling and adopting velocities across the channel. The
mean velocity of the particle will therefore be a reflection of the velocity profile of the interstitial
fluid with the important qualification that the center of a particle will be excluded from the slowest
streamlines closest to the fracture walls because of its size [Small, 1974]. Consequently, the particle
will move through the channel with a mean velocity greater than the mean fluid velocity by a factor
that increases with increasing ratio of particle size to fracture aperture. This change in effective
particle velocity also alters the effective dispersion coefficient of the particle plume if the analysis
made by Taylor [1953] is performed with the modified particle velocity used in place of the mean
fluid velocity.

In this chapter, the effective velocity and effective dispersion coefficient for finitely sized
spherical colloidal particles with neutral buoyancy are derived from first principles. Because the
finite size of a particle excludes it from the slowest moving portion of the velocity profile near the
walls of a fracture, it is shown that the effective velocity of a particle plume is greater than the mean
interstitial fluid velocity. Furthermore, this particle size exclusion leads to a decrease in the effective

dispersion coefficient of a particle plume.
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3.2 Mathematical Derivations

3.2.1 Effective Velocity

Assume that a fully developed, unidimensional, Poiseuille velocity distribution exists within

a fracture as shown in Figure 3.1, expressed as [Fox and McDonald, 1992, p. 392],
Z 2
U (2) = Usnax {1 —4 (3) } . (3.1)
The mean fluid velocity may be expressed as
U =
Unmax, (3.2)

where Upayx is the maximum velocity of the interstitial fluid along the centerline of the fracture; and
z is the coordinate direction perpendicular to the walls of the fracture with its origin at the center of
the fracture. It is assumed that a spherical particle travels with a velocity corresponding to the local
flow velocity at its centroid. Particle-wall overlap is not allowed. Hydrodynamic, gravitational,
van der Waals, and electrostatic forces are not considered in the calculation of particle velocity.
The upper limit of the Reynolds number for colloid sized particles flowing in fractured media is
below 103, well into the Stokes flow regime. Drag and lift forces may be neglected. The average
(or effective) velocity of a particle is estimated by integrating the Poiseuille velocity distribution
over the aperture available to a particle and dividing by that same available aperture. The available
aperture is considered as the original aperture, b, less the diameter of a particle, d,,. Because particle
penetration of the fracture wall is not permitted, the finite size of a particle does not allow it to
sample the slowest moving portion of the velocity profile nearest the wall. This size exclusion leads

to an effective particle velocity given by:
b_dE
Unmax / z 2\ 2
U = 1-4(3) |d
eff — dp _b;_d b z

1+%—§(%)] (33)

b
2
g Umax
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Figure 3.1: Schematic illustration of the fracture considered in this study.

Note that the effective particle velocity (3.3) is greater than the mean fluid velocity (3.2)
because the particle diameter may not be larger than the fracture aperture (d,/b < 1). In view of

(3.3) it is evident that the effective velocity of a particle increases with increasing particle diameter.

3.2.2 Effective Dispersion Coefficient

Consider a control volume of unit depth defined as AxAz and situated in a fracture of
aperture b as shown in Figure 3.1. Conservation laws require that net mass accumulation of sus-
pended particles be equal to the difference between mass entering and exiting the control volume as

follows:
9 (n4, V)

ot = (Mn - Nout)transverse + <Mn - N0ut> axial (3.4)

diffusion advection

where ng, is the number concentration of colloid particles; N is the time rate of change of the
number of colloids; V' = AzAz is the two—dimensional control volume per unit depth; and ¢ is
time. Transport by axial diffusion is neglected in (3.4) as it is small in comparison to that by axial
advection. This assumption was initially made by Taylor [1953] as well as Aris [1956]; however,

Berkowitz and Zhou [1996] proved it to be a reasonable approximation for all but small time.
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Using a truncated Taylor series expansion around an arbitrary position z, i.e., f (x + Az) =

f(x)+ Azf' (x)+ -+, for the axial advection term yields:

N = Aug(2) Ndp s (3.5)

Ouy (2)nap ] (3.6)
X

Nout = A Uy (Z) ndp +
where A = Az is the unit depth cross—sectional area available for axial advection within the control

volume. Similarly, using a truncated Taylor series expansion around an arbitrary position z for the

transverse diffusion term leads to:

N = AzJ,, (3.7)

. 0J,
Nout = Al‘ <Jz + EAZ) y (38)

where J, is the flux term evaluated at z that is assumed to approximate a Fickian diffusion process

as

8ndp
T Ty,

J, = (3.9)

where Dy, is the molecular diffusion coefficient of a particle with diameter d, from the Stokes—

Einstein diffusion equation:

kT

= 3.10
3rud,’ (3.10)

Dy,
where k is Boltzmann’s constant; and T is the absolute temperature, and p the dynamic viscosity
of the interstitial fluid, respectively.

Substituting (3.5)—(3.8) into (3.4) and dividing by V yields the following partial differential

equation

. (3.11)

The preceding equation is the two—dimensional, unsteady, advection—diffusion equation with axial
advection and transverse diffusion as the two governing transport mechanisms.
Because in the present derivation the molecular diffusion in the axial direction is neglected,

all axial particle movement is due to advection. A steady—state assumption is made by considering
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only advection across the plane moving with the center of mass of a colloid particle plume, such
that z and ¢ may be collapsed into a single coordinate so that the transient term in (3.11) may be

eliminated. This can be achieved by the following coordinate transformation
& =x — Uegt. (3.12)

Applying the preceding coordinate transformation to (3.11) yields the following partial differential

equation

8nq, (& 2)
)

andp (57 Z)

D
d ag 3

= [ug (2) — Uest] (3.13)

where the term u, (2) — Ueg = ug (2) is termed the ‘velocity defect’, defined as the velocity that is a
function of z at a point £ = 0 that follows the first moment of a particle plume in time. Subtracting

the effective velocity (3.3) from the Poiseuille (parabolic) velocity profile (3.2) yields

Ue (2) = up(2) —Ues
_ Urgax (1 ~ d_:>2 1 (%)2] , (3.14)

Figure 3.2 is an illustration of the velocity defect. Note that particles in the shaded regions
have a tendency to diffuse in the direction of the open arrows because of the concentration gradient
induced by the ‘velocity defect’. It is in these shaded regions where axial particle advection (indicated
by the filled arrows) and transverse particle diffusion (indicated by the open arrows) are important.
With respect to the moving frame of reference, the velocity of a particle that is in contact with the
wall becomes ug (£(b—dp)/2) = —(2/3)Umax(1 — dp/b)?. Consequently, the apparent velocity of the
particles in the shaded areas to the left of the moving frame of reference is negative as indicated by
the direction of the filled arrows. Because the mean particle velocity at the plane for which £ =0 is
zero, the transfer of particles across this plane depends only on the transverse variation of ng,. In

view of (3.14), the governing equation (3.13) can be expressed as

azndp (572) _ Umax d 2 2\ 2 8ndp (é-’z)
(1 - 7”) 12 (3) ] e (3.15)

(922 o 3de
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Figure 3.2: Schematic illustration of the ‘velocity defect’ represented by the shaded areas. Filled
arrows indicate axial advection of particles and open arrows indicate transverse molecular diffusion
of particles.

Employing the assumption that transverse concentration gradients induced by axial advection are
quickly smoothed out by transverse molecular diffusion [Taylor, 1953], the rate of change of the
particle number concentration with respect to the moving frame of reference may be assumed nearly
constant across the aperture of the fracture. This assumption implies that Ong, (£, z) /0 may be
replaced with Ong, (§) /0¢. Integration of (3.15) with respect to z yields

My (6,2)  Unaxh (1 B %)2 : (%)31 %gigw Lo, (3.16)

0z o 3de

where C' () is an integration constant. Applying the non—dispersive flux boundary condition across
the centerline (z = 0), because of the neutral particle buoyancy, indicates that the integration

constant vanishes:

andp (67 Z)

5| 0= C(£)=0. (3.17)
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Integration of (3.16) with respect to z yields

Urnaxb® dp\? 12\2
69 =G |(1-3) )~

where n (§) is an integration constant. It can be shown by evaluating ng, (£,0) that ne () is

z\4| Ong, (§)
2(3) | === +n 3.18
b ] 8€ cl (g) ) ( )
actually the particle concentration at the centerline of the fracture.

The average particle concentration in the z—direction over the entire fracture aperture is
defined by integrating the particle number concentration across the fracture and dividing by the

fracture aperture

b/2
My (© = [ (@) (3.19)

—b/2

Substituting (3.18) into (3.19) and performing the integration, the average colloid concentration is

expressed as:

Mg, (§) = b

+ nar (€) - (3.20)

Unast? [ 7 1dy 1 (dy\?] 074, ()
120 60 12

6Dy, |120 6 b o
Note that due to averaging over b, the term dng, (§) /€ is replaced by dng, (£) /0. Solving (3.20)
for ne1 (§) and substituting the resulting expression into (3.18) allows ng, (&, 2) to be presented only

in terms of the average concentration across the fracture as follows:

Unaxb?® | 7 1d, 1 (d,)\” dy\* /22
_ Ymax 0 e I 1__1) < _
n(2) 6Dy, l 20 76 12<b> +< b) (b)

z\4| Omg, (§)
2 ( —) o 3S) 471 (e).
(3.21)
To evaluate the effective dispersion coefficient, an expression for the flux of particles across a plane

that is moving with the first moment of a particle plume in time is sought. The average flux of

particles in the axial direction relative to the moving coordinate, £, is given by

b—dp

7T 1 2
Jo= b*dp /ﬁndp (55Z>u§(2)d2’
2 UI%laXbZ d;D ¢ 8ﬁdp (g)
%45 Dy <1 - 7) “ot (3.22)

where the latter transformation is a consequence of employing (3.14) and (3.21). The average flux
is calculated only for the portion of the fracture available to the particles, hence the region spanned

by the limits of integration.
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Using the effective velocity as a moving frame of reference, the transport of particles within
the fracture may be viewed as a dispersion problem. Consequently, the advection—diffusion equation
may now be redefined as Fick’s second law of diffusion along the moving frame of reference, &, with
diffusion coefficient Deg. Thus, the unsteady transport of particles is expressed through use of the

continuity equation assuming there is no particle generation, as follows [Bird et al., 1960, p. 555]

%dp (f) oJ
— = 3.23
ot 0¢ (3.23)
Substituting the expression for average particle flux (3.22) into the preceding equation yields
nay, (€ 01 (€)
—r2 =2 =D 3.24
ot g2 (3:24)

where the effective dispersion coefficient, De.g, represents the apparent particle spreading arising
from the combined effect of the advective flux of particles across the plane moving with the center

of mass of a particle plume plus the particle molecular diffusion, and it is defined as

2 U2_b? d,\°
Dot = Dy, + ———max’_ (1 2P 2
= Do+ 515 Dy, < b) (3.25)

For the limiting case where a particle becomes negligibly small, d, — 0, the preceding expression for

the effective dispersion coefficient for finitely sized particles reduces to the classic Taylor dispersion

coefficient
2 U2 b
D =D, —_ _max | 2
Taylor dp + 045 de (3 6)

3.3 Discussion

The effect of finite particle size on particle transport in a water saturated, uniform aperture
fracture is examined in this section by focusing on the limiting cases where the particle diameter
becomes infinitesimally small (d, — 0) as well as when the particle diameter is comparable to the
fracture aperture (d, — b). As the diameter of a particle becomes infinitesimally small, the effective

velocity with which the particle plume travels is reduced to the mean flow velocity, Usg = %Umax.
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Furthermore, the effective dispersion coefficient of a plume of small particles reduces to the Taylor
dispersion coeflicient. This is in agreement with the assumption of an infinitesimally small solute
made by Taylor in his derivation. At the limit of the particle diameter approaching the fracture
aperture, the effective velocity of a particle plume becomes Uy, while the corresponding effective
dispersion coefficient reduces to the molecular diffusion coefficient. Both results arise directly from
the assumptions that each particle travels with a velocity equal to that found at its centroid due to
the existing hydraulic gradient and that particle-wall overlap is not permitted. If a particle is nearly
equal in size to the aperture of the fracture, it will experience only a narrow range of velocities
close to Upax thereby decreasing the dispersive effect of the velocity gradient. If a particle only
experiences a single velocity, the dispersion of a particle plume is caused by molecular diffusion
alone. The expected behavior of Deg at both limits of small and large particles is evident from
(3.25).

Figure 3.3a compares the effective velocity for a monodisperse plume of finitely sized parti-
cles calculated from (3.3) to the mean fluid velocity calculated from (3.2). Figure 3.3b compares the
effective dispersion coefficient for a monodisperse plume of finitely sized particles calculated from
(3.25) to the Taylor dispersion coefficient calculated from (3.26). Particle diameters range from 0.1%
up to one—quarter of the fracture aperture. It should be noted that the molecular diffusion coeffi-
cient used in both the effective and Taylor dispersion coefficients was calculated from (3.10) even
though the Taylor dispersion coefficient is derived for infinitesimally small particles. It is evident
from Figure 3.3 that when the particle diameter is 6.5% of the fracture aperture, the effective disper-
sion coefficient of a particle plume is 50% less than the corresponding Taylor dispersion coefficient.
Therefore, accounting for the finite size of a particle increases the effective velocity and decreases
the dispersion of a particle plume within a fracture. Clearly, the findings in this work suggest that
for the transport of finitely sized particles through a water saturated fracture particle size should be

taken into account.



CHAPTER 3. EFFECTIVE PARAMETERS FOR A COLLOID PLUME 34

-7
8.5X10 T T T T T T T rrrIrrg |_

~
D
~—~

8.0

7.5

U (m/s)

7.0

6.5

-9
1.2x10

0.8

2 (m/s)

0.4

-6 -5
10 10 10

d, (m)

Figure 3.3: Effective parameters for finitely sized particles of diameter, d,. The effective and mean
velocities are compared in (a); and (b) compares the effective and Taylor dispersion coefficients as
a function of particle size (here b =1 x 107* m, Upax = 1 x 1076 m/s, and T = 288.15 K).

3.4 Summary

In this chapter an effective velocity (3.3) and an effective dispersion coefficient (3.25) for
finitely sized, spherical, particles traveling in a uniform aperture fracture are derived. The slowly
flowing carrier fluid forms a parabolic velocity profile within the fracture. Because particle—wall
overlap is not allowed, and because a particle is assumed to flow at a velocity equal to that found
at its centroid, the size of a particle physically excludes it from the slowest moving portion of the

velocity profile located at the fracture walls. While this size exclusion serves to increase the effective
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travel velocity of a particle plume, it also decreases its effective dispersion coefficient. The effective
dispersion coefficient derived here is found to be similar in form to the Taylor dispersion coefficient.
In fact, in the limit of a particle diameter becoming infinitesimally small, the newly derived effective
dispersion coefficient reduces to the classic Taylor dispersion coefficient. The results presented in
this chapter show that the finite size of a particle does in fact increase the effective plume velocity

and decreases the overall spreading of a particle plume.
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Chapter 4

Analytical Solutions

Analytical solutions are derived in this chapter that describe the transport of finitely sized
monodisperse and polydisperse particles of neutral buoyancy within a semi—infinite, uniform frac-
ture subject to several boundary and initial conditions. The transport of one monodisperse and
three polydisperse particle plumes composed of hard spherical particles with equivalent mean but
different log—normally distributed diameters is investigated. Instantaneous as well as continuous
particle injection are examined. Both reversible and irreversible particle-wall interactions are con-
sidered. It is shown that both the finite particle size and the characteristics of the particle diameter
distribution significantly affect the shape of the particle concentration breakthrough curves. Fur-
thermore, increasing the standard deviation of the particle diameter enhances particle spreading
and increases the number of sorbed particles when particle-wall interactions are taken into account.
Excellent agreement between available experimental data and the analytical solution for the case of

an instantaneous release of monodisperse particles in a natural fracture is observed.
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4.1 Background

The governing partial differential equations for transport in a fracture are linear with re-
spect to the dependent variable (i.e., particle concentration). Therefore, analytical solutions to
polydisperse particle transport in a fracture can be derived from the corresponding analytical solu-
tions to monodisperse particle transport through use of the superposition principle. In the present
study, four cases are considered. The first case represents an instantaneous release of particles into
a fracture without particle-wall reactions. In the second case, it is assumed that a constant concen-
tration of particles is present at the fracture inlet and that particles do not interact with the walls
of the fracture. In both of these cases, the appropriate governing equation is of a form amenable
to a straightforward analytical solution. The third and fourth cases examined correspond to a con-
stant concentration of particles at the fracture inlet, but with irreversible and reversible particle
attachment onto the fracture walls, respectively. It should be noted that the analytical solutions for
polydisperse particles presented in this chapter are applicable to any distribution of particle sizes,
but model simulations are presented here for one monodisperse a